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« Data contains value and knowledge
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As of 2011, the global size of
data in healthcare was
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- Vertical scalability (scale up)
- Increase capacity by adding more resources to single
machine (processors, storage, memory)

- Horizontal scalability (scale-out)
-Increase capacity by adding of more machines

HORIZONTAL VERTICAL
SCALING SCALING

https://www.greentree.com/latest-news/avoiding-cu
mulus-congestus



- Distributed storage:
- Distributed file systems (GFS (google), HDFS (hadoop), S3
Amazon,...)
- NoSQL Databases

CONSISTENCY

PARTITION
TOLERANCE

CAP Theorem: Any shared-data system can have at most two of the three
desired properties!

AVAILABILITY




- MapReduce

- Programming abstraction for parallel processing of large
datasets proposed by Google

- Programmer specifies the program as sequence of
consecutive map and reduce functions

-Programs are automatically parallelized and executed on
cluster

- Runtime system takes care of data partitioning and parallel
execution
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Stream Mining:
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Stream properties and resulting
ssews | requirements

Infinite stream
— Single scan, missing random access

« Limited time Check list for stream algorithms:
— Fast access, cheap methods, sampling|= Single scan, missing random
« Limited memory ACCESS
— Compression = Fast access, cheap methods
« Evolving distribution = Compression
— Aging & updating models * Aging & updating models
« Noisy data = Noise handling
— Noise handling = Handle varying data rates

« Varying data rates = varying time allowances
— Handle lowest time allowance, reduce idle times

Dynamic Stream Data 8



e« Stream

— Astream S: Ny =» Ny X Q:i = (t;,0;) Is an infinite sequence
of objects o0; € Q from a d-dimensional input space Q and
t; € Ny, t; < t;Vi <j is the discrete arrival time of object o;.
« Stream algorithms
— Online algorithms — the input is given one at a time
— Budget algorithms — tailored to a specific “real-time” budget b
— Anytime algorithms — provide a result after any amount of processing time
* Inter-arrival time

— The inter-arrival time between two consecutive objects o; and 0,4
Is denoted as At; =t;,4 — t;, 1.e. 0 < At; € N.
. 0.

. . i I+1
Constant and varying streams - .

0
— Astream S is called constant « At; = At; Vi, j T
t. N
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« Sampling: draw a representative sample of the data distribution
 Apply a strategy to pick objects (online random sampling)
« Good for computing statistics like expected values

* Impossible for anomaly detection or practical tasks like sorting

« Maintain a finite sample

AAFABBAFFAAFABA

« Buffering: insert newly incoming objects into a buffer
(FiFo queue) and process objects consecutively from the buffer

e Canreduce idle times

« Probability of failure (buffer overflow) depends on
buffer size, budget, arrival distribution and length of the data stream

Dynamic Stream Data 10



Let 0; ; € R be the value of object o; in dimension j

The sample mean p; of all objects o, ...0, seen so far is
L 2i=1 0i,j
H;j T,

The standard deviation g; of dimension j can be computed as

n 2 n 2
i=19ij i=10i,j
0j = -
n n

p—-20 p-o n u+o  p+lo

2.
L]’

All necessary statistics (n, }0; j, 20
iIncrementally

2.0;j - 0;x) can be maintained
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Sudden Drift: Recurring Drift:
Crisis situation Seasonal impacts
Emergency Recurring events/expositions
Production issues Manufacturing cycles
Industrial problems Mostly planned rearrangements

1 2
Ky
3

3

Incremental Drift: Gradual Drift:
Step-wise adaption contract commitment
Slowly changing conditions Keeping business operational
Re-evaluating peacewise changes Fallback opportunity
Outer factors (laws, stock market) Multi-interest company

Dynamic Stream Data 13
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sl @raph Mining
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« Graphs, graphs everywhere!
— Chemical data analysis, proteins
— Biological pathways/networks
— Program control flow, traffic flow,
work flow analysis

— XML, Web, social network analysis Social Network Graph
(facebook, Dez 2010)
« Graphs form a complex and expressive data type
— Trees, lattices, sequences, and items are degenerated graphs Yeast Protein

Interaction

— Different applications result in different kinds of graphs and tasks  network
« Diversity of graphs and tasks = diversity of challenges

— Complexity of algorithms: many problems are of
high complexity (NP-complete or even P-SPACE!)

PROPANAL PROPENAL

H H

) ) . -/."a |»
source: http://www.nrao.edu/pr/2004/GBTMolecules/ source: http://jggemed.chem.wisc.edu/ from H. Jeong et al Nature 411, 41 (2001)
Graph Data 14
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«nense) @raph Databases vs. Network Data

LMU

SYSTEMS

« Different applications result in different kinds of graphs and tasks
— E.g. chemical graphs: relatively small, repeating vertex labels
— E.qg. large scale domains (web, computer networks, social networks): very
big, vertex labels are distinct
« Diversity of graphs and tasks = diversity of challenges

« Graph mining can be divided into two fundamental settings:
— Mining in a set of graphs, e.q.:
« Finding similar graphs qp = .
« Determining all frequent subgraphs
 Classification of graphs
— Mining in one single large graph, e.g.:
« How does the network ‘behave™?

« Determine striking patterns,
e.g. homogeneous and connected components

Graph Data 15
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DATABASE

SYSTEMS
GROUP

Graph Data: Mining Tasks

Some interesting problems investigated in graph mining:

How to measure similarity between graphs?

How to find frequent patterns in a graph database?
How does a real graph look like?

How to identify groups in social networks?

How to integrate additional information into graph
mining techniques?

age: 35
PC games: 16
sport: 1.6 h

age: 74
PC games: 14
sport: 1.1 h

age: 33
PC games: 15
sport: 6.5 h

age: 32
PC games: 2
sport: 5.3 h

age: 34 age: 34
PC games: 16 PC games: 15
sport: 4.8 h sport: 0.5 h

PC games: 1
sport: 1.0 h

ﬂ
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« Similarity between objects basic requirement for mining and
exploration

— Retrieval, Clustering, Classification, ...
« Many techniques rely on similarity/distance measures

« Traditional vector data: several distance functions introduced
— FEuclidean Distance, Cosine Distance, Mahalanobis Distance, ...
« Similarity between graphs more complex
— Arbitrary permutation of nodes still results in same graph

— Computing, e.g., Frobenius norm (,,entrywise” Euclidean Distance) between
two adjacency matrices not meaningful

[0110] (0100 ]
@@ 1011 @ @ 1011 g1 = 9>
1 Mi= 11100 9> ' Ma= {5101 but
@ @ 0100 @ @ 0110, |M; — M, || =2
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Frequent Subgraph Mining

Input: Collection of undirected labeled graphs

« Aim: Determine all connected graphs that occur as subgraph in at least
a given percentage (support) or number (frequency) of all graphs in DB

« Analogy to "traditional” frequent itemset mining:
— Each graph of the graph database represents a transaction

— Each subgraph represents an itemset

« Applications:

— As preprocessing: characterizing graph sets, discriminating different groups
of graphs, classifying graphs, clustering graphs, building graph indices,
facilitating similarity search

— Bioinformatics, computer vision, video indexing, chemical informatics
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Graph Data

E.g. frequent molecular fragments (e.g. in drug discovery)
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syl HOW does a ,,real” network look like?
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» For sure: dependent on application,
different graphs possible

« But: Many real world networks follow certain
rules; some characteristics show up regularly

« Important applications:
— Detection of abnormal/interesting patterns
« Specify what is ‘normal’
— Development of graph generators
* Run experiments on synthetic but realistic graphs
— Simulation studies
« E.g. test next-generation internet protocol on
graph ,,similar” to what Internet will look like
a few years into the future
— Realism of samples
 Efficient testing on smaller samples of whole data
« Samples must still reflect original characteristic

Graph Data
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Input: A graph
« Aim: Find clusters of vertices in the graph
« Related to "traditional” clustering (e.g. k-Means):

— In traditional clustering, we cluster objects based on attribute data

— Here, we cluster objects based on graph data (information about
relationships between the objects)

« Example: Given a social network, find groups of people that are densely
connected by "friendship" edges

Graph Data 20
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Internet snapshot

source: the internet mapping project

« Many different applications:
— Friendship graph: find circles of friends
— Protein-/Gene-Interaction Network:
find groups of highly interacting proteins/genes
— Internet graph: Find groups of websites with
similar topics

« Extension: Integrated Clustering
— Combined data sources: attribute

age: 35
PC games: 16
sport: 1.6 h

age: 74
PC games: 14
sport: 1.1 h

age: 33
PC games: 15
sport: 6.5 h

information (for individual objects)

and graph information, e.qg.
« Social networks: users’ interests

|: age: 32 i|
PC games: 2
sport: 5.3 h
age: 34 age: 34
« Gene networks: expression values Pty prgif"c'issﬂs
« Citation networks: conference/paper information
— Find clusters with homogenous attribute values and cohesive subgraph

structure
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