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Chapter 5: Classification

1) Introduction
– Classification problem, evaluation of classifiers, numerical prediction

2) Bayesian Classifiers
– Bayes classifier, naive Bayes classifier, applications

3) Linear discriminant functions & SVM
1) Linear discriminant functions 

2) Support Vector Machines

3) Non-linear spaces and kernel methods

4) Decision Tree Classifiers
– Basic notions, split strategies, overfitting, pruning of decision trees

5) Nearest Neighbor Classifier
– Basic notions, choice of parameters, applications

6)    Ensemble Classification
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Additional literature for this chapter

• Christopher M. Bishop: Pattern Recognition and Machine Learning. 
Springer, Berlin 2006. 
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Introduction: Example

• Training data

• Simple classifier
if age > 50 then risk = low;

if age ≤ 50 and car type = truck then risk = low;

if age ≤ 50 and car type ≠ truck then risk = high.
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ID age car type risk
1 23 family high
2 17 sportive high
3 43 sportive high
4 68 family low
5 32 truck low
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Classification: Training Phase 
(Model Construction)

Classification  Introduction 5

Classifier

(age=60, familiy)
if age > 50 then risk = low;

if age ≤ 50 and car type = truck then risk = low;

if age ≤ 50 and car type ≠ truck then risk = high

ID age car type risk
1 23 family high
2 17 sportive high
3 43 sportive high
4 68 family low
5 32 truck low

training data

classifier

training

unknown 
data

class 
label
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Classification: Prediction Phase 
(Application)

Classification  Introduction 6

Classifier

(age=60, family) risk = low
if age > 50 then risk = low;

if age ≤ 50 and car type = truck then risk = low;

if age ≤ 50 and car type ≠ truck then risk = high

training data

classifier

training

unknown 
data

class 
label

ID age car type risk
1 23 family high
2 17 sportive high
3 43 sportive high
4 68 family low
5 32 truck low
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Classification

• The systematic assignment of new observations to known categories 
according to criteria learned from a training set

• Formally, 
– a classifier K for a model 𝑀𝑀(𝜃𝜃) is a function 𝐾𝐾𝑀𝑀(𝜃𝜃): 𝐷𝐷 → 𝑌𝑌, where

• 𝐷𝐷: data space
– Often d-dimensional space with attributes 𝑎𝑎𝑖𝑖, 𝑖𝑖 = 1, … ,𝑑𝑑 (not necessarily vector space)

– Some other space, e.g. metric space

• 𝑌𝑌 = 𝑦𝑦1, … ,𝑦𝑦𝑘𝑘 : set of 𝑘𝑘 distinct class labels 𝑦𝑦𝑗𝑗, 𝑗𝑗 = 1, … , 𝑘𝑘
• 𝑂𝑂 ⊆ 𝐷𝐷: set of training objects, 𝑜𝑜 = (𝑜𝑜1, … , 𝑜𝑜𝑑𝑑), with known class labels  𝑦𝑦 ∈ 𝑌𝑌

– Classification: application of classifier K on objects from 𝐷𝐷 − 𝑂𝑂

• Model 𝑀𝑀(𝜃𝜃) is the “type” of the classifier, and 𝜃𝜃 are the model 
parameters

• Supervised learning: find/learn optimal parameters 𝜃𝜃 for  the model 
𝑀𝑀 𝜃𝜃 from the given training data

Classification  Introduction 7
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Supervised vs. Unsupervised 
Learning

• Unsupervised learning (clustering)
– The class labels of training data are unknown
– Given a set of measurements, observations, etc. with the aim of 

establishing the existence of classes or clusters in the data
• Classes (=clusters) are to be determined

• Supervised learning (classification)
– Supervision: The training data (observations, measurements, etc.) 

are accompanied by labels indicating the class of the observations
• Classes are known in advance (a priori)

– New data is classified based on information extracted from the 
training set

Classification  Introduction 8

[WK91] S. M. Weiss and C. A. Kulikowski.  Computer Systems that Learn: Classification and Prediction Methods from Statistics, 
Neural Nets, Machine Learning, and Expert Systems.  Morgan Kaufman, 1991.
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Numerical Prediction

• Related problem to classification: numerical prediction
– Determine the numerical value of an object

– Method: e.g., regression analysis

– Example: prediction of flight delays

• Numerical prediction is different from classification
– Classification refers to predict categorical class label

– Numerical prediction models continuous-valued functions

• Numerical prediction is similar to classification
– First, construct a model

– Second, use model to predict unknown value
• Major method for numerical prediction is regression

– Linear and multiple regression

– Non-linear regression

Classification  Introduction 9
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Goals of this lecture

1. Introduction of different classification models

2. Learning techniques for these models

Classification  Introduction 11
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1 23 family 180 high

2 17 sportive 240 high

3 43 sportive 246 high

4 68 family 173 low
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Quality Measures for Classifiers

• Classification accuracy or classification error (complementary)
• Compactness of the model

– decision tree size; number of decision rules

• Interpretability of the model
– Insights and understanding of the data provided by the model

• Efficiency
– Time to generate the model (training time)

– Time to apply the model (prediction time)

• Scalability for large databases
– Efficiency in disk-resident databases

• Robustness
– Robust against noise or missing values

Classification  Introduction 16
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Evaluation of Classifiers – Notions

• Using training data to build a classifier and to estimate the model’s 
accuracy may result in misleading and overoptimistic estimates 
– due to overspecialization of the learning model to the training data

• Train-and-Test: Decomposition of labeled data set 𝑂𝑂 into two partitions
– Training data is used to train the classifier

• construction of the model by using information about the class labels

– Test data is used to evaluate the classifier
• temporarily hide class labels, predict them anew and compare results 

with original class labels

• Train-and-Test is not applicable if the set of objects for which the class 
label is known is very small

Classification  Introduction 17
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Evaluation of Classifiers –
Cross Validation

• m-fold Cross Validation
– Decompose data set evenly into m subsets of (nearly) equal size

– Iteratively use m – 1 partitions as training data and the remaining single 
partition as test data.

– Combine the m classification accuracy values to an overall classification 
accuracy, and combine the m generated models to an overall model for the 
data.

• Leave-one-out is a special case of cross validation (m=n)
– For each of the objects 𝑜𝑜 in the data set 𝑂𝑂:

• Use set 𝑂𝑂\{𝑜𝑜} as training set

• Use the singleton set {𝑜𝑜} as test set

– Compute classification accuracy by dividing the number of correct 
predictions through the database size 𝑂𝑂

– Particularly well applicable to nearest-neighbor classifiers

Classification  Introduction 18
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Quality Measures: 
Accuracy and Error

• Let 𝐾𝐾 be a classifier

• Let 𝐶𝐶(𝑜𝑜) denote the correct class label of an object 𝑜𝑜

• Measure the quality of 𝐾𝐾: 

− Predict the class label for each object 𝑜𝑜 from a data set 𝑇𝑇 ⊆ 𝑂𝑂

− Determine the fraction of correctly predicted class labels

− Classification Accuracy of 𝐾𝐾:

𝐺𝐺𝑇𝑇 𝐾𝐾 =
𝑜𝑜 ∈ 𝑇𝑇,𝐾𝐾 𝑜𝑜 = 𝐶𝐶(𝑜𝑜)

𝑇𝑇
− Classification Error of K:

𝐹𝐹𝑇𝑇 𝐾𝐾 =
𝑜𝑜 ∈ 𝑇𝑇,𝐾𝐾 𝑜𝑜 ≠ 𝐶𝐶(𝑜𝑜)

𝑇𝑇

Classification  Introduction 19
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Quality Measures: 
Accuracy and Error

• Let 𝐾𝐾 be a classifier

• Let TR ⊆ O be the training set – used to build the classifier

• Let TE ⊆ O be the test set – used to test the classifier 

− resubstitution error of 𝐾𝐾:

𝐹𝐹𝑇𝑇𝑇𝑇 𝐾𝐾 =
𝑜𝑜 ∈ 𝑇𝑇𝑇𝑇,𝐾𝐾 𝑜𝑜 ≠ 𝐶𝐶(𝑜𝑜)

𝑇𝑇𝑇𝑇

− (true) classification error of 𝐾𝐾:

𝐹𝐹𝑇𝑇𝐸𝐸 𝐾𝐾 =
𝑜𝑜 ∈ 𝑇𝑇𝑇𝑇,𝐾𝐾 𝑜𝑜 ≠ 𝐶𝐶(𝑜𝑜)

𝑇𝑇𝑇𝑇

Classification  Introduction 20
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Quality Measures: 
Confusion Matrix

• Results on the test set: confusion matrix

• Based on the confusion matrix, we can compute several accuracy
measures, including:
– Classification Accuracy, Classification Error

– Precision and Recall.

21
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Quality Measures: 
Precision and Recall
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•Recall: fraction of test objects of class i, 
which have been identified correctly

• Let Ci= {o∈ TE | C(o) = i}, then

•Precision: fraction of test objects assigned to class i, which have been
identified correctly

•Let Ki= {o∈ TE | K(o) = i}, then
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Overfitting

• Characterization of overfitting:
There are two classifiers K and K´ for which the following holds:
– on the training set, K has a smaller error rate than K´

– on the overall test data set, K´ has a smaller error rate than K

• Example: Decision Tree

Classification  Introduction 24
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Overfitting (2)

• Overfitting
– occurs when the classifier is too optimized to  the (noisy) training data

– As a result, the classifier yields worse results on the test data set

– Potential reasons
• bad quality of training data (noise, missing values, wrong values)

• different statistical characteristics of training data and test data

• Overfitting avoidance
– Removal of noisy and erroneous training data; in particular, 

remove contradicting training data

– Choice of an appropriate size of the training set: not too small, 
not too large

– Choice of appropriate sample: sample should describe all aspects of the 
domain and not only parts of it

Classification  Introduction 25
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Underfitting

• Underfitting
– Occurs when the classifiers model is too simple, e.g. trying to separate 

classes linearly that can only be separated by a quadratic surface

– happens seldomly

• Trade-off 
– Usually one has to find a good balance between over- and underfitting

Classification  Introduction 26
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Chapter 6: Classification

1) Introduction
– Classification problem, evaluation of classifiers, prediction

2) Bayesian Classifiers
– Bayes classifier, naive Bayes classifier, applications

3) Linear discriminant functions & SVM
1) Linear discriminant functions 

2) Support Vector Machines

3) Non-linear spaces and kernel methods

4) Decision Tree Classifiers
– Basic notions, split strategies, overfitting, pruning of decision trees

5) Nearest Neighbor Classifier
– Basic notions, choice of parameters, applications

6) Ensemble Classification

Outline 27
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Bayes Classification

• Probability based classification
– Based on likelihood of observed data, estimate explicit probabilities for 

classes

– Classify objects depending on costs for possible decisions and the 
probabilities for the classes

• Incremental
– Likelihood functions built up from classified data

– Each training example can incrementally increase/decrease the probability 
that a hypothesis (class) is correct

– Prior knowledge can be combined with observed data.

• Good classification results in many applications

Classification  Bayesian Classifiers 28
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Bayes’ theorem

• Probability theory:

– Conditional probability: 𝑃𝑃 𝐴𝐴 𝐵𝐵 = 𝑃𝑃(𝐴𝐴∧𝐵𝐵)
𝑃𝑃(𝐵𝐵)

(“probability of A given B”)

– Product rule: 𝑃𝑃 𝐴𝐴 ∧ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 𝐵𝐵 ⋅ 𝑃𝑃(𝐵𝐵)
• Bayes’ theorem

– 𝑃𝑃 𝐴𝐴 ∧ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 𝐵𝐵 ⋅ 𝑃𝑃(𝐵𝐵)
– 𝑃𝑃 𝐵𝐵 ∧ 𝐴𝐴 = 𝑃𝑃 𝐵𝐵 𝐴𝐴 ⋅ 𝑃𝑃 𝐴𝐴
– Since 

𝑃𝑃 𝐴𝐴 ∧ 𝐵𝐵 = 𝑃𝑃 𝐵𝐵 ∧ 𝐴𝐴 ⇒
𝑃𝑃 𝐴𝐴 𝐵𝐵 ⋅ 𝑃𝑃 𝐵𝐵 = 𝑃𝑃 𝐵𝐵 𝐴𝐴 ⋅ 𝑃𝑃 𝐴𝐴 ⇒

Classification  Bayesian Classifiers 29

Bayes’ theorem

𝑃𝑃 𝐴𝐴 𝐵𝐵 =
𝑃𝑃 𝐵𝐵 𝐴𝐴 ⋅ 𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)
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Bayes Classifier

• Bayes rule: 𝑝𝑝 𝑐𝑐𝑗𝑗 𝑜𝑜 =
𝑝𝑝 𝑜𝑜 𝑐𝑐𝑗𝑗 � 𝑝𝑝(𝑐𝑐𝑗𝑗)

𝑝𝑝(𝑜𝑜)

argmax
𝑐𝑐𝑗𝑗∈𝐶𝐶

𝑝𝑝 𝑐𝑐𝑗𝑗 𝑜𝑜 = argmax
𝑐𝑐𝑗𝑗∈𝐶𝐶

𝑝𝑝 𝑜𝑜 𝑐𝑐𝑗𝑗 ⋅ 𝑝𝑝 𝑐𝑐𝑗𝑗
𝑝𝑝 𝑜𝑜

= argmax
𝑐𝑐𝑗𝑗∈𝐶𝐶

𝑝𝑝 𝑜𝑜 𝑐𝑐𝑗𝑗 ⋅ 𝑝𝑝 𝑐𝑐𝑗𝑗

• Final decision rule for the Bayes classifier

𝐾𝐾 𝑜𝑜 = 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = argmax
𝑐𝑐𝑗𝑗∈𝐶𝐶

𝑃𝑃 𝑜𝑜 𝑐𝑐𝑗𝑗 � 𝑃𝑃(𝑐𝑐𝑗𝑗)

• Estimate the apriori probabilities 𝑝𝑝(𝑐𝑐𝑗𝑗) of classes 𝑐𝑐𝑗𝑗 by using the observed 

frequency of the individual class labels 𝑐𝑐𝑗𝑗 in the training set, i.e., 𝑝𝑝 𝑐𝑐𝑗𝑗 =
𝑁𝑁𝑐𝑐𝑗𝑗
𝑁𝑁

• How to estimate the values of 𝑝𝑝 𝑜𝑜 𝑐𝑐𝑗𝑗 ?

Classification  Bayesian Classifiers 30

Value of 𝑝𝑝(𝑜𝑜) is constant and 
does not change the result.
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Density estimation techniques

• Given a database DB, how to estimate conditional probability 𝑝𝑝 𝑜𝑜 𝑐𝑐𝑗𝑗 ?
– Parametric methods: e.g. single Gaussian distribution

• Compute by maximum likelihood estimators (MLE), etc.

– Non-parametric methods: Kernel methods
• Parzen’s window, Gaussian kernels, etc.

– Mixture models: e.g. mixture of Gaussians (GMM = Gaussian Mixture 
Model)
• Compute by e.g. EM algorithm 

• Curse of dimensionality often lead to problems in high dimensional data
– Density functions become too uninformative

– Solution:
• Dimensionality reduction

• Usage of statistical independence of single attributes (extreme case: naïve Bayes)

Classification  Bayesian Classifiers 31
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Naïve Bayes Classifier (1)

• Assumptions of the naïve Bayes classifier

– Objects are given as d-dim. vectors, 𝑜𝑜 = (𝑜𝑜1, … , 𝑜𝑜𝑑𝑑)

– For any given class 𝑐𝑐𝑗𝑗 the attribute values 𝑜𝑜𝑖𝑖 are conditionally independent, 
i.e.

𝑝𝑝 𝑜𝑜1, … , 𝑜𝑜𝑑𝑑 𝑐𝑐𝑗𝑗 = �
𝑖𝑖=1

𝑑𝑑

𝑝𝑝(𝑜𝑜𝑖𝑖|𝑐𝑐𝑗𝑗) = 𝑝𝑝 𝑜𝑜1 𝑐𝑐𝑗𝑗 ⋅ … ⋅ 𝑝𝑝 𝑜𝑜𝑑𝑑 𝑐𝑐𝑗𝑗

• Decision rule for the naïve Bayes classifier

𝐾𝐾𝑛𝑛𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛 𝑜𝑜 = argmax
𝑐𝑐𝑗𝑗∈𝐶𝐶

𝑝𝑝 𝑐𝑐𝑗𝑗 ⋅�
𝑖𝑖=1

𝑑𝑑

𝑝𝑝(𝑜𝑜𝑖𝑖|𝑐𝑐𝑗𝑗)
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Naïve Bayes Classifier (2)

• Independency assumption: 𝑝𝑝 𝑜𝑜1, … , 𝑜𝑜𝑑𝑑 𝑐𝑐𝑗𝑗 = ∏𝑖𝑖=1
𝑑𝑑 𝑝𝑝(𝑜𝑜𝑖𝑖|𝑐𝑐𝑗𝑗)

• If i-th attribute is categorical:
𝑝𝑝(𝑜𝑜𝑖𝑖|𝐶𝐶) can be estimated as the relative frequency
of samples having value 𝑥𝑥𝑖𝑖 as 𝑖𝑖-th attribute 
in class C in the training set

• If i-th attribute is continuous:
𝑝𝑝 𝑜𝑜𝑖𝑖 𝐶𝐶 can, for example, be estimated through:
– Gaussian density function determined by (µ𝑖𝑖,𝑗𝑗 ,σ𝑖𝑖,𝑗𝑗)

 𝑝𝑝 𝑜𝑜𝑖𝑖 𝐶𝐶𝑗𝑗 = 1
2𝜋𝜋𝜎𝜎𝑖𝑖,𝑗𝑗

e
−12

𝑜𝑜𝑖𝑖−𝜇𝜇𝑖𝑖,𝑗𝑗
𝜎𝜎𝑖𝑖,𝑗𝑗

2

• Computationally easy in both cases
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Example: Naïve Bayes Classifier

• Model setup:
– Age ~ 𝑁𝑁(𝜇𝜇,𝜎𝜎) (normal distribution)

– Car type ~ relative frequencies

– Max speed ~ 𝑁𝑁(𝜇𝜇,𝜎𝜎) (normal distribution)

Classification  Bayesian Classifiers 34

ID age car type Max speed risk
1 23 family 180 high
2 17 sportive 240 high
3 43 sportive 246 high
4 68 family 173 low
5 32 truck 110 low

Max speed:
𝜇𝜇𝑠𝑠𝑝𝑝𝑛𝑛𝑛𝑛𝑑𝑑
ℎ𝑖𝑖𝑖𝑖ℎ = 222,𝜎𝜎𝑠𝑠𝑝𝑝𝑛𝑛𝑛𝑛𝑑𝑑

ℎ𝑖𝑖𝑖𝑖ℎ = 36.49
𝜇𝜇𝑠𝑠𝑝𝑝𝑛𝑛𝑛𝑛𝑑𝑑𝑙𝑙𝑜𝑜𝑙𝑙 = 141.5,𝜎𝜎𝑠𝑠𝑝𝑝𝑛𝑛𝑛𝑛𝑑𝑑𝑙𝑙𝑜𝑜𝑙𝑙 = 44.54

Age:
𝜇𝜇𝑚𝑚𝑖𝑖𝑛𝑛
ℎ𝑖𝑖𝑖𝑖ℎ = 27.67,𝜎𝜎𝑚𝑚𝑖𝑖𝑛𝑛

ℎ𝑖𝑖𝑖𝑖ℎ = 13.61
𝜇𝜇𝑚𝑚𝑖𝑖𝑛𝑛𝑙𝑙𝑜𝑜𝑙𝑙 = 50,𝜎𝜎𝑚𝑚𝑖𝑖𝑛𝑛𝑙𝑙𝑜𝑜𝑙𝑙 = 25.45

Car type:
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Example: Naïve Bayes Classifier (2)

• Query: q = (age = 60, car type = family, max speed = 190)

• Calculate the probabilities for both classes: 

𝑝𝑝 ℎ𝑖𝑖𝑖𝑖ℎ 𝑞𝑞 =
𝑝𝑝 𝑞𝑞 ℎ𝑖𝑖𝑖𝑖ℎ ⋅ 𝑝𝑝(ℎ𝑖𝑖𝑖𝑖ℎ)

𝑝𝑝(𝑞𝑞)

=
𝑝𝑝 𝑎𝑎𝑖𝑖𝑎𝑎 = 60 ℎ𝑖𝑖𝑖𝑖ℎ ⋅ 𝑝𝑝 𝑐𝑐𝑎𝑎𝑐𝑐 𝑡𝑡𝑦𝑦𝑝𝑝𝑎𝑎 = 𝑓𝑓𝑎𝑎𝑓𝑓𝑖𝑖𝑓𝑓𝑦𝑦|ℎ𝑖𝑖𝑖𝑖ℎ ⋅ 𝑝𝑝 max 𝑠𝑠𝑝𝑝𝑎𝑎𝑎𝑎𝑑𝑑 = 190|ℎ𝑖𝑖𝑖𝑖ℎ ⋅ 𝑝𝑝(ℎ𝑖𝑖𝑖𝑖ℎ)

𝑝𝑝(𝑞𝑞)

=
𝑁𝑁 27.67, 13.61 60 ⋅ 1

3 ⋅ 𝑁𝑁 222,36.49 190 ⋅ 3
5

𝑝𝑝(𝑞𝑞)
= 15.32%

𝑝𝑝 𝑓𝑓𝑜𝑜𝑙𝑙 𝑞𝑞 =
𝑝𝑝 𝑞𝑞 𝑓𝑓𝑜𝑜𝑙𝑙 ⋅ 𝑝𝑝(𝑓𝑓𝑜𝑜𝑙𝑙)

𝑝𝑝(𝑞𝑞)

=
𝑝𝑝 𝑎𝑎𝑖𝑖𝑎𝑎 = 60 𝑓𝑓𝑜𝑜𝑙𝑙 ⋅ 𝑝𝑝 𝑐𝑐𝑎𝑎𝑐𝑐 𝑡𝑡𝑦𝑦𝑝𝑝𝑎𝑎 = 𝑓𝑓𝑎𝑎𝑓𝑓𝑖𝑖𝑓𝑓𝑦𝑦|𝑓𝑓𝑜𝑜𝑙𝑙 ⋅ 𝑝𝑝 max 𝑠𝑠𝑝𝑝𝑎𝑎𝑎𝑎𝑑𝑑 = 190|𝑓𝑓𝑜𝑜𝑙𝑙 ⋅ 𝑝𝑝(𝑓𝑓𝑜𝑜𝑙𝑙)

𝑝𝑝(𝑞𝑞)

=
𝑁𝑁 50, 25.45 60 ⋅ 1

2 ⋅ 𝑁𝑁 141.5,44.54 190 ⋅ 2
5

𝑝𝑝 𝑞𝑞
= 84,68%
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With:
1 = 𝑝𝑝(ℎ𝑖𝑖𝑖𝑖ℎ|𝑞𝑞) + 𝑝𝑝(𝑓𝑓𝑜𝑜𝑙𝑙|𝑞𝑞)

Classifier 
decision
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Bayesian Classifier

• Assuming dimensions of o =(o1…od ) are not independent
• Assume multivariate normal distribution (=Gaussian)

with

𝜇𝜇𝑗𝑗 mean vector of class 𝐶𝐶𝑗𝑗
𝑁𝑁𝑗𝑗 is number of objects of class 𝐶𝐶𝑗𝑗
Σ𝑗𝑗 is the 𝑑𝑑 × 𝑑𝑑 covariance matrix

Σ𝑗𝑗 = 1
𝑁𝑁𝑗𝑗−1

∑𝑖𝑖=1
𝑁𝑁𝑗𝑗 𝑜𝑜𝑖𝑖 − 𝜇𝜇𝑗𝑗

𝑇𝑇 ⋅ 𝑜𝑜𝑖𝑖 − 𝜇𝜇𝑗𝑗

|Σ𝑗𝑗| is the determinant of Σ𝑗𝑗 and Σ𝑗𝑗−1 the inverse of Σ𝑗𝑗
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Example: Interpretation of 
Raster Images

• Scenario: automated interpretation of raster images
– Take an image from a certain region (in d different frequency bands, e.g., 

infrared, etc.)

– Represent each pixel by d values: (o1, …, od)

• Basic assumption: different surface properties of the earth („landuse“) 
follow a characteristic reflection and emission pattern
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• • • •
• • • •
• • • •
• • • •

• • • •
• • • •
• • • •
• • • •

Surface of the earth Feature-space

Band 1
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16.5 22.020.018.0
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•
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•
•• •

••

••••
1 1 1 2
1 1 2 2
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Example: Interpretation of 
Raster Images

• Application of the Bayes classifier
– Estimation of the p(o | c) without assumption of conditional independence

– Assumption of d-dimensional normal (= Gaussian) distributions for the value 
vectors of a class
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Example: Interpretation of 
Raster Images

• Method: Estimate the following measures from training data
– 𝜇𝜇𝑗𝑗: d-dimensional mean vector of all feature vectors of class 𝐶𝐶𝑗𝑗
– Σ𝑗𝑗: 𝑑𝑑 × 𝑑𝑑 covariance matrix of class 𝐶𝐶𝑗𝑗

• Problems with the decision rule
– if likelihood of respective class is very low

– if several classes share the same likelihood
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Bayesian Classifiers – Discussion

• Pro
– High classification accuracy for many applications if density function 

defined properly

– Incremental computation
 many models can be adopted to new training objects by updating 
densities 
• For Gaussian: store count, sum, squared sum to derive mean, variance
• For histogram: store count to derive relative frequencies

– Incorporation of expert knowledge about the application in the prior 𝑃𝑃 𝐶𝐶𝑖𝑖

• Contra
– Limited applicability
 often, required conditional probabilities are not available

– Lack of efficient computation
 in case of a high number of attributes
 particularly for Bayesian belief networks
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The independence hypothesis…

• … makes efficient computation possible
• … yields optimal classifiers when satisfied
• … but is seldom satisfied in practice, as attributes (variables) are often 

correlated.
• Attempts to overcome this limitation:

– Bayesian networks, that combine Bayesian reasoning with causal 
relationships between attributes

– Decision trees, that reason on one attribute at the time, considering most 
important attributes first
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Chapter 6: Classification

1) Introduction
– Classification problem, evaluation of classifiers, prediction

2) Bayesian Classifiers
– Bayes classifier, naive Bayes classifier, applications

3) Linear discriminant functions & SVM
1) Linear discriminant functions 

2) Support Vector Machines

3) Non-linear spaces and kernel methods

4) Decision Tree Classifiers
– Basic notions, split strategies, overfitting, pruning of decision trees

5) Nearest Neighbor Classifier
– Basic notions, choice of parameters, applications

6)    Ensemble Classification

Outline 42

age

Max speed
Id 1
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Linear discriminant function 
classifier

• Example

• Idea: separate points of two classes by a hyperplane
– I.e., classification model is a hyperplane 
– Points of one class in one half space, points of second class are in the other 

half space

• Questions: 
– How to formalize the classifier?
– How to find optimal parameters of the model?
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ID age car type
Max 

speed risk
1 23 family 180 high
2 17 sportive 240 high
3 43 sportive 246 high
4 68 family 173 low
5 32 truck 110 low

age

Max speed

Id 1

Id 2

Id 3

Id 5

Id 4

Possible decision 
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Basic notions

• Recall some general algebraic notions for a vector space 𝑉𝑉:
– 𝐱𝐱, 𝐲𝐲 denotes an inner product of two vectors 𝐱𝐱, 𝐲𝐲 ∈ 𝑉𝑉:

e.g., the scalar product: 𝐱𝐱, 𝐲𝐲 = 𝐱𝐱𝑇𝑇𝐲𝐲 = ∑𝑖𝑖=1𝑑𝑑 (x𝑖𝑖 ⋅ y𝑖𝑖)

– 𝐻𝐻 𝐰𝐰,𝑙𝑙0 denotes a hyperplane with normal vector w and constant term 𝑙𝑙0:
𝐱𝐱 ∈ 𝐻𝐻 𝐰𝐰,𝑙𝑙0 ⇔ 𝐰𝐰, 𝐱𝐱 + 𝑙𝑙0 = 0

– The normal vector w may be normalized to 𝒘𝒘𝒘:

𝐰𝐰′ =
1
𝐰𝐰,𝐰𝐰

⋅ 𝐰𝐰 ⟹ 𝐰𝐰′,𝐰𝐰′ = 1

– Distance of a vector x to the hyperplane 𝐻𝐻(𝐰𝐰𝒘,𝑙𝑙0):
𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡 𝐱𝐱,𝐻𝐻 𝐰𝐰𝒘,𝑙𝑙0 = 𝐰𝐰𝒘, 𝐱𝐱 + 𝑙𝑙0
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Formalization

• Consider a two-class example (generalizations later on):
– 𝐷𝐷: d-dimensional vector space with attributes 𝑎𝑎𝑖𝑖, 𝑖𝑖 = 1, … ,𝑑𝑑
– 𝑌𝑌 = −1, 1 set of 2 distinct class labels 𝑦𝑦𝑗𝑗
– 𝑂𝑂 ⊆ 𝐷𝐷: set of objects, 𝐨𝐨 = (𝑜𝑜1, … , 𝑜𝑜𝑑𝑑), with known class labels  𝑦𝑦 ∈ 𝑌𝑌 and

cardinality of 𝑂𝑂 = 𝑁𝑁

• A hyperplane 𝐻𝐻 𝐰𝐰,𝑙𝑙0 with normal vector 𝐰𝐰 and constant term 𝑙𝑙0
𝐱𝐱 ∈ 𝐻𝐻 ⇔ 𝐰𝐰𝑇𝑇𝐱𝐱 + 𝑙𝑙0 = 0

• Classification rule (linear classifier) given by:
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𝐰𝐰𝑇𝑇𝐱𝐱 + 𝑙𝑙0 = 0

𝐰𝐰𝑇𝑇𝐱𝐱 + 𝑙𝑙0 > 0
𝐰𝐰𝑇𝑇𝐱𝐱 + 𝑙𝑙0 < 0

Classification rule

𝐾𝐾𝐻𝐻(𝐰𝐰,𝑙𝑙0) 𝐱𝐱 = sign 𝐰𝐰𝑇𝑇𝐱𝐱 + 𝑙𝑙0
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Optimal parameter estimation

• How to estimate optimal parameters 𝐰𝐰,𝑙𝑙0?
1. Define an objective/loss function 𝐿𝐿(⋅) that assigns a value (e.g. the error on 

the training set) to each parameter-configuration

2. Optimal parameters minimize/maximize the objective function

• How does an objective function look like?
– Different choices possible

– Most intuitive: each misclassified object contributes a constant (loss) value
 0-1 loss
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0-1 loss objective function for linear classifier

𝐿𝐿 𝐰𝐰,𝑙𝑙0 = min
𝐰𝐰,𝑙𝑙0

�
𝑛𝑛=1

𝑁𝑁

𝐼𝐼(𝑦𝑦𝑖𝑖 ≠ 𝐾𝐾𝐻𝐻 𝐰𝐰,𝑙𝑙0 𝐱𝐱𝑖𝑖 )

where 𝐼𝐼 𝑐𝑐𝑜𝑜𝑐𝑐𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑐𝑐 = 1, if condition holds, 0 otherwise
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Loss functions

• 0-1 loss
– Minimize the overall number of training errors, but…

• NP-hard to optimize in general (non-smooth, non-convex)
• Small changes of 𝐰𝐰,𝑙𝑙0 can lead to large changes of the loss 

• Alternative convex loss functions
– Sum-of-squares loss:   𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖 + 𝑙𝑙0 − 𝑦𝑦𝑖𝑖 2

– Hinge loss: 1 − 𝑦𝑦𝑖𝑖(𝑙𝑙0 + 𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖 += max{0, 1 − 𝑦𝑦𝑖𝑖(𝑙𝑙0 + 𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖} (SVM)

– Exponential loss: 𝑎𝑎−𝑦𝑦𝑖𝑖(𝑙𝑙0+𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖) (AdaBoost)
– Cross-entropy error:     −𝑦𝑦𝑖𝑖 ln𝑖𝑖 𝐱𝐱𝑖𝑖 + 1 − 𝑦𝑦𝑖𝑖 ln 1 − 𝑖𝑖(𝐱𝐱𝑖𝑖) (Logistic 

where 𝑖𝑖 𝐱𝐱 = 1
1+𝑛𝑛−(𝑤𝑤0+𝐰𝐰𝑇𝑇𝐱𝐱) regression)

– … and many more

• Optimizing different loss function leads 
to several classification algorithms

• Next, we derive the optimal parameters
for the sum-of-squares loss
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Optimal parameters for SSE loss

• Loss/Objective function: sum-of-squares error to real class values

• Minimize the error function for getting optimal parameters
– Use standard optimization technique:

1. Calculate first derivative

2. Set derivative to zero and compute the global minimum (SSE is a convex 
function)
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Objective function

𝑆𝑆𝑆𝑆𝑇𝑇 𝐰𝐰,𝑙𝑙0 = �
𝑖𝑖=1..𝑁𝑁

𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖 + 𝑙𝑙0 − 𝑦𝑦𝑖𝑖 2
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Optimal parameters for SSE loss 
(cont’d)

• Transform the problem for simpler computations
– 𝑙𝑙𝑇𝑇𝑜𝑜 + 𝑙𝑙0 = ∑𝑖𝑖=1𝑑𝑑 𝑙𝑙𝑖𝑖 ⋅ 𝑜𝑜𝑖𝑖 + 𝑙𝑙0 = ∑𝑖𝑖=0𝑑𝑑 𝑙𝑙𝑖𝑖 ⋅ 𝑜𝑜𝑖𝑖, with 𝑜𝑜0 = 1
– For 𝐰𝐰 let �𝐰𝐰 = 𝑙𝑙0, … ,𝑙𝑙𝑑𝑑 𝑇𝑇

• Combine the values to matrices �𝑂𝑂 =
1 𝑜𝑜1,1 … 𝑜𝑜1,𝑑𝑑
⋮ ⋮ ⋱ ⋮
1 𝑜𝑜𝑁𝑁,1 … 𝑜𝑜𝑁𝑁,𝑑𝑑

, 𝑌𝑌 =
𝑦𝑦1
…
𝑦𝑦𝑁𝑁

• Then the sum-of-squares error is equal to:

𝑆𝑆𝑆𝑆𝑇𝑇 �𝒘𝒘 =
1
2

tr �𝑂𝑂�𝒘𝒘− 𝑌𝑌 𝑇𝑇 �𝑂𝑂�𝒘𝒘− 𝑌𝑌
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�
𝑖𝑖

𝑎𝑎𝑖𝑖𝑖𝑖2 = tr 𝐴𝐴𝑇𝑇𝐴𝐴



DATABASE
SYSTEMS
GROUP

Optimal parameters for SSE loss 
(cont’d)

• Take the derivative:

• Solve 
𝜕𝜕
𝜕𝜕 �𝐰𝐰
𝑆𝑆𝑆𝑆𝑇𝑇 �𝐰𝐰 = 0:

�𝑂𝑂𝑇𝑇 �𝑂𝑂 �𝐰𝐰 − 𝑌𝑌 = 0 ⇔ �𝑂𝑂 �𝐰𝐰 = 𝑌𝑌 ⇔ �𝐰𝐰 = �𝑂𝑂𝑇𝑇 �𝑂𝑂 −1 �𝑂𝑂𝑇𝑇𝑌𝑌

• Set �𝐰𝐰 = �𝑂𝑂𝑇𝑇 �𝑂𝑂 −1 �𝑂𝑂𝑇𝑇𝑌𝑌

 Classify new point 𝐱𝐱 with 𝐱𝐱0 = 1: 
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Left-inverse of �𝑂𝑂
(“Moore-Penrose-Inverse”)

Classification rule
𝐾𝐾𝐻𝐻(�𝐰𝐰,𝑙𝑙0) 𝐱𝐱 = sign �𝐰𝐰𝑇𝑇𝐱𝐱

𝜕𝜕
𝜕𝜕 �𝐰𝐰

𝑆𝑆𝑆𝑆𝑇𝑇 �𝐰𝐰 = �𝑂𝑂𝑇𝑇 �𝑂𝑂 �𝐰𝐰− 𝑌𝑌
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Example SSE

• Data (consider only age and max. speed): 

�𝑂𝑂 =

1 23 180
1 17 240
1 43 246
1 68 173
1 32 110

,𝑌𝑌 =

1
1
1
−1
−1

encode classes as {high = 1, low = –1}

⇒ �𝑂𝑂𝑇𝑇 �𝑂𝑂 −1 �𝑂𝑂𝑇𝑇 =
0.7647 −0.0678 −0.9333 −0.4408 1.6773
−0.0089 −0.0107 0.0059 0.0192 −0.0055
−0.0012 0.0034 0.0048 −0.0003 −0.0067

⇒ �𝐰𝐰 = �𝑂𝑂𝑇𝑇 �𝑂𝑂 −1 �𝑂𝑂𝑇𝑇𝑌𝑌 =
𝑙𝑙0
𝑙𝑙𝑚𝑚𝑖𝑖𝑛𝑛

𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑝𝑝𝑛𝑛𝑛𝑛𝑑𝑑
=

−1.4730
−0.0274
0.0141
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ID age car type
Max 

speed risk
1 23 family 180 high
2 17 sportive 240 high
3 43 sportive 246 high
4 68 family 173 low
5 32 truck 110 low
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Example SSE (cont’d)

• Model parameter: 

�𝐰𝐰 = �𝑂𝑂𝑇𝑇 �𝑂𝑂 −1 �𝑂𝑂𝑇𝑇𝑌𝑌 =
𝑙𝑙0
𝑙𝑙𝑚𝑚𝑖𝑖𝑛𝑛

𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑝𝑝𝑛𝑛𝑛𝑛𝑑𝑑
=

−1.4730
−0.0274
0.0141

⇒ 𝐾𝐾𝐻𝐻 𝐰𝐰,𝑙𝑙0 𝐱𝐱 = sign −0.0274
0.0141

𝑇𝑇
𝐱𝐱 − 1.4730

Query: q = (age=60, max speed = 190)
⇒ sign �𝐰𝐰𝑇𝑇𝑞𝑞 = sign −0.4397 = −1
⇒ Class = low
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Extension to multiple classes

• Assume we have more than two (k > 2) classes. What to do?
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Multiclass linear classifier

 k classifiers

One-vs-one (Majority 
vote of classifiers)


𝑘𝑘 𝑘𝑘−1
2

classifiers

?

One-vs-the-rest
(“one-vs-all”)
k classifiers

?

?

?

?
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Extension to multiple classes (cont’d)

• Idea of multiclass linear classifier

– Take k linear functions of the form 𝐻𝐻𝐰𝐰𝐣𝐣,𝑙𝑙𝑗𝑗,0 𝐱𝐱 = 𝐰𝐰𝑗𝑗𝑇𝑇𝐱𝐱 + 𝑙𝑙𝑗𝑗,0

– Decide for class 𝑦𝑦𝑗𝑗: 
yj = arg max

𝑗𝑗=1,…,𝑘𝑘
𝐻𝐻𝐰𝐰𝑗𝑗,𝑙𝑙𝑗𝑗,0 𝐱𝐱

• Advantage
– No ambiguous regions except for points on decision hyperplanes

• The optimal parameter estimation is also extendable to 𝑘𝑘 classes 
𝑌𝑌 = 𝑦𝑦1, … , 𝑦𝑦𝑘𝑘
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Discussion (SSE)

• Pro
– Simple approach

– Closed form solution for parameters

– Easily extendable to non-linear spaces (later on)

• Contra
– Sensitive to outliers  not stable classifier

• How to define and efficiently determine the maximum stable hyperplane?

– Only good results for linearly separable data

– Expensive computation of selected hyperplanes

• Approach to solve the problems
– Support Vector Machines (SVMs) [Vapnik 1979, 1995]
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