

Database Systems Group • Prof. Dr. Thomas Seidl

Exercise 3: Frequent Itemset Mining

Knowledge Discovery in Databases I SS 2016

Recap: Frequent Itemset Mining

Basic terms and definitions:

- Items $I = \{i_1, ..., i_m\}$
- Itemset $X \subseteq I$
- Database D
- Transactions *T*

TID	items
100	{butter, bread, milk, sugar}
200	{butter, flour, milk, sugar}
300	{butter, eggs, milk, salt}
400	{eggs}
500	{butter, flour, milk, salt sugar}

- Support: $support(X) = |\{T \in D \mid X \subseteq T\}|$
- Frequent Itemset: X freq. iff $support(X) \ge minSup$

Goal: Find all frequent itemsets in D!

Recap: Frequent Itemset Mining

Naive Algorithm: Just count the frequencies of *all possible* subsets of *I* in the database.

- Problem: For |I| = m, there are 2^m such itemsets!
- Clearly, this becomes infeasible rather quickly...

Main idea of the Apriori algorithm: Prune the exponential search space using anti-monotonicity

The Apriori algorithm makes use of prior knowledge of subset support properties. Prove the following subset properties:

- a) All non-empty subsets of a frequent itemset must also be frequent.
- b) The support of any non-empty subset S' of itemset S must be as great as the support of S.

Exercise 3-1 (a): Frequent Itemsets

a) All non-empty subsets of a frequent itemset must also be frequent:

Proof:

- Let $S \subseteq I$ be a frequent itemset, i.e. $support(S) \ge minSup$
- Let $\emptyset \neq S' \subseteq S$
- Then

$$support(S') \ge^{b)} support(S)$$

 $\ge^{S \text{ is freq. } minSup}$

i.e. S' is a frequent itemset.

b) The support of any non-empty subset S' of itemset S must be as great as the support of S.

Proof:

- Let $\emptyset \neq S' \subseteq S \subseteq I$
- For any transaction $T \subseteq I$ in database D, we have:

$$S \subseteq T \Rightarrow S' \subseteq T$$

• Thus, it holds that

$${T \in D \mid S \subseteq T} \subseteq {T \in D \mid S' \subseteq T}$$

and consequently

$$support(S) = |\{T \in D \mid S \subseteq T\}| \le |\{T \in D \mid S' \subseteq T\}| = support(S')$$

Exercise 3-2: Frequent Itemset Mining

Let D be a database that contains the following four transactions:

TID	items_bought
T1	{K, A, D, B}
T2	{D, A, C, E, B}
T3	{C, A, B, E}
T4	{B, A, D}

In addition let minSup = 60%.

- a) Find all frequent itemsets using the Apriori algorithm.
- Find all frequent itemsets using the FP-growth algorithm.
- c) Determine all closed and maximal frequent itemsets.

LUDWIG-

C₂ itemset

{A B}

{A D}

Exercise 3-2 (a): Apriori Algorithm

C₂itemset

{A B} {A D}

 $L_1 \bowtie L_1$

TID	items
1	{K, A, D, B}
2	{D, A, C, E, B}
3	{C, A, B, E}
4	{B, A, D}

prune C₂

Bottleneck of Apriori: Candidate generation

- Huge candidate set
- Multiple scans of the database

FP-Growth: FP-mining without candidate generation

- Compress database, retain only information relevant to FP-mining: FP-tree
- Use efficient Divide & Conquer approach and grow frequent patterns without generating candidate sets

Exercise 3-2 (b): FP-Growth Algorithm

Exercise 3-2 (b): FP-Growth Algorithm

 $\{\{D\},\{AD\},\{BD\},\{ABD\}\}$

LUDWIG-

Exercise 3-2 (c): Closed and Maximal Frequent Itemsets

Closed frequent itemsets:

- $X \ closed \Leftrightarrow \nexists Y : X \subset Y \land support(Y) = support(X)$
- Set of closed itemsets contains complete information

Maximal frequent itemsets:

- $X \ maximal \Leftrightarrow \nexists Y : X \subset Y \land support(Y) \ge minSup$
- Not complete, but more compact

			trequent itemsets	support
TID	itama havabt		{A}	1
TID	items_bought		{B}	1
T1	{K, A, D, B}	closed but not maximal →		0.75
T2	{D, A, C, E, B}		{D}	0.75
			{A,B}	1
T3	{C, A, B, E}		{A,D}	0.75
T4	{B, A, D}		·	
	· , , .		{B,D}	0.75
		closed & maximal →	{A,B,D}	0.75

Recap: Association Rule Mining

Association rule:

$$X \Rightarrow Y$$

where $X, Y \subseteq I$ are two itemsets with $X \cap Y = \emptyset$.

- $support(X \Rightarrow Y) = support(X \cup Y)$
- $confidence(X \Rightarrow Y) = \frac{support(X \cup Y)}{support(X)}$
- Strong association rules have support ≥ minSup and $confidence \ge minConf$

Goal: Find all strong association rules in D!

Exercise 3-3: Association Rule Mining

After frequent itemset mining, association rules can be extracted as follows: For each frequent itemset X and every non-empty subset $Y \subset X$, generate a rule $Y \Rightarrow$ $X \setminus Y$ if it fulfills the minimum confidence property.

a) Proof the following anti-monotonicity lemma for strong association rules:

Let X be a frequent itemset and $Y \subset X$. If $Y \Rightarrow X \setminus Y$ is a strong association rule, then $Y' \Rightarrow X \setminus Y'$ is also a strong association rule for every $Y \subseteq Y'$.

Exercise 3-3 (a): Association Rule Mining

Let X be a frequent itemset and $Y \subset X$. If $Y \Rightarrow X \setminus Y$ is a strong association rule, then $Y' \Rightarrow X \setminus Y'$ is also a strong association rule for every $Y \subseteq Y'$.

Proof:

•
$$support(Y' \Rightarrow X \setminus Y') = support(X)$$

 $\geq^{X \text{ is freq. } minSup}$

•
$$confidence(Y' \Rightarrow X \setminus Y') = \frac{support(X)}{support(Y')}$$

$$\geq^{3-1(b)} \frac{support(X)}{support(Y)}$$

$$= confidence(Y \Rightarrow X \setminus Y)$$

$$\geq^{Y \Rightarrow X \setminus Y \text{ is strong}} minConf$$

Exercise 3-3 (b): Association Rule Mining

b) Extract all strong association rules from the database *D* provided in the previous exercise with a minimum confidence of minConf = 80%. Which candidate rules can be pruned based on antimonotonicity?

		_
frequent itemsets	support	7
{A}	1	
{B}	1	7
{D}	0.75	
{A,B}	1	7/7
{A,D}	0.75	
{B,D}	0.75	
{A,B,D}	0.75	
$A \Rightarrow B, D$ a	$nd\; B \Rightarrow A, D \; can$	be pruned!

candidate rule	confidence
$A \Rightarrow B$	1
$B \Rightarrow A$	1
$A\Rightarrow D$	0.75
$D \Rightarrow A$	1
$B \Rightarrow D$	0.75
$D \Rightarrow B$	1
$A, B \Rightarrow D$	0.75
$A, D \Rightarrow B$	1
$B, D \Rightarrow A$	1
$D \Rightarrow A, B$	1