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Chapter 5: Classification

1) Introduction

– Classification problem, evaluation of classifiers, numerical prediction

2) Bayesian Classifiers

– Bayes classifier, naive Bayes classifier, applications

3) Linear discriminant functions & SVM

1) Linear discriminant functions 

2) Support Vector Machines

3) Non-linear spaces and kernel methods

4) Decision Tree Classifiers

– Basic notions, split strategies, overfitting, pruning of decision trees

5) Nearest Neighbor Classifier

– Basic notions, choice of parameters, applications

6)    Ensemble Classification
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Additional literature for this chapter

• Christopher M. Bishop: Pattern Recognition and Machine Learning. 
Springer, Berlin 2006. 
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Introduction: Example

• Training data

• Simple classifier

if age > 50 then risk = low;

if age  50 and car type = truck then risk = low;

if age  50 and car type  truck then risk = high.

Classification  Introduction 4

ID age car type risk

1 23 family high

2 17 sportive high

3 43 sportive high

4 68 family low

5 32 truck low
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Classification: Training Phase 
(Model Construction)

Classification  Introduction 5

Classifier

(age=60, familiy)
if age > 50 then risk = low;

if age  50 and car type = truck then risk = low;

if age  50 and car type  truck then risk = high

ID age car type risk
1 23 family high
2 17 sportive high
3 43 sportive high
4 68 family low
5 32 truck low

training data

classifier

training

unknown 
data

class 
label
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Classification: Prediction Phase 
(Application)

Classification  Introduction 6

Classifier

(age=60, family) risk = low

if age > 50 then risk = low;

if age  50 and car type = truck then risk = low;

if age  50 and car type  truck then risk = high

training data

classifier

training

unknown 
data

class 
label

ID age car type risk
1 23 family high
2 17 sportive high
3 43 sportive high
4 68 family low
5 32 truck low
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Classification

• The systematic assignment of new observations to known categories 
according to criteria learned from a training set

• Formally, 

– a classifier K for a model 𝑀(𝜃) is a function 𝐾𝑀(𝜃): 𝐷 → 𝑌, where

• 𝐷: data space

– Often d-dimensional space with attributes 𝑎𝑖, 𝑖 = 1,… , 𝑑 (not necessarily vector space)

– Some other space, e.g. metric space

• 𝑌 = 𝑦1, … , 𝑦𝑘 : set of 𝑘 distinct class labels 𝑦𝑗, 𝑗 = 1,… , 𝑘

• 𝑂 ⊆ 𝐷: set of training objects, 𝑜 = (𝑜1, … , 𝑜𝑑), with known class labels  𝑦 ∈ 𝑌

– Classification: application of classifier K on objects from 𝐷 − 𝑂

• Model 𝑀(𝜃) is the “type” of the classifier, and 𝜃 are the model 
parameters

• Supervised learning: find/learn optimal parameters 𝜃 for  the model 
𝑀 𝜃 from the given training data

Classification  Introduction 7
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Supervised vs. Unsupervised 
Learning

• Unsupervised learning (clustering)

– The class labels of training data are unknown

– Given a set of measurements, observations, etc. with the aim of 
establishing the existence of classes or clusters in the data

• Classes (=clusters) are to be determined

• Supervised learning (classification)

– Supervision: The training data (observations, measurements, etc.) 
are accompanied by labels indicating the class of the observations

• Classes are known in advance (a priori)

– New data is classified based on information extracted from the 
training set

Classification  Introduction 8

[WK91] S. M. Weiss and C. A. Kulikowski.  Computer Systems that Learn: Classification and Prediction Methods from Statistics, 
Neural Nets, Machine Learning, and Expert Systems.  Morgan Kaufman, 1991.
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Numerical Prediction

• Related problem to classification: numerical prediction

– Determine the numerical value of an object

– Method: e.g., regression analysis

– Example: prediction of flight delays

• Numerical prediction is different from classification

– Classification refers to predict categorical class label

– Numerical prediction models continuous-valued functions

• Numerical prediction is similar to classification

– First, construct a model

– Second, use model to predict unknown value

• Major method for numerical prediction is regression

– Linear and multiple regression

– Non-linear regression

Classification  Introduction 9
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Goals of this lecture

1. Introduction of different classification models

2. Learning techniques for these models

Classification  Introduction 11

ID
ag
e

car 
type

Max 
speed risk

1 23 family 180 high

2 17 sportive 240 high

3 43 sportive 246 high

4 68 family 173 low

5 32 truck 110 low
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Quality Measures for Classifiers

• Classification accuracy or classification error (complementary)

• Compactness of the model

– decision tree size; number of decision rules

• Interpretability of the model

– Insights and understanding of the data provided by the model

• Efficiency

– Time to generate the model (training time)

– Time to apply the model (prediction time)

• Scalability for large databases

– Efficiency in disk-resident databases

• Robustness

– Robust against noise or missing values

Classification  Introduction 16
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Evaluation of Classifiers – Notions

• Using training data to build a classifier and to estimate the model’s 
accuracy may result in misleading and overoptimistic estimates 

– due to overspecialization of the learning model to the training data

• Train-and-Test: Decomposition of labeled data set 𝑂 into two partitions

– Training data is used to train the classifier

• construction of the model by using information about the class labels

– Test data is used to evaluate the classifier

• temporarily hide class labels, predict them anew and compare results 
with original class labels

• Train-and-Test is not applicable if the set of objects for which the class 
label is known is very small

Classification  Introduction 17
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Evaluation of Classifiers –
Cross Validation

• m-fold Cross Validation

– Decompose data set evenly into m subsets of (nearly) equal size

– Iteratively use m – 1 partitions as training data and the remaining single 
partition as test data.

– Combine the m classification accuracy values to an overall classification 
accuracy, and combine the m generated models to an overall model for the 
data.

• Leave-one-out is a special case of cross validation (m=n)

– For each of the objects 𝑜 in the data set 𝑂:

• Use set 𝑂\{𝑜} as training set

• Use the singleton set {𝑜} as test set

– Compute classification accuracy by dividing the number of correct 
predictions through the database size 𝑂

– Particularly well applicable to nearest-neighbor classifiers

Classification  Introduction 18
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Quality Measures: 
Accuracy and Error

• Let 𝐾 be a classifier

• Let 𝐶(𝑜) denote the correct class label of an object 𝑜

• Measure the quality of 𝐾: 

 Predict the class label for each object 𝑜 from a data set 𝑇 ⊆ 𝑂

 Determine the fraction of correctly predicted class labels

 Classification Accuracy of 𝐾:

𝐺𝑇 𝐾 =
𝑜 ∈ 𝑇, 𝐾 𝑜 = 𝐶(𝑜)

𝑇

 Classification Error of K:

𝐹𝑇 𝐾 =
𝑜 ∈ 𝑇, 𝐾 𝑜 ≠ 𝐶(𝑜)

𝑇

Classification  Introduction 19
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Quality Measures: 
Accuracy and Error

• Let 𝐾 be a classifier

• Let TR  O be the training set – used to build the classifier

• Let TE  O be the test set – used to test the classifier 

 resubstitution error of 𝐾:

𝐹𝑇𝑅 𝐾 =
𝑜 ∈ 𝑇𝑅,𝐾 𝑜 ≠ 𝐶(𝑜)

𝑇𝑅

 (true) classification error of 𝐾:

𝐹𝑇𝐸 𝐾 =
𝑜 ∈ 𝑇𝐸,𝐾 𝑜 ≠ 𝐶(𝑜)

𝑇𝐸

Classification  Introduction 20
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Quality Measures: 
Confusion Matrix

• Results on the test set: confusion matrix

• Based on the confusion matrix, we can compute several accuracy
measures, including:

– Classification Accuracy, Classification Error

– Precision and Recall.
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Quality Measures: 
Precision and Recall

||

|)}()(|{|
),(Precision

i

i
TE

K

oCoKKo
iK




Knowledge Discovery in Databases I: Klassifikation

•Recall: fraction of test objects of class i, 

which have been identified correctly

• Let Ci= {o TE | C(o) = i}, then

•Precision: fraction of test objects assigned to class i, which have been
identified correctly
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Overfitting

• Characterization of overfitting:
There are two classifiers K and K´ for which the following holds:

– on the training set, K has a smaller error rate than K´

– on the overall test data set, K´ has a smaller error rate than K

• Example: Decision Tree

Classification  Introduction 24
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Overfitting (2)

• Overfitting

– occurs when the classifier is too optimized to  the (noisy) training data

– As a result, the classifier yields worse results on the test data set

– Potential reasons

• bad quality of training data (noise, missing values, wrong values)

• different statistical characteristics of training data and test data

• Overfitting avoidance

– Removal of noisy and erroneous training data; in particular, 
remove contradicting training data

– Choice of an appropriate size of the training set: not too small, 
not too large

– Choice of appropriate sample: sample should describe all aspects of the 
domain and not only parts of it

Classification  Introduction 25
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Underfitting

• Underfitting

– Occurs when the classifiers model is too simple, e.g. trying to separate 
classes linearly that can only be separated by a quadratic surface

– happens seldomly

• Trade-off 

– Usually one has to find a good balance between over- and underfitting

Classification  Introduction 26
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Chapter 6: Classification

1) Introduction

– Classification problem, evaluation of classifiers, prediction

2) Bayesian Classifiers

– Bayes classifier, naive Bayes classifier, applications

3) Linear discriminant functions & SVM

1) Linear discriminant functions 

2) Support Vector Machines

3) Non-linear spaces and kernel methods

4) Decision Tree Classifiers

– Basic notions, split strategies, overfitting, pruning of decision trees

5) Nearest Neighbor Classifier

– Basic notions, choice of parameters, applications

6) Ensemble Classification

Outline 27
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Bayes Classification

• Probability based classification

– Based on likelihood of observed data, estimate explicit probabilities for 
classes

– Classify objects depending on costs for possible decisions and the 
probabilities for the classes

• Incremental

– Likelihood functions built up from classified data

– Each training example can incrementally increase/decrease the probability 
that a hypothesis (class) is correct

– Prior knowledge can be combined with observed data.

• Good classification results in many applications

Classification  Bayesian Classifiers 28
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Bayes’ theorem

• Probability theory:

– Conditional probability: 𝑃 𝐴 𝐵 =
𝑃(𝐴∧𝐵)

𝑃(𝐵)
(“probability of A given B”)

– Product rule: 𝑃 𝐴 ∧ 𝐵 = 𝑃 𝐴 𝐵 ⋅ 𝑃(𝐵)

• Bayes’ theorem

– 𝑃 𝐴 ∧ 𝐵 = 𝑃 𝐴 𝐵 ⋅ 𝑃(𝐵)

– 𝑃 𝐵 ∧ 𝐴 = 𝑃 𝐵 𝐴 ⋅ 𝑃 𝐴

– Since 
𝑃 𝐴 ∧ 𝐵 = 𝑃 𝐵 ∧ 𝐴 ⇒
𝑃 𝐴 𝐵 ⋅ 𝑃 𝐵 = 𝑃 𝐵 𝐴 ⋅ 𝑃 𝐴 ⇒

Classification  Bayesian Classifiers 29

Bayes’ theorem

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 ⋅ 𝑃(𝐴)

𝑃(𝐵)
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Bayes Classifier

• Bayes rule: 𝑝 𝑐𝑗 𝑜 =
𝑝 𝑜 𝑐𝑗 ∙ 𝑝(𝑐𝑗)

𝑝(𝑜)

argmax
𝑐𝑗∈𝐶

𝑝 𝑐𝑗 𝑜 = argmax
𝑐𝑗∈𝐶

𝑝 𝑜 𝑐𝑗 ⋅ 𝑝 𝑐𝑗

𝑝 𝑜
= argmax

𝑐𝑗∈𝐶
𝑝 𝑜 𝑐𝑗 ⋅ 𝑝 𝑐𝑗

• Final decision rule for the Bayes classifier

𝐾 𝑜 = 𝑐𝑚𝑎𝑥 = argmax
𝑐𝑗∈𝐶

𝑃 𝑜 𝑐𝑗 ∙ 𝑃(𝑐𝑗)

• Estimate the apriori probabilities 𝑝(𝑐𝑗) of classes 𝑐𝑗 by using the observed 

frequency of the individual class labels 𝑐𝑗 in the training set, i.e., 𝑝 𝑐𝑗 =
𝑁𝑐𝑗

𝑁

• How to estimate the values of 𝑝 𝑜 𝑐𝑗 ?

Classification  Bayesian Classifiers 30

Value of 𝑝(𝑜) is constant and 
does not change the result.
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Density estimation techniques

• Given a database DB, how to estimate conditional probability 𝑝 𝑜 𝑐𝑗 ?

– Parametric methods: e.g. single Gaussian distribution

• Compute by maximum likelihood estimators (MLE), etc.

– Non-parametric methods: Kernel methods

• Parzen’s window, Gaussian kernels, etc.

– Mixture models: e.g. mixture of Gaussians (GMM = Gaussian Mixture 
Model)

• Compute by e.g. EM algorithm 

• Curse of dimensionality often lead to problems in high dimensional data

– Density functions become too uninformative

– Solution:

• Dimensionality reduction

• Usage of statistical independence of single attributes (extreme case: naïve Bayes)

Classification  Bayesian Classifiers 31
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Naïve Bayes Classifier (1)

• Assumptions of the naïve Bayes classifier

– Objects are given as d-dim. vectors, 𝑜 = (𝑜1, … , 𝑜𝑑)

– For any given class 𝑐𝑗 the attribute values 𝑜𝑖 are conditionally independent, 

i.e.

𝑝 𝑜1, … , 𝑜𝑑 𝑐𝑗 =ෑ

𝑖=1

𝑑

𝑝(𝑜𝑖|𝑐𝑗) = 𝑝 𝑜1 𝑐𝑗 ⋅ … ⋅ 𝑝 𝑜𝑑 𝑐𝑗

• Decision rule for the naïve Bayes classifier

𝐾𝑛𝑎𝑖𝑣𝑒 𝑜 = argmax
𝑐𝑗∈𝐶

𝑝 𝑐𝑗 ⋅ෑ

𝑖=1

𝑑

𝑝(𝑜𝑖|𝑐𝑗)

Classification  Bayesian Classifiers 32
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Naïve Bayes Classifier (2)

• Independency assumption: 𝑝 𝑜1, … , 𝑜𝑑 𝑐𝑗 = ς𝑖=1
𝑑 𝑝(𝑜𝑖|𝑐𝑗)

• If i-th attribute is categorical:
𝑝(𝑜𝑖|𝐶) can be estimated as the relative frequency
of samples having value 𝑥𝑖 as 𝑖-th attribute 
in class C in the training set

• If i-th attribute is continuous:
𝑝 𝑜𝑖 𝐶 can, for example, be estimated through:

– Gaussian density function determined by (𝑖,𝑗 ,𝑖,𝑗)

 𝑝 𝑜𝑖 𝐶𝑗 =
1

2𝜋𝜎𝑖,𝑗
e
−
1

2

𝑜𝑖−𝜇𝑖,𝑗

𝜎𝑖,𝑗

2

• Computationally easy in both cases
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Example: Naïve Bayes Classifier

• Model setup:

– Age ~ 𝑁(𝜇, 𝜎) (normal distribution)

– Car type ~ relative frequencies

– Max speed ~ 𝑁(𝜇, 𝜎) (normal distribution)

Classification  Bayesian Classifiers 34

ID age car type Max speed risk

1 23 family 180 high

2 17 sportive 240 high

3 43 sportive 246 high

4 68 family 173 low

5 32 truck 110 low

Max speed:

𝜇𝑠𝑝𝑒𝑒𝑑
ℎ𝑖𝑔ℎ

= 222, 𝜎𝑠𝑝𝑒𝑒𝑑
ℎ𝑖𝑔ℎ

= 36.49

𝜇𝑠𝑝𝑒𝑒𝑑
𝑙𝑜𝑤 = 141.5, 𝜎𝑠𝑝𝑒𝑒𝑑

𝑙𝑜𝑤 = 44.54

Age:

𝜇𝑎𝑔𝑒
ℎ𝑖𝑔ℎ

= 27.67, 𝜎𝑎𝑔𝑒
ℎ𝑖𝑔ℎ

= 13.61

𝜇𝑎𝑔𝑒
𝑙𝑜𝑤 = 50, 𝜎𝑎𝑔𝑒

𝑙𝑜𝑤 = 25.45

Car type:
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Example: Naïve Bayes Classifier (2)

• Query: q = (age = 60, car type = family, max speed = 190)

• Calculate the probabilities for both classes: 

𝑝 ℎ𝑖𝑔ℎ 𝑞 =
𝑝 𝑞 ℎ𝑖𝑔ℎ ⋅ 𝑝(ℎ𝑖𝑔ℎ)

𝑝(𝑞)

=
𝑝 𝑎𝑔𝑒 = 60 ℎ𝑖𝑔ℎ ⋅ 𝑝 𝑐𝑎𝑟 𝑡𝑦𝑝𝑒 = 𝑓𝑎𝑚𝑖𝑙𝑦|ℎ𝑖𝑔ℎ ⋅ 𝑝 max 𝑠𝑝𝑒𝑒𝑑 = 190|ℎ𝑖𝑔ℎ ⋅ 𝑝(ℎ𝑖𝑔ℎ)

𝑝(𝑞)

=
𝑁 27.67, 13.61 60 ⋅

1
3
⋅ 𝑁 222,36.49 190 ⋅

3
5

𝑝(𝑞)
= 15.32%

𝑝 𝑙𝑜𝑤 𝑞 =
𝑝 𝑞 𝑙𝑜𝑤 ⋅ 𝑝(𝑙𝑜𝑤)

𝑝(𝑞)

=
𝑝 𝑎𝑔𝑒 = 60 𝑙𝑜𝑤 ⋅ 𝑝 𝑐𝑎𝑟 𝑡𝑦𝑝𝑒 = 𝑓𝑎𝑚𝑖𝑙𝑦|𝑙𝑜𝑤 ⋅ 𝑝 max 𝑠𝑝𝑒𝑒𝑑 = 190|𝑙𝑜𝑤 ⋅ 𝑝(𝑙𝑜𝑤)

𝑝(𝑞)

=
𝑁 50, 25.45 60 ⋅

1
2
⋅ 𝑁 141.5,44.54 190 ⋅

2
5

𝑝 𝑞
= 84,68%
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With:
1 = 𝑝(ℎ𝑖𝑔ℎ|𝑞) + 𝑝(𝑙𝑜𝑤|𝑞)

Classifier 
decision
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Bayesian Classifier

• Assuming dimensions of o =(o1…od ) are not independent

• Assume multivariate normal distribution (=Gaussian)

with

𝜇𝑗 mean vector of class 𝐶𝑗

𝑁𝑗 is number of objects of class 𝐶𝑗

Σ𝑗 is the 𝑑 × 𝑑 covariance matrix

Σ𝑗 =
1

𝑁𝑗−1
σ
𝑖=1

𝑁𝑗 𝑜𝑖 − 𝜇𝑗
𝑇
⋅ 𝑜𝑖 − 𝜇𝑗

|Σ𝑗| is the determinant of Σ𝑗 and Σ𝑗
−1 the inverse of Σ𝑗

Classification  Bayesian Classifiers 36
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Example: Interpretation of 
Raster Images

• Scenario: automated interpretation of raster images

– Take an image from a certain region (in d different frequency bands, e.g., 
infrared, etc.)

– Represent each pixel by d values: (o1, …, od)

• Basic assumption: different surface properties of the earth („landuse“) 
follow a characteristic reflection and emission pattern

Classification  Bayesian Classifiers 37
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Example: Interpretation of 
Raster Images

• Application of the Bayes classifier

– Estimation of the p(o | c) without assumption of conditional independence

– Assumption of d-dimensional normal (= Gaussian) distributions for the value 
vectors of a class

Classification  Bayesian Classifiers 38
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Example: Interpretation of 
Raster Images

• Method: Estimate the following measures from training data

– 𝜇𝑗: d-dimensional mean vector of all feature vectors of class 𝐶𝑗
– Σ𝑗: 𝑑 × 𝑑 covariance matrix of class 𝐶𝑗

• Problems with the decision rule

– if likelihood of respective class is very low

– if several classes share the same likelihood
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Bayesian Classifiers – Discussion

• Pro

– High classification accuracy for many applications if density function 
defined properly

– Incremental computation
 many models can be adopted to new training objects by updating 
densities 

• For Gaussian: store count, sum, squared sum to derive mean, variance

• For histogram: store count to derive relative frequencies

– Incorporation of expert knowledge about the application in the prior 𝑃 𝐶𝑖

• Contra

– Limited applicability
 often, required conditional probabilities are not available

– Lack of efficient computation
 in case of a high number of attributes
 particularly for Bayesian belief networks
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The independence hypothesis…

• … makes efficient computation possible

• … yields optimal classifiers when satisfied

• … but is seldom satisfied in practice, as attributes (variables) are often 
correlated.

• Attempts to overcome this limitation:

– Bayesian networks, that combine Bayesian reasoning with causal 
relationships between attributes

– Decision trees, that reason on one attribute at the time, considering most 
important attributes first
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Chapter 6: Classification

1) Introduction

– Classification problem, evaluation of classifiers, prediction

2) Bayesian Classifiers

– Bayes classifier, naive Bayes classifier, applications

3) Linear discriminant functions & SVM

1) Linear discriminant functions 

2) Support Vector Machines

3) Non-linear spaces and kernel methods

4) Decision Tree Classifiers

– Basic notions, split strategies, overfitting, pruning of decision trees

5) Nearest Neighbor Classifier

– Basic notions, choice of parameters, applications

6)    Ensemble Classification
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Linear discriminant function 
classifier

• Example

• Idea: separate points of two classes by a hyperplane

– I.e., classification model is a hyperplane 

– Points of one class in one half space, points of second class are in the other 
half space

• Questions: 

– How to formalize the classifier?

– How to find optimal parameters of the model?
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ID age car type
Max 

speed risk

1 23 family 180 high

2 17 sportive 240 high

3 43 sportive 246 high

4 68 family 173 low

5 32 truck 110 low

age

Max speed

Id 1

Id 2

Id 3

Id 5

Id 4

Possible decision 

hyperplane
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Basic notions

• Recall some general algebraic notions for a vector space 𝑉:

– 𝐱, 𝐲 denotes an inner product of two vectors 𝐱, 𝐲 ∈ 𝑉:
e.g., the scalar product: 𝐱, 𝐲 = 𝐱𝑇𝐲 = σ𝑖=1

𝑑 (x𝑖 ⋅ y𝑖)

– 𝐻 𝐰,𝑤0 denotes a hyperplane with normal vector w and constant term 𝑤0:
𝐱 ∈ 𝐻 𝐰,𝑤0 ⇔ 𝐰, 𝐱 + 𝑤0 = 0

– The normal vector w may be normalized to 𝒘′:

𝐰′ =
1

𝐰,𝐰
⋅ 𝐰 ⟹ 𝐰′, 𝐰′ = 1

– Distance of a vector x to the hyperplane 𝐻(𝐰′, 𝑤0):

𝑑𝑖𝑠𝑡 𝐱, 𝐻 𝐰′, 𝑤0 = 𝐰′, 𝐱 + 𝑤0
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Formalization

• Consider a two-class example (generalizations later on):

– 𝐷: d-dimensional vector space with attributes 𝑎𝑖, 𝑖 = 1,… , 𝑑

– 𝑌 = −1, 1 set of 2 distinct class labels 𝑦𝑗

– 𝑂 ⊆ 𝐷: set of objects, 𝐨 = (𝑜1, … , 𝑜𝑑), with known class labels  𝑦 ∈ 𝑌 and

cardinality of 𝑂 = 𝑁

• A hyperplane 𝐻 𝐰,𝑤0 with normal vector 𝐰 and constant term 𝑤0

𝐱 ∈ 𝐻 ⇔ 𝐰𝑇𝐱 + 𝑤0 = 0

• Classification rule (linear classifier) given by:
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𝐰𝑇𝐱 + 𝑤0 = 0

𝐰𝑇𝐱 + 𝑤0 > 0

𝐰𝑇𝐱 + 𝑤0 < 0

Classification rule

𝐾𝐻(𝐰,𝑤0) 𝐱 = sign 𝐰𝑇𝐱 + 𝑤0
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Optimal parameter estimation

• How to estimate optimal parameters 𝐰,𝑤0?

1. Define an objective/loss function 𝐿(⋅) that assigns a value (e.g. the error on 
the training set) to each parameter-configuration

2. Optimal parameters minimize/maximize the objective function

• How does an objective function look like?

– Different choices possible

– Most intuitive: each misclassified object contributes a constant (loss) value
 0-1 loss
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0-1 loss objective function for linear classifier

𝐿 𝐰,𝑤0 = min
𝐰,𝑤0

෍

𝑛=1

𝑁

𝐼(𝑦𝑖 ≠ 𝐾𝐻 𝐰,𝑤0
𝐱𝑖 )

where 𝐼 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 1, if condition holds, 0 otherwise
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Loss functions

• 0-1 loss

– Minimize the overall number of training errors, but…
• NP-hard to optimize in general (non-smooth, non-convex)

• Small changes of 𝐰,𝑤0 can lead to large changes of the loss 

• Alternative convex loss functions
– Sum-of-squares loss:   𝐰𝑇𝐱𝑖 +𝑤0 − 𝑦𝑖

2

– Hinge loss: 1 − 𝑦𝑖(𝑤0 +𝐰𝑇𝐱𝑖 += max{0, 1 − 𝑦𝑖(𝑤0 +𝐰𝑇𝐱𝑖} (SVM)

– Exponential loss: 𝑒−𝑦𝑖(𝑤0+𝐰
𝑇𝐱𝑖) (AdaBoost)

– Cross-entropy error:     −𝑦𝑖 ln 𝑔 𝐱𝑖 + 1 − 𝑦𝑖 ln 1 − 𝑔(𝐱𝑖) (Logistic 

where 𝑔 𝐱 =
1

1+𝑒−(𝑤0+𝐰
𝑇𝐱)

regression)

– … and many more

• Optimizing different loss function leads 

to several classification algorithms

• Next, we derive the optimal parameters

for the sum-of-squares loss

Classification  Linear discriminant functions 47



DATABASE
SYSTEMS
GROUP

Optimal parameters for SSE loss

• Loss/Objective function: sum-of-squares error to real class values

• Minimize the error function for getting optimal parameters

– Use standard optimization technique:

1. Calculate first derivative

2. Set derivative to zero and compute the global minimum (SSE is a convex 
function)
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Objective function

𝑆𝑆𝐸 𝐰,𝑤0 = ෍

𝑖=1..𝑁

𝐰𝑇𝐱𝑖 + 𝑤0 − 𝑦𝑖
2
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Optimal parameters for SSE loss 
(cont’d)

• Transform the problem for simpler computations

– 𝑤𝑇𝑜 + 𝑤0 = σ𝑖=1
𝑑 𝑤𝑖 ⋅ 𝑜𝑖 + 𝑤0 = σ𝑖=0

𝑑 𝑤𝑖 ⋅ 𝑜𝑖, with 𝑜0 = 1

– For 𝐰 let ෥𝐰 = 𝑤0, … , 𝑤𝑑
𝑇

• Combine the values to matrices ෨𝑂 =

1 𝑜1,1 … 𝑜1,𝑑
⋮ ⋮ ⋱ ⋮
1 𝑜𝑁,1 … 𝑜𝑁,𝑑

, 𝑌 =

𝑦1
…
𝑦𝑁

• Then the sum-of-squares error is equal to:

𝑆𝑆𝐸 ෥𝒘 =
1

2
tr ෨𝑂෥𝒘 − 𝑌

𝑇 ෨𝑂෥𝒘− 𝑌
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෍

𝑖

𝑎𝑖𝑖
2 = tr 𝐴𝑇𝐴
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Optimal parameters for SSE loss 
(cont’d)

• Take the derivative:

• Solve 
𝜕

𝜕 ෥𝐰
𝑆𝑆𝐸 ෝ𝐰 = 0:

෨𝑂𝑇 ෨𝑂 ෝ𝐰 − 𝑌 = 0 ⇔ ෨𝑂 ෝ𝐰 = 𝑌 ⇔ ෝ𝐰 = ෨𝑂𝑇 ෨𝑂
−1 ෨𝑂𝑇𝑌

• Set ෝ𝐰 = ෨𝑂𝑇 ෨𝑂
−1 ෨𝑂𝑇𝑌

 Classify new point 𝐱 with 𝐱0 = 1: 
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Left-inverse of ෨𝑂
(“Moore-Penrose-Inverse”)

Classification rule
𝐾𝐻(ෝ𝐰,𝑤0) 𝐱 = sign ෝ𝐰𝑇𝐱

𝜕

𝜕 ෥𝐰
𝑆𝑆𝐸 ෥𝐰 = ෨𝑂𝑇 ෨𝑂 ෥𝐰− 𝑌
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Example SSE

• Data (consider only age and max. speed): 

෨𝑂 =

1 23 180
1 17 240
1 43 246
1 68 173
1 32 110

, 𝑌 =

1
1
1
−1
−1

encode classes as {high = 1, low = –1}

⇒ ෨𝑂𝑇 ෨𝑂
−1 ෨𝑂𝑇 =

0.7647 −0.0678 −0.9333 −0.4408 1.6773
−0.0089 −0.0107 0.0059 0.0192 −0.0055
−0.0012 0.0034 0.0048 −0.0003 −0.0067

⇒ ෝ𝐰 = ෨𝑂𝑇 ෨𝑂
−1 ෨𝑂𝑇𝑌 =

𝑤0

𝑤𝑎𝑔𝑒
𝑤𝑚𝑎𝑥𝑠𝑝𝑒𝑒𝑑

=
−1.4730
−0.0274
0.0141
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ID age car type

Max 
speed risk

1 23 family 180 high

2 17 sportive 240 high

3 43 sportive 246 high

4 68 family 173 low

5 32 truck 110 low
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Example SSE (cont’d)

• Model parameter: 

ෝ𝐰 = ෨𝑂𝑇 ෨𝑂
−1 ෨𝑂𝑇𝑌 =

𝑤0

𝑤𝑎𝑔𝑒
𝑤𝑚𝑎𝑥𝑠𝑝𝑒𝑒𝑑

=
−1.4730
−0.0274
0.0141

⇒ 𝐾𝐻 𝐰,𝑤0
𝐱 = sign

−0.0274
0.0141

𝑇

𝐱 − 1.4730

Query: q = (age=60, max speed = 190)
⇒ sign ෝ𝐰𝑇𝑞 = sign −0.4397 = −1

⇒ Class = low
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Extension to multiple classes

• Assume we have more than two (k > 2) classes. What to do?
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Multiclass linear classifier

 k classifiers

One-vs-one (Majority 

vote of classifiers)


𝑘 𝑘−1

2
classifiers

?

One-vs-the-rest

(“one-vs-all”)

k classifiers

?

?

?

?
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Extension to multiple classes (cont’d)

• Idea of multiclass linear classifier

– Take k linear functions of the form 𝐻𝐰𝐣,𝑤𝑗,0
𝐱 = 𝐰𝑗

𝑇𝐱 + 𝑤𝑗,0

– Decide for class 𝑦𝑗: 

yj = arg max
𝑗=1,…,𝑘

𝐻𝐰𝑗,𝑤𝑗,0
𝐱

• Advantage

– No ambiguous regions except for points on decision hyperplanes

• The optimal parameter estimation is also extendable to 𝑘 classes 
𝑌 = 𝑦1, … , 𝑦𝑘
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Discussion (SSE)

• Pro

– Simple approach

– Closed form solution for parameters

– Easily extendable to non-linear spaces (later on)

• Contra

– Sensitive to outliers  not stable classifier

• How to define and efficiently determine the maximum stable hyperplane?

– Only good results for linearly separable data

– Expensive computation of selected hyperplanes

• Approach to solve the problems

– Support Vector Machines (SVMs) [Vapnik 1979, 1995]
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Chapter 6: Classification

1) Introduction

– Classification problem, evaluation of classifiers, prediction

2) Bayesian Classifiers

– Bayes classifier, naive Bayes classifier, applications

3) Linear discriminant functions & SVM

1) Linear discriminant functions 

2) Support Vector Machines

3) Non-linear spaces and kernel methods

4) Decision Tree Classifiers

– Basic notions, split strategies, overfitting, pruning of decision trees

5) Nearest Neighbor Classifier

– Basic notions, choice of parameters, applications

6)    Ensemble Classification

Outline 57
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Maximum Margin Hyperplane

• Question: How to define the notion of the “best” hyperplane differently?

– Use another objective function that results in the maximum margin 

hyperplane

• Criteria

– Stability at insertion

– Distance to the objects of both classes

Classification  Support Vector Machines 58

p1

p2

p1

p2

© and acknowledgements: Prof. Dr. Hans-Peter Kriegel and Matthias Schubert (LMU Munich) and Dr. 
Thorsten Joachims (U Dortmund and Cornell U)
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Support Vector Machines: Principle

• Basic idea: Linear separation with 
the Maximum Margin Hyperplane 
(MMH)

– Distance to points from any of the 
two sets is maximal, i.e., at least 𝜉

– Minimal probability that the 
separating hyperplane has to be 
moved due to an insertion

– Best generalization behavior

• MMH is “maximally stable”

• MMH only depends on points pi

whose distance to the hyperplane is 
exactly x

– pi is called a support vector
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margin

maximum margin hyperplane

x
x

p1

p2
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Computation of the 
Maximum Margin Hyperplane

Two assumptions for classifying xi  (class 1: y𝑖 = +1, class 2: y𝑖 = –1):

1) The classification is accurate (no error)

2) The margin is maximal

– Let x denote the minimum 
distance of any training object 
(TR = training set) 𝑥𝑖 to the 
hyperplane H(w,b):

– Then: Maximize 𝜉 subject to i  {1, … , 𝑛}:    𝑦𝑖 ⋅ ( 𝐰′, 𝐱𝑖 + 𝑏) ≥ 𝜉
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normalized



DATABASE
SYSTEMS
GROUP

Maximum Margin Hyperplane

• Maximize 𝜉 subject to i  1..n: 𝑦𝑖 ⋅ 𝐰′, 𝐱𝑖 + 𝑏 ≥ 𝜉

• Scaling 𝐰′ by 
1

𝜉
, i.e. 𝐰 =

𝐰′

𝝃
yields the rephrased condition

i  1..n: 𝑦𝑖 ⋅ 𝐰, 𝐱𝑖 + 𝑏′ ≥ 1

• Maximizing 𝜉 corresponds to minimizing 𝑤,𝑤 =
𝑤′,𝑤′

𝜉2
:

• Convex optimization problem

– Quadratic programming problem with linear constraints 
 Solution can be obtained by Lagrangian Theory 
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Primary optimization problem:

Find a vector 𝒘 and value 𝑏 that minimizes 𝑤,𝑤 = 𝑤 2

subject to ∀𝑖 ∈ 1…𝑛 : 𝑦𝑖 ⋅ 𝐰, 𝐱𝑖 + 𝑏 ≥ 1
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Soft Margin Optimization

• Problem of Maximum Margin Optimization: 

How to treat non-linearly separable data?

– Two typical problems:

• Trade-off between training error and size of margin
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data points are not separable complete separation is not optimal
(overfitting)
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Soft Margin Optimization

• Additionally regard the number 
of training errors when optimizing:

– 𝜉𝑖 is the distance from pi to the 
margin (often called slack variable)

• 𝜉𝑖 = 0 for points on the correct side

• 𝜉𝑖 > 0 for points on the wrong side

– C controls the influence of 
single training vectors

Classification  Support Vector Machines 79

x1

x2

p1

p2

Primary optimization problem with soft margin:

Find an 𝐻(𝒘, 𝑏) that minimizes 
1

2
𝐰,𝐰 + 𝐶 ⋅ σ𝑖=1

𝑛 𝜉𝑖

subject to ∀𝑖 ∈ 1,… , 𝑛 : 𝑦𝑖 ⋅ 𝐰, 𝐱𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 and 𝜉𝑖 ≥ 0
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Soft Margin Optimization

Classification  Support Vector Machines 80

Dual optimization problem with Lagrange multipliers (Wolfe dual):

i = 0:        pi is not a support vector
i = C:        pi is a support vector with ξ𝑖 > 0
0 < i < C:  pi is a support vector with 𝜉𝑖 = 0

x1

x2

p1

p2

Dual Optimization Problem:

Maximize 𝐿 𝛼 = σ𝑖=1
𝑛 𝛼𝑖 −

1

2
σ𝑖=1
𝑛 σ𝑗=1

𝑛 𝛼𝑖 ⋅ 𝛼𝑗 ⋅ 𝑦𝑖 ⋅ 𝑦𝑗 ⋅ 𝐱𝑖 , 𝐱𝑗

subject to σ𝑖=1
𝑛 𝛼𝑖 ⋅ 𝑦𝑖 = 0 and 0 ≤ 𝛼𝑖 ≤ 𝐶

Decision rule:

ℎ 𝑥 = 𝑠𝑖𝑔𝑛 ෍

𝑥𝑖∈𝑆𝑉

𝛼𝑖 ⋅ 𝑦𝑖 ⋅ 𝐱𝑖 , 𝐱 + 𝑏

SV = support vectors
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Support Vector Machines: Discussion

• Pro

– generate classifiers with a high classification accuracy

– relatively weak tendency to overfitting (generalization theory)

– efficient classification of new objects

• due to often small number of support vectors

– compact models

• Contra

– training times may be long (appropriate feature space may be very high-
dimensional)

– expensive implementation
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Chapter 6: Classification

1) Introduction

– Classification problem, evaluation of classifiers, prediction

2) Bayesian Classifiers

– Bayes classifier, naive Bayes classifier, applications

3) Linear discriminant functions & SVM

1) Linear discriminant functions 

2) Support Vector Machines

3) Non-linear spaces and kernel methods

4) Decision Tree Classifiers

– Basic notions, split strategies, overfitting, pruning of decision trees

5) Nearest Neighbor Classifier

– Basic notions, choice of parameters, applications

6)    Ensemble Classification

Outline 82
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Non-Linearly Separable Data Sets

• Problem: For real data sets, a linear separation with a high classification 
accuracy often is not possible

• Idea: Transform the data non-linearly into a new space, and try to 
separate the data in the new space linearly (extension of the hypotheses 
space)

Classification  Non-linear spaces and kernel methods 83

Example for a quadratically separable data set
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Extension of the Hypotheses Space

• Principle

– Try to linearly separate in the extended feature space

• Example

– Here: a hyperplane in the extended feature space is a polynomial of degree 
2 in the input space
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input space extended feature spacef

(x, y, z) (x, y, z, x2, xy, xz, y2, yz, z2)f
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Example

Input space (2 attributes): Extended space (6 attributes):

𝑥 = (𝑥1, 𝑥2) 𝜙 𝑥 = (𝑥1
2, 𝑥2

2, 𝑥1 2, 𝑥2 2, 𝑥1𝑥2 2, 1)
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x1

x2
𝑥2 = 𝜎 ⋅ 𝑥1

2
𝑥2 2

2

1x

𝑥2 = 𝜎 ⋅ 𝑥1
2

TODO:
-
-
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Example (2)

Input space (2 attributes): Extended space (3 attributes):

𝑥 = (𝑥1 , 𝑥2) 𝜙 𝑥 = (𝑥1
2, 𝑥2

2, 𝑥1𝑥2 2)
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Extension of linear discriminant 
function classifier

• Linear classifier can be easily extended to non-linear spaces

• Recap: linear classifier 𝐾𝐻(𝑤,𝑤0) 𝑥 = 𝑠𝑖𝑔𝑛 𝑤𝑇𝑥 + 𝑤0

• Extend to non-linear case

– Transform all data points 𝑜 to new feature space 𝜙 𝑜

– Data matrix 𝑂 becomes a matrix Φ

– The optimal hyperplane vector becomes 

– … and that’s all! 

• New classification rule: 

• SVM can be extended in a similar way
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Non-linear classification rule:

𝐾𝐻(𝑤,𝑤0) 𝑥 = 𝑠𝑖𝑔𝑛 𝑤𝑜𝑝𝑡 𝜙
𝑇 𝜙(𝑥) + 𝑤0 𝜙

Optimal parameter:

෥𝑤𝑜𝑝𝑡 𝜙 = Φ𝑇Φ −1ΦTC
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Example

Classification  Non-linear spaces and kernel methods 88

𝑐𝑙𝑎𝑠𝑠 𝑔𝑟𝑒𝑒𝑛:𝑤𝑇𝑥 > 𝑒𝑥 − 1.3𝑥2 + 0.1𝑥 − 0.5

𝑐𝑙𝑎𝑠𝑠 𝑔𝑟𝑒𝑒𝑛:𝑤𝑇𝑥 > 2𝑥2 + 0.3

𝜙 𝑥 = (𝑥1
2, 𝑥2

2, 𝑥1 2, 𝑥2 2, 𝑥1𝑥2 2, 1)
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Non-linear classification: Discussion

• Pro

– By explicit feature transformation a much richer hypotheses space

– Simple extension of existing techniques

– Efficient evaluation, if transformed feature space not too high-dimensional 

• Contra

– Explicit mapping to other feature spaces can become problematic

– Meaningful transformation is usually not known a-priori

– Complex data distributions may require very high-dimensional features 
spaces

• High memory consumption 

• High computational costs

• Next: Kernel methods
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Implicit Mappings: Kernel Methods

• Explicit mapping of the data into the new feature space:

– After transformation, any vector-based distance is applied

– Resulting feature space may be very high dimensional

• Potential problems: Inefficient calculation, storage overhead

• Often, we do not need the transformed data points themselves, but just the
distances between them

• Kernel techniques: Just implicitly map the data to a feature space

– Distance calculation between two objects is done in the „original domain“

– Often called “Kernel trick”
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original domain novel space 

𝐾𝜙(𝑥, 𝑥′) = 𝜙 𝑥 , 𝜙 𝑥′
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Kernel: An example (1)

• Assume our original domain is 𝒳 = ℝ2

• We transform a point 𝑥 = (𝑥1 , 𝑥2) to 𝜙 𝑥 = (𝑥1
2, 𝑥2

2, 2 ⋅ 𝑥1𝑥2)

– i.e. the novel feature space is ℋ = ℝ3

– 𝜙:𝒳 → ℋ
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[NB07] M. Neuhaus, H. Bunke. Bridging the Gap Between Graph Edit Distance and Kernel Machines. 2007.
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Kernel: An example (2)

• Original point (𝑥1, 𝑥2); transformed point 𝜙 𝑥 = (𝑥1
2, 𝑥2

2, 2 ⋅ 𝑥1𝑥2)

• We want to calculate the dot product in the novel feature space ℋ:

𝑥, 𝑥′ ≔෍
𝑖=1

𝑑

𝑥𝑖 ⋅ xi
′

• What is the dot product between 𝜙 𝑥 and 𝜙 𝑥′ ?

𝜙 𝑥 , 𝜙 𝑥′ = 𝜙 (𝑥1, 𝑥2) , 𝜙 (𝑥1
′ , 𝑥2

′ )

= 𝑥1
2x1

′2 + 𝑥2
2x1

′2 + 2𝑥1𝑥2𝑥1
′𝑥2

′

= 𝑥1𝑥1
′ + 𝑥2𝑥2

′ 2

= 𝑥, 𝑥′ 2

 We do not have to explicitly map the points to the feature space ℋ!

 Simply calculate squared dot product in the original domain 𝒳!

– „Kernel Trick“

• 𝑘(𝑥, 𝑦) = 𝑥, 𝑦 2 is called a (valid) kernel, 𝑘:𝒳 → 𝒳
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TODO:
-
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Why is the dot product useful?

• Kernels correspond to dot products in some feature space

• With the dot product we are able to compute

– The norm/length of a vector 𝑥 = 𝑥, 𝑥

– The distance between two vectors:
𝑥 − 𝑦 2 = 𝑥 − 𝑦, 𝑥 − 𝑦 = 𝑥, 𝑥 + 𝑦, 𝑦 − 2 𝑥, 𝑦

– The angle between two vectors:

∡ 𝑥, 𝑦 = arccos
𝑥, 𝑦

𝑥 ⋅ 𝑦
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Some Formal Definitions (1)

• Kernel functions

– A kernel function  𝜅:𝒳 × 𝒳 → ℝ is a symmetric function, 𝜅 𝑥𝑖 , 𝑥𝑗 =

𝜅 𝑥𝑗 , 𝑥𝑖 , mapping pairs of objects 𝑥𝑖 , 𝑥𝑗 ∈ 𝒳 to real numbers.

• Positive semidefinite kernel functions

– A kernel function 𝜅 is called positive semidefinite if and only if for all 𝑁 ∈ ℕ, 
𝑁 constants {𝑐1, . . , 𝑐𝑛} ⊆ ℝ and any choice of 𝑁 objects {𝑥1, . . 𝑥𝑁} ⊆ 𝑋 holds:

෍
𝑖,𝑗=1

𝑁

𝑐𝑖𝑐𝑗𝜅 𝑥𝑖 , 𝑥𝑗 ≥ 0

or, in matrix notation, for 𝑐 = 𝑐1, … , 𝑐𝑛
𝑡 and 𝐾𝑖𝑗 = 𝜅 𝑥𝑖 , 𝑥𝑗 :

𝑐𝑡 ⋅ 𝐾 ⋅ 𝑐 ≥ 0

– The left hand side describes a quadratic form for the matrix 𝐾

– Positive semidefinite kernel functions are often called valid kernels, 
admissible kernels, or Mercer kernels.
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𝑐𝑡 ⋅ 𝐾 ⋅ 𝑐 ≥ 0
Matrixschreib
weise ist neu
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Some Formal Definitions (2)

• Definition Dot Product : A dot product in a vector space ℋ is a function
. , . : ℋ ×ℋ → ℝ

satisfying:

– 𝑥, 𝑥′ = 𝑥′, 𝑥 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦

– 𝛼𝑥 + 𝛽𝑥′, 𝑥′′ = 𝛼 𝑥, 𝑥′′ + 𝛽 𝑥′, 𝑥′′ 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦

– 𝑥, 𝑥 = 0 𝑓𝑜𝑟 𝑥 = 0

– 𝑥, 𝑥 > 0 𝑓𝑜𝑟 𝑥 ≠ 0

• Definition Hilbert Space: A vector space ℋ endowed with a dot 
product . , . : ℋ ×ℋ → ℝ for which the induced norm gives a complete 
metric space, is termed Hilbert Space
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Interpretation of kernel functions

• Theorem: Let 𝜅:𝒳 ×𝒳 → ℝ be a valid kernel on a pattern space 𝒳. 

There exists a possibly infinite-dimensional Hilbert space ℋ
and a mapping 𝜙:𝒳 → ℋ such that
𝜅 𝑥, 𝑥′ = 𝜙 𝑥 , 𝜙 𝑥′ for all 𝑥, 𝑥′ ∈ 𝒳
where . , . denotes the dot product in a Hilbert space ℋ

→ every kernel 𝜅 can be seen as a dot product in some feature space ℋ

• Advantages:

– Feature space ℋ may be infinite dimensional

– Not really necessary to know which feature space ℋ we have

– Computation of kernel is done in original domain 𝒳
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Kernel SVM

• Kernel trick can also be used in SVMs:

• Feature transform f only affects the scalar product of training vectors

• Kernel K is a function: 𝐾𝜙 𝐱𝑖 , 𝐱𝑗 = 𝜙 𝐱𝑖 , 𝜙(𝐱𝑗)
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Dual Optimization Problem with Lagrange multipliers (Wolfe dual):

Maximize 𝐿 𝛼 = σ𝑖=1
𝑛 𝛼𝑖 −

1

2
σ𝑖=1
𝑛 σ𝑗=1

𝑛 𝛼𝑖 ⋅ 𝛼𝑗 ⋅ 𝑦𝑖 ⋅ 𝑦𝑗 ⋅ 𝐱𝑖 , 𝐱𝑗

HERE:  σ𝑖=1
𝑛 𝛼𝑖 −

1

2
σ𝑖=1
𝑛 σ𝑗=1

𝑛 𝛼𝑖 ⋅ 𝛼𝑗 ⋅ 𝑦𝑖 ⋅ 𝑦𝑗 ⋅ 𝜙(𝐱𝑖), 𝜙(𝐱𝑗)

subject to σ𝑖=1
𝑛 𝛼𝑖 ⋅ 𝑦𝑖 = 0 and 0 ≤ 𝛼𝑖 ≤ 𝐶

Decision rule: 

ℎ 𝑥 = 𝑠𝑖𝑔𝑛 ෍

𝑥𝑖∈𝑆𝑉

𝛼𝑖 ∙ 𝑦𝑖 ∙ 𝐾(𝐱𝑖 , 𝐱) + 𝑏

Seen before, cf. SVM, 
Soft Margin Optimization
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Examples for kernel machines 
(Mercer kernels)
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Radial basis kernel Polynomial kernel (degree 2)

 dK 1,),(  yxyx 2
exp),( yxyx  K
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Discussion

• Pro

– Kernel methods provide a simple method for dealing with non-linearity

– Implicit mapping allows for mapping to arbitrary-dimensional spaces

• Computational effort depends on the number of training examples, but not on the 
feature space dimensionality

• Contra

– resulting models rarely provide an intuition

– choice of kernel can be difficult
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Chapter 6: Classification

1) Introduction

– Classification problem, evaluation of classifiers, prediction

2) Bayesian Classifiers

– Bayes classifier, naive Bayes classifier, applications

3) Linear discriminant functions & SVM

1) Linear discriminant functions 

2) Support Vector Machines

3) Non-linear spaces and kernel methods

4) Decision Tree Classifiers

– Basic notions, split strategies, overfitting, pruning of decision trees

5) Nearest Neighbor Classifier

– Basic notions, choice of parameters, applications

6) Ensemble Classification

Outline 100

age

Max speed
Id 1

Id 2
Id 3

Id 5

Id 4
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Decision Tree Classifiers

• Approximating discrete-valued target function

• Learned function is represented as a tree:

– A flow-chart-like tree structure

– Internal node denotes a test on an attribute

– Branch represents an outcome of the test

– Leaf nodes represent class labels or class distribution

• Learned tree can be transformed into IF-THEN rules
IF car_type = truck THEN risk = low

IF car_type ≠ truck AND age > 60 THEN risk = low

IF car_type ≠ truck AND age ≤ 60 THEN risk = high

• Advantages:

– Decision trees represent explicit knowledge

– Decision trees are intuitive to most users
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= truck

> 60 60

risk = high

risk = low

 truck

risk = low

car type

age

ID age car type risk

1 23 family high

2 17 sportive high

3 43 sportive high

4 68 family low

5 32 truck low

training data

learned decision tree
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Decision Tree Classifier: Splits

• Each tree node defines an axis-parallel (d-1)-dimensional hyper plane, 
that splits the domain space

• Goal: find such splits which lead to as homogenous groups as possible
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Node 1 
Attr. 1

Node 2 
Attr. 2

Node 3 
Attr. 2

Node 1 

split

Node 2 

split

Node 3

splitAttr. 2

Attr. 1

Left side Right side



DATABASE
SYSTEMS
GROUP

Decision Tree Classifiers: Basics

• Decision tree generation (training phase) consists of two phases

1) Tree construction

• At start, all the training examples are at the root

• Partition examples recursively based on selected attributes

2) Tree pruning

• Identify and remove branches that reflect noise or outliers

• Use of decision tree: Classifying an unknown sample

– Traverse the tree and test the attribute values of the sample against the 

decision tree

– Assign the class label of the respective leaf to the query object
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Algorithm for Decision Tree 
Construction

• Basic algorithm (a greedy algorithm)

– Tree is created in a top-down recursive divide-and-conquer manner

– Attributes may be categorical or continuous-valued

– At start, all the training examples are assigned to the root node

– Recursively partition the examples at each node and push them down to the 
new nodes

• Select test attributes and determine split points or split sets for the respective 
values on the basis of a heuristic or statistical measure (split strategy, e.g., 
information gain)

• Conditions for stopping partitioning

– All samples for a given node belong to the same class

– There are no remaining attributes for further partitioning – majority voting 
is employed for classifying the leaf

– There are no samples left
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Algorithm for Decision Tree 
Construction

• Most algorithms are versions of this basic algorithm (greedy, top-down)

– E.g.: ID3[Q86], or its successor C4.5[Q96]
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ID3(Examples, TargetAttr, Attributes) //specialized to learn boolean-valued functions

Create a Root node for the tree;

If all Examples are positive, return Root with label = + ;

If all Examples are negative, return Root with label = - ;

If Attributes=∅, return Root with label = most common value of TargetAttr in Examples;

Else 

𝐴=the ‘best’ decision attribute for next node

Assign A as decision attribute for Root

For each possible value 𝑣𝑖 of A:

Generate branch corresponding to test 𝐴 = 𝑣𝑖;
𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝑣𝑖= examples that have value 𝑣𝑖 for 𝐴;

If 𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝑣𝑖 = ∅, add leaf node with label = most common value of TargetAttr in Examples;

Else add subtree  ID3(𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝑣𝑖 , TargetAttr, Attributes\{A});

how to determine the ‘best’ 

attribute ? 

how to split the possible values ?

[Q86] J.R. Quinlan. Induction of decision trees. Machine Learnin, 1(1), pages 81-106, 1986.
[Q96] J. R. Quinlan.  Bagging, boosting, and c4.5.  In Proc. 13th Natl. Conf. on Artificial Intelligence (AAAI'96), pages 725-730, 1996.
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Example: Decision for 
„playing_tennis“

• Query: How about playing tennis today?

• Training data:

• Build decision tree …

Classification  Decision Tree Classifiers 106

day forecast temperature humidity wind tennis decision

1 sunny hot high weak no

2 sunny hot high strong no

3 overcast hot high weak yes

4 rainy mild high weak yes

5 rainy cool normal weak yes

6 rainy cool normal strong no

7 overcast cool normal strong yes

8 sunny mild high weak no

9 sunny cool normal weak yes

10 rainy mild normal weak yes

11 sunny mild normal strong yes

12 overcast mild high strong yes

13 overcast hot normal weak yes

14 rainy mild high strong no
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Split Strategies: Quality of Splits

• Given

– a set T of training objects

– a (disjoint, complete) partitioning T1, T2, …, Tm of T

– the relative frequencies pi of class ci in T and in the partition T1, …, Tm

• Wanted

– a measure for the heterogeneity of a set S of training objects with respect to 
the class membership

– a split of T into partitions T1, T2, …, Tm such that the heterogeneity is 
minimized

• Proposals: Information gain, Gini index, Misclassification error
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forecast

su
nn

y rainy

[9+, 5-]

[2+, 3-] [3+, 2-]

o
verca

st

[4+, 0-]

temperature
co

ol

hot

[9+, 5-]

[3+, 1-] [2+, 2-]

m
ild

[4+, 2-]

humidity

hi
gh

norm
al

[9+, 5-]

[3+, 4-] [6+, 1-]

wind

w
ea

k strong

[9+, 5-]

[6+, 2-] [3+, 3-]
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Attribute Selection Measures: 
Information Gain

• used in ID3 / C4.5

• Entropy

– minimum number of bits to encode a message that 
contains the class label of a random training object

– the entropy of a set T of training objects is defined 

as follows:

– entropy(T) = 0 if pi = 1 for any class ci

– entropy (T) = 1 if there are k = 2 classes with pi = ½ for each i

• Let A be the attribute that induced the partitioning T1, T2, …, Tm of T. 
The information gain of attribute A wrt. T is defined as follows:
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for k classes ci with 
frequencies pi

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑇 = −෍

𝑖=1

𝑘

𝑝𝑖 ∙ log2 𝑝𝑖

𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑔𝑎𝑖𝑛 𝑇, 𝐴 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑇) −෍

𝑖=1

𝑚
|𝑇𝑖|

|𝑇|
∙ 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑇𝑖)

for two 

classes:

e
n

tr
o
p

y
(T

)

p(class=c1)
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Attribute Selection: Example 
(Information Gain)
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Result: ‘forecast’ yields the highest information gain

forecast

su
nn

y rainy

[9+, 5-]

[2+, 3-] [3+, 2-]

o
verca

st

[4+, 0-]

temperature

co
ol

hot

[9+, 5-]

[3+, 1-] [2+, 2-]

m
ild

[4+, 2-]

humidity

hi
gh

norm
al

[9+, 5-]

[3+, 4-] [6+, 1-]

wind

w
ea

k strong

[9+, 5-]

[6+, 2-] [3+, 3-]

entropy = 0.940

0.985 0.592

entropy = 0.940 entropy = 0.940 entropy = 0.940

0.811 1.00.811 1.00.9180 0.9710.971

𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑔𝑎𝑖𝑛 𝑇, 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 = 0.94 −
5

14
⋅ 0.971 −

4

14
⋅ 0 −

5

14
⋅ 0.971 = 0.246

𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑔𝑎𝑖𝑛 𝑇, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.94 −
4

14
⋅ 0.811 −

6

14
⋅ 0.918 −

4

14
⋅ 1 = 0.029

𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑔𝑎𝑖𝑛 𝑇, ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 0.94 −
7

14
⋅ 0.985 −

7

14
⋅ 0.592 = 0.151

𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑔𝑎𝑖𝑛 𝑇, 𝑤𝑖𝑛𝑑 = 0.94 −
8

14
⋅ 0.811 −

6

14
⋅ 1.0 = 0.048

forecast

su
nny rainy

[9+, 5-]

[2+, 3-] [3+, 2-]

o
verca

st [4+, 0-]

yes? ?
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Example: Decision for 
„playing_tennis“
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forecast

humidity

  

yes

sunny rainy
overcast

wind

yes yesnono

high
str

ong weak
normal

{1,...,14}

{1,2,8,9,11} {4,5,6,10,14}{3,7,12,13}

{1,2,8} {9,11} {6,14} {4,5,10}

day forecast temperature humidity wind decision

1 sunny hot high weak no

2 sunny hot high strong no

3 overcast hot high weak yes

4 rainy mild high weak yes

5 rainy cool normal weak yes

6 rainy cool normal strong no

7 overcast cool normal strong yes

8 sunny mild high weak no

9 sunny cool normal weak yes

10 rainy mild normal weak yes

11 sunny mild normal strong yes

12 overcast mild high strong yes

13 overcast hot normal weak yes

14 rainy mild high strong no

final decision tree
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Attribute Selection Measures:
Gini Index

• Used in IBM‘s IntelligentMiner

• The Gini index for a set T of training objects is defined as follows

𝑔𝑖𝑛𝑖 𝑇 = 1 −෍

𝑗=1

𝑘

𝑝𝑗
2

– small value of Gini index low heterogeneity

– large value of Gini index high heterogeneity

• Let A be the attribute that induced the partitioning T1, T2, …, Tm of T. 
The Gini index of attribute A wrt. T is defined as follows:

𝑔𝑖𝑛𝑖𝐴 𝑇 =෍

𝑖=1

𝑚
|𝑇𝑖|

|𝑇|
⋅ 𝑔𝑖𝑛𝑖(𝑇𝑖)
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for k classes ci with 
frequencies pi



DATABASE
SYSTEMS
GROUP

Attribute Selection Measures: 
Misclassification Error

• The Misclassification Error for a set T of training objects is defined as 
follows

𝐸𝑟𝑟𝑜𝑟 𝑇 = 1 −max
𝑐𝑖

𝑝𝑖

– small value of Error low heterogeneity

– large value of Error high heterogeneity

• Let A be the attribute that induced the partitioning T1, T2, …, Tm of T. 
The Misclassification Error of attribute A wrt. T is defined as follows:

𝐸𝑟𝑟𝑜𝑟𝐴 𝑇 =෍

𝑖=1

𝑚
|𝑇𝑖|

|𝑇|
⋅ 𝐸𝑟𝑟𝑜𝑟(𝑇𝑖)
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for k classes ci with 
frequencies pi

two-class problem:
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Split Strategies: Types of Splits

• Categorical attributes

– split criteria based on equality „attribute = a“ 

– based on subset relationships „attribute ϵ set“

 many possible choices (subsets)

• Choose the best split according to, e.g., gini index

• Numerical attributes

– split criteria of the form „attribute < a“
 many possible choices for the split point

• One approach: order test samples w.r.t. their attribute value; consider every 
mean value between two adjacent samples as possible split point; choose best 
one according to, e.g., gini index

– Partition the attribute value into a discrete set of intervals 
(Binning)
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attribute

= a1 = a3= a2

attribute

ϵ S1 ϵ S2

attribute

< a ≥ a

attribute

[∞ ,x1]
(x2,x3]

(xn, ∞]

...
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Avoid Overfitting in Classification

• The generated tree may overfit the training data 

– Too many branches, some may reflect 

anomalies due to noise or outliers

– Result has poor accuracy for 

unseen samples

• Two approaches to avoid overfitting for decision trees:

1) Post pruning = pruning of overspecialized branches

– Remove branches from a “fully grown” tree & get a sequence of 

progressively pruned trees

– Use a set of data different from the training data to decide which is the 

“best pruned tree”
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Overfitting: Avoidance

2) Prepruning = halt tree construction early, do not split a node if this 
would result in the goodness measure falling below a threshold

– Choice of an appropriate value for minimum support

• minimum support: minimum number of data objects a leaf node contains

• in general, minimum support >> 1

– Choice of an appropriate value for minimum confidence

• minimum confidence: minimum fraction of the majority class in a leaf node

• typically, minimum confidence << 100%

• leaf nodes can absorb errors or noise in data records

– Discussion

• With Prepruning it is difficult to choose appropriate thresholds

• Prepruning has less information for the pruning decision than Postpruning. In 
general, it therefore can be expected to produce decision trees with lower 
classification quality.

• Tradeoff: tree construction time ↔ classification quality
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Pruning of Decision Trees: 
Approach Postpruning

Reduced-Error Pruning [Q87]

• Decompose classified data into training set and test set

• Create a decision tree E for the training set

• Prune E by using the test set T

– determine the interior node 𝑣 of E whose pruning reduces the number of 
misclassified data points on T the most (i.e., replace the subtree S with root 
𝑣 by a leaf. Determine the value of the leaf by majority voting)

– prune

– finish if no such interior node exists

• only applicable if a sufficient number of classified data is available
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Pruning of Decision Trees: 
Approach Postpruning

Minimal Cost Complexity Pruning [BFO+84]

• Does not require a separate test set

– applicable to small training sets as well

• Pruning of the decision tree by using the training set

– classification error is no appropriate quality measure

• New quality measure for decision trees:

– trade-off of classification error and tree size

– weighted sum of classification error and tree size

• General observation

– the smaller decision trees yield the better generalization
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Pruning of Decision Trees: 
Notions

• Size |𝐸| of a decision tree E: number of leaf nodes

• Cost-complexity quality measure of E with respect to training set T , 

classification error FT and complexity parameter  0:

• For the smallest minimal subtree E() of E wrt. , it is true that:

– (1) there is no subtree of E with a smaller cost complexity

– (2) if E() and B both fulfill (1), then is E() a subtree of B

•  = 0: E() = E i.e., only error does matter

•   : E() = root node of E i.e., only tree size does matter

• 0 <  < : E() is a proper substructure of E, i.e. the root node or more 

than the root node
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Extracting Classification Rules from 
Trees

• Represent the knowledge in the form of IF-THEN rules

• One rule is created for each path from the root to a leaf

• Each attribute-value pair along a path forms a conjunction

• The leaf node holds the class prediction

• Rules are easier for humans to understand

• Example

IF forecast = ‘overcast’ THEN playing_tennis = ‘yes’

IF forecast = ‘sunny’ AND humidiy = ‘high’ THEN playing_tennis = ‘no’

IF forecast = ‘sunny’ AND humidiy = ‘normal’ THEN playing_tennis = ‘yes’

IF forecast = ‘rainy’  AND wind = ‘strong’ THEN playing_tennis = ‘no’

IF forecast = ‘rainy’  AND wind = ‘weak’ THEN playing_tennis = ‘yes’
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Enhancements to basic decision tree 
induction

• Handle missing attribute values

If node n tests attribute  A:

– assign most common value of A among other examples sorted to node n

– assign the most common value of the attribute among other examples with 
the same target value sorted to node n

– assign probability pi to each of the possible values vi of attribute A among 
other examples sorted to node n

• Assign fraction pi of example to each descendant in tree

• Classify new examples in the same fashion: 
classification decision is the one with the highest probability (sum over all 
instance fragments of each class decision)
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Decision Tree Classifiers: Summary

• Hierarchical linear classifier for data with attributes (categorical or 
numerical)

• Pro

– Relatively fast learning speed (in comparison to other classification 
methods)

– Fast classification speed

– Convertible to simple and easy to understand classification rules

– Often comparable classification accuracy with other classification methods

• Contra

– Not very stable, small changes of the data can lead to large changes of the 
tree
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Chapter 6: Classification

1) Introduction

– Classification problem, evaluation of classifiers, prediction

2) Bayesian Classifiers

– Bayes classifier, naive Bayes classifier, applications

3) Linear discriminant functions & SVM

1) Linear discriminant functions 

2) Support Vector Machines

3) Non-linear spaces and kernel methods

4) Decision Tree Classifiers

– Basic notions, split strategies, overfitting, pruning of decision trees

5) Nearest Neighbor Classifier

– Basic notions, choice of parameters, applications

6) Ensemble Classification
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Nearest Neighbor Classifiers

• Motivation: 

– Assume data in a non-vector representation: graphs, forms, XML-files, etc.

– No simple way to use linear classifiers or decision trees

• Possible solutions

– Definition of an appropriate kernel function for kernel machines (e.g. kernel 
SVM)

• Not always clear how to define a kernel

– Transformation of objects to some vector space (multidimensional scaling, 
histograms for color or shape distributions, etc.)

• Difficult to choose an appropriate number of dimensions (intrinsic/fractal 
dimensionality)

– Here: direct usage of the similarity of objects for classification 
 Nearest neighbor classifier

• Requires a similarity function

Classification  Nearest Neighbor Classifier 126



DATABASE
SYSTEMS
GROUP

Nearest Neighbor Classifiers: 
Example

• Procedure: 

Assign query object q to the class 𝑐𝑗 of the closest training object 𝑜 ∈ 𝑂

• Classifier decides that query object q is a dog

• Instance-based learning
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Instance-Based Methods

• Instance-based learning: 

– Store training examples and delay the processing (“lazy evaluation”) until a 

new instance must be classified

– Typical approaches : k-nearest neighbor approach

• Instances represented as points in an Euclidean space or, more general, as points 

in a metric space

• Index construction as training phase

– The classification has to process a huge number of NN-queries  support by e.g. R-

tree

• Eager evaluation

– Create models from data (training phase) and then use these models for 

classification (test phase)

– Examples: Decision tree, Bayes classifier
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Nearest Neighbor Classifiers: 
Variants

• NN Classifier

– Assign query object to the class cj of the closest training object

– Parameter free approach

• k-NN Classifier

– Consider the k>1 nearest neighbors 
for the class assignment decision

• Weighted k-NN Classifier

– Use weights for the classes of the k nearest neighbors

• Mean-based NN Classifier:

– Determine mean vector i for each class cj (in training phase)

– Assign query object to the class cj of the nearest mean vector i

• Generalization: representative-based NN Classifier 

– Use more than one representative per class
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Nearest Neighbor Classifiers: 
Notions

• Distance function

– Defines the (dis-)similarity for pairs of objects

• Number k of neighbors to be considered

• Decision set

– Set of k nearest neighboring objects to be used in the decision rule 

• Decision rule

– Given the class labels of the objects from the decision set, how to determine 
the class label to be assigned to the query object?
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Nearest Neighbor Classifiers: 
Parameter k

• Tradeoff between overfitting and generalization:

Problem of choosing an appropriate value for parameter k

– k too small: high sensitivity against outliers

– k too large: decision set contains many objects from other classes

– Different rules of thumb exist: 

• Based on theoretical considerations: Choose k, such that it grows slowly with n, 

e.g. 𝑘 ≈ 𝑛 or 𝑘 ≈ log(𝑛)

• Empirically, 1 << k < 10 yields a high classification accuracy in many cases
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Nearest Neighbor Classifiers: 
Decision Rules

• Standard rule

– Choose majority class in the decision set, i.e. the class with the most 

representatives in the decision set

• Weighted decision rules

– Use weights for the classes in the decision set

• Use distance to the query object:  
1

𝑑 𝑜,𝑞 2

• Use frequency of classes in the training set, i.e. the a-priori probability of the 

class

– Example

• Class a: 95%, class b: 5%

• Decision set = {a, a, a, a, b, b, b}

• Standard rule yields class “a”

• Weighted rule yields class “b” (a-priori based)
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Nearest Neighbor Classifiers: 
Example

• Using unit weights (i.e., no weights) for the decision set
– Simply called “majority criterion”

– rule k = 2 yields class „+“, rule k = 5 yields class „–“

• Using the reciprocal square of the distances as weights
– Both rules, k = 2 and k = 5, yield class „+“

• Using a-priori probability (=frequency) of classes as weights
– Both rules, k = 2 and k = 5, yield class „+“
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Nearest Neighbor Classification: 
Discussion

• Pro

– applicability: training data and distance function required only

– high classification accuracy in many applications

– easy incremental adaptation to new training objects

– useful also for prediction

– robust to noisy data by averaging k-nearest neighbors

• Contra

– naïve implementation is inefficient

• requires k-nearest neighbor query processing

• support by database techniques may help to reduce from 𝑂(𝑛) to 𝑂(log 𝑛) for n 
training objects  training phase: create index structure

– does not produce explicit knowledge about classes

• But provides some explanation information

– Curse of dimensionality: distance between neighbors could be dominated by 
irrelevant attributes

• To overcome it, stretch axes or eliminate least relevant attributes
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Chapter 5: Classification

1) Introduction

– Classification problem, evaluation of classifiers, prediction

2) Linear discriminant functions & SVM

1) Linear discriminant functions 

2) Support Vector Machines

3) Non-linear spaces and kernel methods

3) Decision Tree Classifiers

– Basic notions, split strategies, overfitting, pruning of decision trees

4) Nearest Neighbor Classifier

– Basic notions, choice of parameters, applications

5) Bayesian Classifiers

– Bayes classifier, naive Bayes classifier, applications

6) Ensemble Classification
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Ensemble Classification

• No single classifier performs good on every problem

• For some techniques, small changes in the training set lead to very 
different classifiers

• Idea: improve performance by combining different classifiers

=> ensemble classification

• Different possibilities exist

• Discussed here:

– Bagging (Bootstrap aggregation)

– Boosting
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Bagging

• How do we get different classifiers?

– Easiest way: Train the same classifier K on different datasets

• Bagging (or Bootstrap Aggregation): 

– Randomly select 𝑀 different subsets from the training set

– On each subset, train a classifier 𝐾𝑀

– Overall decision: 𝐾 𝑜 = 𝑠𝑖𝑔𝑛(
1

𝑀
σ1
𝑀𝐾𝑀(𝑜))
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Boosting

• A technique for combining multiple ‘base classifiers’

• Can produce good results even if the single classifiers are only slightly 
better than random guessing!

• Linear combination of several weak learners (different classifiers)

• Given M weak learners {𝐾1, … , 𝐾𝑀} and M weights 𝛼1, … , 𝛼𝑀(with 
σ𝑖=1
𝑀 𝛼𝑖 = 1)

• The final classifier K is given by K 𝑥 = 𝑠𝑖𝑔𝑛 σ𝑖=1
𝑀 𝛼𝑖 𝐾𝑖(𝑥)

• Difference to bagging: 

– Here, the classifiers are trained in sequence

– Each classifier is trained to perform better on data points that were 
misclassified by previous classifiers
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AdaBoost

• Widely used boosting method: AdaBoost (Adaptive Boosting) [FS1996]
• Meta-algorithm that iteratively generates a chain of weak learners

• General idea: Assume (t-1) weak learners are already given. The tth

learner should focus on instances that were previously misclassified.

• Assign a weight 𝑤𝑖 to each instance 𝑥𝑖 to represent its importance

• Start with equal weight for each instance, adapt weights according to 
the performance of previously trained classifiers
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DATABASE
SYSTEMS
GROUP

AdaBoost - Algorithm

• Initialize 𝑤1, … , 𝑤𝑁 =
1

𝑁
𝑁: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

• For 𝑚 = 1,… ,𝑀:

– Fit a classifier 𝐾𝑚(𝑥) to the training data by minimizing weighted error 

function 𝐽𝑚 = σ𝑛=1
𝑁 𝑤𝑛𝐼(𝐾𝑚 𝑥𝑛) ≠ 𝑡𝑛 (𝑡𝑛: correct class label, 

𝐼: indicator function)

– Compute weighting coefficient 𝛼𝑚 = ln
1−𝜖𝑚

𝜖𝑚
with 𝜖𝑚 =

𝐽𝑚
σ1
𝑁𝑤𝑛

– Updata all data weights: 𝑤𝑛,𝑜𝑙𝑑 = 𝑤𝑛
𝑤𝑛 = 𝑤𝑛,𝑜𝑙𝑑 exp 𝛼𝑚𝐼(𝐾𝑚 𝑥𝑛 ≠ 𝑡𝑛)

• Make prediction using final model

𝐾𝑀 𝑥 = 𝑠𝑖𝑔𝑛 ෍

𝑚=1

𝑀

𝛼𝑚 𝐾𝑚(𝑥)
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Classification: Summary

Linear models SVM Decision Trees k-NN classifier Bayes classifier

Compactness Usually compact 
(number dims)

Compact if few
#supp. vectors

Compact if
pruned

No model Model dependent

Interpretability of 
model

Medium-Low Medium-Low Good - Model dependent

Explanation of 
decision

Low Low Good
rules for decision 
known

Medium-Good
decision object 
set known

Medium-Good 
probabilities of 
decision are given

Training time High Medium Low-Medium No training Model dependent

Test time Low-High (if high 
dimensional)

Low-Medium Low Low (index)
Very high

Model dependent
but often Low

Robustness Low High Low High High

Data types Arbitrary data 
(kernel-
dependent)

Arbitrary data 
(kernel-dependent)

Categorical and 
vector

Arbitrary data 
(need distance 
function)

Arbitrary data 
(need probability 
distribution)

Model Hyperplane Hyperplane or non-
linear (kernel)

Set of (axis 
parallel) 
hyperplanes

Model free Statistical density
distribution
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Discussion: Choice of classifiers

• There are different classifiers…

– are there any reasons to prefer one classifier over another if we make no 
assumptions about the nature of the classification task?

– Or is there maybe even an overall superior algorithm to random guessing?

• The answer to these and many related questions is: NO

• Also known as “No Free Lunch Theorem” 
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Classification Chapter – Conclusions

• Classification is an extensively studied problem
(mainly in statistics and machine learning)

• Classification is probably one of the most widely used data mining 
techniques with a lot of extensions

• Scalability is an important issue for database applications: thus 
combining classification with database techniques should be a 
promising topic

• Research directions: classification of complex data, e.g., text, spatial, 
multimedia, etc.

– Example: kNN-classifiers rely on distances but do not require vector 
representations of data

• Results can be improved by ensemble classification
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