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What is Clustering?

Grouping a set of data objects into clusters

– Cluster: a collection of data objects

1) Similar to one another within the same cluster

2) Dissimilar to the objects in other clusters

Clustering = unsupervised “classification“ (no predefined classes)

Typical usage

– As a stand-alone tool to get insight into data distribution 

– As a preprocessing step for other algorithms

Clustering Introduction 3
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General Applications of Clustering 

Preprocessing – as a data reduction (instead of sampling)

– Image data bases (color histograms for filter distances)

– Stream clustering (handle endless data sets for offline clustering)

Pattern Recognition and Image Processing

Spatial Data Analysis 

– create thematic maps in Geographic Information Systems
by clustering feature spaces       

– detect spatial clusters and explain them in spatial data mining

Business Intelligence (especially market research)

WWW

– Documents (Web Content Mining)

– Web-logs (Web Usage Mining)

Biology

– Clustering of gene expression data 

Clustering Introduction 4
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• Reassign color values to k distinct colors

• Cluster pixels using color difference, 
not spatial data

An Application Example: Downsampling Images

Clustering Introduction 7
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Major Clustering Approaches

Partitioning algorithms

– Find k partitions, minimizing some objective function

Probabilistic Model-Based Clustering (EM)

Density-based 

– Find clusters based on connectivity and density functions

Hierarchical algorithms 

– Create a hierarchical decomposition of the set of objects

Other methods

– Grid-based

– Neural networks (SOM’s)

– Graph-theoretical methods

– Subspace Clustering

– . . .

Clustering Introduction 9
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Partitioning Algorithms: Basic Concept

Clustering Partitioning Methods 11

 Goal: Construct a partition of a database D of n objects into a set of k (𝑘 < 𝑛) clusters 
𝐶1, … , 𝐶𝑘 (Ci ⊂ 𝐷, 𝐶𝑖 ∩ 𝐶𝑗 = ∅ ⇔ 𝐶𝑖 ≠ 𝐶𝑗 , ڂ 𝐶𝑖 = 𝐷) minimizing an objective function.

– Exhaustively enumerating all possible partitions into k sets in order to find the global 
minimum is too expensive.

 Popular heuristic methods: 

– Choose k representatives for clusters, e.g., randomly

– Improve these initial representatives iteratively:

 Assign each object to the cluster it “fits best” in the current clustering

 Compute new cluster representatives based on these assignments

 Repeat until the change in the objective function from one iteration to the next drops below a threshold

 Examples of representatives for clusters

– k-means: Each cluster is represented by the center of the cluster

– k-medoid: Each cluster is represented by one of its objects
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K-Means Clustering: Basic Idea

Idea of K-means: find a clustering such that the within-cluster variation of each 
cluster is small and use the centroid of a cluster as representative.

Objective: For a given k, form k groups so that the sum of the (squared) distances 

between the mean of the groups and their elements is minimal.

Poor Clustering
(large sum of distances)

Optimal Clustering
(minimal sum of distances)

Clustering Partitioning Methods K-Means 13
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K-Means Clustering: Basic Notions 

Objects 𝑝 = (𝑝1, … , 𝑝𝑑) are points in a 𝑑-dimensional vector space

(the mean 𝜇𝑆 of a set of points 𝑆 must be defined: 𝜇𝑆 =
1

𝑆
σ𝑝∈𝑆 𝑝)

Measure for the compactness of a cluster Cj (sum of squared errors):

𝑆𝑆𝐸 𝐶𝑗 = 

𝑝∈𝐶𝑗

𝑑𝑖𝑠𝑡 𝑝, 𝜇𝐶𝑗
2

Measure for the compactness of a clustering 𝒞:

𝑆𝑆𝐸 𝒞 = 

𝐶𝑗∈𝒞

𝑆𝑆𝐸(𝐶𝑗) = 

𝑝∈𝐷𝐵

𝑑𝑖𝑠𝑡 𝑝, 𝜇𝐶(𝑝)
2

Optimal Partitioning: argmin
𝒞

𝑆𝑆𝐸(𝒞)

Optimizing the within-cluster variation is computationally challenging 

(NP-hard)  use efficient heuristic algorithms

Clustering Partitioning Methods K-Means 14
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K-Means Clustering: Algorithm

k-Means algorithm (Lloyd’s algorithm):

Given k, the k-means algorithm is implemented in 2 main steps:

Initialization: Choose k arbitrary representatives

Repeat until representatives do not change:

1. Assign each object to the cluster with the nearest representative.

2. Compute the centroids of the clusters of the current partitioning.

Clustering Partitioning Methods K-Means 15
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K-Means Clustering: Discussion

Strengths 

– Relatively efficient: O(tkn), where n = # objects, k = # clusters, and t = # 
iterations

– Typically: k, t << n

– Easy implementation

Weaknesses

– Applicable only when mean is defined

– Need to specify k, the number of clusters, in advance

– Sensitive to noisy data and outliers

– Clusters are forced to convex space partitions (Voronoi Cells)

– Result and runtime strongly depend on the initial partition; often 
terminates at 
a local optimum – however: methods for a good initialization exist

Several variants of the k-means method exist, e.g., ISODATA

– Extends k-means by methods to eliminate very small clusters, merging 
and split of clusters; user has to specify additional parameters

Clustering Partitioning Methods K-Means 16
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K-Medoid, K-Modes, K-Median Clustering: 
Basic Idea

Clustering Partitioning Methods Variants: K-Medoid, K-Mode, K-Median
18

 Problems with K-Means: 

– Applicable only when mean is defined (vector space)

– Outliers have a strong influence on the result

 The influence of outliers is intensified by the use of the 
squared error  use the absolute error (total distance instead): 
𝑇𝐷 𝐶 = σ𝑝∈𝐶 𝑑𝑖𝑠𝑡(𝑝,𝑚𝑐(𝑝)) and 𝑇𝐷(𝒞) = σ𝐶𝑖∈𝒞

𝑇𝐷(𝐶𝑖)

 Three alternatives for using the Mean as representative:

– Medoid: representative object “in the middle” 

– Mode: value that appears most often 

– Median: (artificial) representative object “in the middle” 

 Objective as for k-Means: Find k representatives so that, 
the sum of the distances between objects and their 
closest representative is minimal.

poor clustering

optimal clustering

data set

Medoid

Medoid
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K-Median Clustering

Problem: Sometimes, data is not numerical

Idea: If there is an ordering on the data 𝑋 = {𝑥1, 𝑥2, 𝑥3,…, 𝑥𝑛}, use median 
instead of mean

𝑀𝑒𝑑𝑖𝑎𝑛 {𝑥} = 𝑥
𝑀𝑒𝑑𝑖𝑎𝑛 𝑥, 𝑦 ∈ 𝑥, 𝑦

𝑀𝑒𝑑𝑖𝑎𝑛 𝑋 = 𝑀𝑒𝑑𝑖𝑎𝑛 𝑋 −min𝑋 −max𝑋 , 𝑖𝑓 |𝑋| > 2

• A median is computed in each dimension independently and can thus be a 
combination of multiple instances
 median can be efficiently computed for ordered data

• Different strategies to determine the “middle” in an array of even length 
possible

Clustering Partitioning Methods Variants: K-Medoid, K-Mode, K-Median 19
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K-Mode Clustering: First Approach [Huang 1997]

Given: 𝑋 ⊆ Ω = 𝐴1 × 𝐴2 ×⋯× 𝐴𝑑 is a set of 𝑛 objects, each described by 
𝑑 categorical attributes 𝐴𝑖 (1 ≤ 𝑖 ≤ 𝑑)

Mode: a mode of 𝑋 is a vector 𝑀 = 𝑚1, m2, ⋯ ,𝑚𝑑 ∈ Ω that minimizes

𝑑 𝑀, 𝑋 = 

𝑥𝑖∈𝑋

𝑑(𝑥𝑖 , 𝑀)

where 𝑑 is a distance function for categorical values (e.g. Hamming Dist.)

→ Note: 𝑀 is not necessarily an element of 𝑋

Theorem to determine a Mode: let 𝑓 𝑐, 𝑗, 𝑋 =
1

𝑛
⋅ 𝑥 ∈ 𝑋| 𝑥 𝑗 = 𝑐 be the relative 

frequency of category 𝑐 of attribute 𝐴𝑗 in the data, then:

𝑑 𝑀, 𝑋 is minimal ⇔ ∀𝑗 ∈ 1, … , 𝑑 : ∀𝑐 ∈ 𝐴𝑗: 𝑓 mj, j, X ≥ 𝑓 𝑐, 𝑗, 𝑋

→ this allows to use the k-means paradigm to cluster 
categorical data without loosing its efficiency

→ Note: the mode of a dataset might be not unique

K-Modes algorithm proceeds similar to k-Means algorithm

Clustering Partitioning Methods Variants: K-Medoid, K-Mode, K-Median 20
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K-Mode Clustering: Example

Employee-ID Profession Household Pets

#133 Technician Cat

#134 Manager None

#135 Cook Cat

#136 Programmer Dog

#137 Programmer None

#138 Technician Cat

#139 Programmer Snake

#140 Cook Cat

#141 Advisor Dog

Clustering Partitioning Methods Variants: K-Medoid, K-Mode, K-Median 21

Profession: (Programmer: 3, Technician: 2, Cook: 2, Advisor: 1, Manager:1)
Household Pet: (Cat: 4, Dog: 2, None: 2, Snake: 1)

Mode is (Programmer, Cat) 
Remark: (Programmer, Cat) ∉ 𝐷𝐵
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K-Medoid Clustering: PAM Algorithm

Clustering Partitioning Methods Variants: K-Medoid, K-Mode, K-Median 23

Partitioning Around Medoids [Kaufman and Rousseeuw, 1990]

 Given k, the k-medoid algorithm is implemented in 3 steps:

– Initialization: Select k objects arbitrarily as initial medoids
(representatives)

– assign each remaining (non-medoid) object to the cluster with the 
nearest representative 

– compute TDcurrent

 Problem of PAM: high complexity (𝑂(𝑡𝑘(𝑛 − 𝑘)^2))

Kaufman L., Rousseeuw P. J., Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons, 1990.
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Partitionierende Verfahren

Algorithmus PAM

PAM(Punktmenge D, Integer k)

Initialisiere die k Medoide;

TD_Änderung := ;

while TD_Änderung < 0 do

Berechne für jedes Paar (Medoid M, Nicht-Medoid N) 

den Wert TDNM;

Wähle das Paar (M, N), für das der Wert 

TD_Änderung := TDNM  TD minimal ist;

if TD_Änderung < 0 then

ersetze den Medoid M durch den Nicht-Medoid N; 

Speichere die aktuellen Medoide als die bisher beste 

Partitionierung;

return Medoide;

Knowledge Discovery in Databases I: Clustering
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Partitionierende Verfahren

Algorithmus CLARANS 

CLARANS(Punktmenge D, Integer k,

Integer numlocal, Integer maxneighbor)

for r from 1 to numlocal do 

wähle zufällig k Objekte als Medoide; i := 0;

while i < maxneighbor do

Wähle zufällig (Medoid M, Nicht-Medoid N);

Berechne TD_Änderung := TDNM  TD;

if TD_Änderung < 0 then

ersetze M durch N;

TD := TDNM; i := 0;

else i:= i + 1;

if TD < TD_best then

TD_best := TD; Speichere aktuelle Medoide;

return Medoide;

Knowledge Discovery in Databases I: Clustering
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K-Means/Medoid/Mode/Median overview

Employee-ID Profession
Shoe
size

Age

#133 Technician 42 28

#134 Manager 41 45

#135 Cook 46 32

#136 Programmer 40 35

#137 Programmer 41 49

#138 Technician 43 41

#139 Programmer 39 29

#140 Cook 38 33

#141 Advisor 40 56

Clustering Partitioning Methods Variants: K-Medoid, K-Mode, K-Median 26
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Profession: Programmer
Shoe size: 40/41
Age: n.a.
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K-Means/Median/Mode/Medoid Clustering: 
Discussion

Clustering Partitioning Methods Variants: K-Medoid, K-Mode, K-Median 27

 Strength 

– Easy implementation ( many variations and optimizations in the literature)

 Weakness

– Need to specify k, the number of clusters, in advance

– Clusters are forced to convex space partitions (Voronoi Cells)

– Result and runtime strongly depend on the initial partition; often terminates at a 
local optimum – however: methods for a good initialization exist

k-Means k-Median K-Mode K-Medoid

data
numerical 

data (mean)
ordered 

attribute data
categorical 

attribute data
metric data

efficiency
high
𝑂(𝑡𝑘𝑛)

high
𝑂(𝑡𝑘𝑛)

high
𝑂(𝑡𝑘𝑛)

low
𝑂(𝑡𝑘 𝑛 − 𝑘 2)

sensitivity to 
outliers

high low low low
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Voronoi Model for convex cluster regions

Definition: Voronoi diagram

– For a given set of points 𝑃 = 𝑝𝑖| 𝑖 = 1…𝑘 (here: 
cluster representatives), a Voronoi diagram
partitions the data space in Voronoi cells, one
cell per point.

– The cell of a point 𝑝 ∈ 𝑃 covers all points in the
data space for which 𝑝 is the nearest neighbors
among the points from 𝑃.

Observations

– The Voronoi cells of two neighboring points
𝑝𝑖 , 𝑝𝑗 ∈ 𝑃 are separated by the perpendicular

hyperplane („Mittelsenkrechte“) between 𝑝𝑖 and
𝑝𝑗.

– As Voronoi cells are intersections of half spaces,  
they are convex regions.

Clustering Partitioning Methods 28
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Initialization of Partitioning Clustering Methods

Just two examples:

[naïve]

– Choose sample 𝐴 of the dataset

– Cluster the sample and use centers as initialization

[Fayyad, Reina, and Bradley 1998]

– Choose m different (small) samples 𝐴,… ,𝑀 of the dataset

– Cluster each sample to get m estimates for k representatives

A = (A1, A2, . . ., Ak), B = (B1,. . ., Bk), ..., M = (M1,. . ., Mk)

– Then, cluster the set DS = A  B  …  M m times. Each time

use the centers of A, B, ..., M as respective initial partitioning

– Use the centers of the best clustering as initialization for 

the partitioning clustering of the whole dataset

Clustering Partitioning Methods Choice of parameters 31

A2

A1

A3

B1

C1
B2

B3

C2

C3

D1

D2

D3

whole dataset
k = 3

m = 4 samples A, B, C, D
true cluster centers

Fayyad U., Reina C., Bradley P. S., „Initialization of Iterative Refinement Clustering Algorithms“, In KDD 1998), pp. 194—198.
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Choice of the Parameter k

Clustering Partitioning Methods Choice of parameters 32

 Idea for a method: 

– Determine a clustering for each k = 2, ... , n-1

– Choose the “best” clustering

 But how to measure the quality of a clustering?

– A measure should not be monotonic over k.

– The measures for the compactness of a clustering SSE and TD are 

monotonously decreasing with increasing value of k.

 Silhouette-Coefficient [Kaufman & Rousseeuw 1990]

– Measure for the quality of a k-means or a k-medoid clustering that is not 

monotonic over k.
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The Silhouette coefficient (1)

Clustering Partitioning Methods Choice of parameters 33

 Basic idea: 

– How good is the clustering = how appropriate is the mapping of objects 

to clusters

– Elements in cluster should be „similar“ to their representative

 measure the average distance of objects to their representative: a(o)

– Elements in different clusters should be „dissimilar“

 measure the average distance of objects to alternative clusters

(i.e. second closest cluster): b(o)

o

a(o)

b(o)
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The Silhouette coefficient (2)

Clustering Partitioning Methods Choice of parameters 34

 𝑎(𝑜): average distance between object 𝑜 and the objects in its cluster A 

 𝑏(𝑜): for each other cluster 𝐶𝑖 compute the average distance between o

and the objects in 𝐶𝑖. Then take the smallest average distance

 The silhouette of o is then defined as

 The values of the silhouette coefficient range from –1 to +1

a(o)

b(o)

B
A

𝑎 𝑜 =
1

|𝐶(𝑜)|


𝑝∈𝐶(𝑜)

𝑑𝑖𝑠𝑡(𝑜, 𝑝)

𝑠 𝑜 = ൞

0 𝑖𝑓 𝑎 𝑜 = 0, 𝑒. 𝑔. |𝐶𝑖| = 1

𝑏 𝑜 − 𝑎(𝑜)

max{𝑎 𝑜 , 𝑏 𝑜 }
𝑒𝑙𝑠𝑒

𝑏 𝑜 = min
𝐶𝑖≠𝐶(𝑜)

1

|𝐶𝑖|


𝑝∈𝐶𝑖

𝑑𝑖𝑠𝑡(𝑜, 𝑝)
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The Silhouette coefficient (3)

Clustering Partitioning Methods Choice of parameters 35

 The silhouette of a cluster 𝐶𝑖 is defined as:

𝑠𝑖𝑙ℎ 𝐶𝑖 =
1

|𝐶𝑖|


𝑜∈𝐶𝑖

𝑠(𝑜)

 The silhouette of a clustering 𝒞 = (𝐶1, … , 𝐶𝑘) is defined as:

𝑠𝑖𝑙ℎ 𝒞 =
1

|𝐷|


𝑜∈𝐷

𝑠(𝑜) ,

where 𝐷 denotes the whole dataset.
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The Silhouette coefficient (4)

Clustering Partitioning Methods Choice of parameters 36

 „Reading“ the silhouette coefficient:

Let 𝑎 𝑜 ≠ 0. 

– 𝑏 𝑜 ≫ 𝑎 𝑜 ⇒ 𝑠 𝑜 ≈ 1: good assignment of o to its cluster A

– 𝑏 𝑜 ≈ 𝑎 𝑜 ⇒ 𝑠 𝑜 ≈ 0: 𝑜 is in-between A and B

– 𝑏 𝑜 ≪ 𝑎 𝑜 ⇒ 𝑠 𝑜 ≈ −1: bad, on average 𝑜 is closer to members of B

 Silhouette Coefficient 𝑠𝒞 of a clustering: average silhouette of all 

objects

– 0.7 < sC  1.0 strong structure, 0.5 < sC  0.7 medium structure

– 0.25 < sC  0.5 weak structure, sC  0.25 no structure
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The Silhouette coefficient (5)

Silhouette Coefficient for points in ten clusters

in: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)

Knowledge Discovery in Databases I: Evaluation von unsupervised Verfahren
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Expectation Maximization (EM)

Statistical approach for  finding maximum likelihood estimates of parameters in 
probabilistic models

Here: using EM as clustering algorithm

Approach:
Observations are drawn from one of 
several components of a mixture distribution.

Main idea:

– Define clusters as probability distributions 
 each object has a certain probability of 

belonging to each cluster

– Iteratively improve the parameters of each 
distribution (e.g. center, “width” and “height” 
of a Gaussian distribution) until some quality 
threshold is reached

Clustering Expectation Maximization (EM) 39

Additional Literature: C. M. Bishop „Pattern Recognition and Machine Learning“, Springer, 2009
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Excursus: Gaussian Mixture Distributions

Note: EM is not restricted to Gaussian distributions, but they will serve as example in this lecture.

Gaussian distribution:

– Univariate: single variable x ∈ ℝ:

𝑝 𝑥 𝜇, 𝜎2 = 𝒩 𝑥 𝜇, 𝜎2 =
1

2𝜋𝜎2
⋅ 𝑒

−
1

2𝜎2
⋅ 𝑥−𝜇 2

– Multivariate: 𝑑-dimensional vector 𝒙 ∈ ℝ𝑑:

𝑝 𝒙 𝝁, 𝜮 = 𝒩 𝒙 𝝁, 𝜮 =
1

2𝜋 𝑑 𝜮
⋅ 𝑒−

1

2
⋅ 𝒙−𝝁 𝑇⋅ 𝜮 −1⋅ 𝒙−𝝁

Gaussian mixture distribution with 𝐾 components:

– 𝑑-dimensional vector 𝒙 ∈ ℝ𝑑:

𝑝 𝒙 = σ𝑘=1
𝐾 𝜋𝑘 ⋅ 𝒩 𝒙|𝝁𝑘 , 𝜮𝑘
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mean vector ∈ ℝ𝑑 covariance matrix ∈ ℝ𝑑×𝑑

mean ∈ ℝ variance ∈ ℝ

mixing coefficients ∈ ℝ : σ𝑘𝜋𝑘 = 1 and 0 ≤ 𝜋𝑘 ≤ 1
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Expectation Maximization (EM): 
Exemplary Application

Example taken from: C. M. Bischop „Pattern Recognition and Machine Learning“, 2009

Clustering Expectation Maximization (EM) 41

iter. 1

iter. 2 iter. 5 iter. 
20
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Note: EM is not restricted to Gaussian distributions, but they will serve as example in this lecture.

A clustering ℳ = 𝐶1, … , 𝐶𝐾 is represented by a mixture distribution with parameters Θ =
𝜋1, 𝝁1, 𝚺1, … , 𝜋𝐾 , 𝝁𝐾, 𝚺𝐾 :

𝑝 𝒙|𝛩 = σ𝑘=1
𝐾 𝜋𝑘 ⋅ 𝒩 𝒙|𝝁𝑘 , 𝜮𝑘

Each cluster is represented by one 
component of the mixture distribution:
𝑝 𝒙 𝝁𝑘 , 𝜮𝑘 = 𝒩 𝒙 𝝁𝑘 , 𝜮𝑘

Given a dataset 𝐗 = 𝒙1, … , 𝒙𝑁 ⊆ ℝ𝑑, we can write the likelihood 
that all data points 𝐱𝑛 ∈ 𝐗 are generated (independently) 
by the mixture model with parameters Θ as:

log 𝑝 𝐗|Θ = logෑ

𝑛=1

𝑁

𝑝(𝑥𝑛|Θ)

Goal: Find the parameters 𝛩𝑀𝐿 with 
maximal (log-)likelihood estimation (MLE)

Θ𝑀𝐿 = argmax
Θ

log 𝑝 𝐗|Θ

Expectation Maximization (EM)

Clustering Expectation Maximization (EM) 42
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Expectation Maximization (EM)

• Goal: Find the parameters 𝛩𝑀𝐿 with the maximal (log-)likelihood estimation!
Θ𝑀𝐿 = argmax

Θ
log𝑝 𝐗|Θ

log 𝑝 𝐗|Θ = logෑ

𝑛=1

𝑁



𝑘=1

𝐾

𝜋𝑘 ⋅ p 𝐱𝑛 𝝁𝑘 , 𝚺𝑘 = 

𝑛=1

𝑁

log

𝑘=1

𝐾

𝜋𝑘 ⋅ p 𝐱𝑛 𝝁𝑘 , 𝚺𝑘

• Maximization with respect to the means:

𝜕 log 𝑝 𝐗|Θ

𝜕 𝝁𝑗
= 

𝑛=1

𝑁
𝜕log 𝑝 𝒙𝑛|Θ

𝜕 𝝁𝑗
= 

𝑛=1

𝑁
𝜕𝑝 𝒙𝑛|Θ
𝜕 𝝁𝑗

𝑝 𝒙𝑛|Θ
= 

𝑛=1

𝑁
𝜕 𝜋𝑗 ⋅ 𝑝 𝒙𝑛 𝝁𝑗 , 𝚺𝑗

𝜕 𝝁𝑗
σ𝑘=1
𝐾 𝑝 𝒙𝑛 𝝁𝑘, 𝚺𝑘

= 

𝑛=1

𝑁
𝜋𝑗 ⋅ 𝚺j

−1 𝒙𝑛 − 𝝁𝑗 𝒩 𝒙𝑛 𝝁𝑗 , 𝚺𝑗

σ𝑘=1
𝐾 𝑝 𝒙𝑛 𝝁𝑘 , 𝚺𝑘

𝜕 log 𝑝 𝐗|Θ

𝜕 𝝁𝑗
= 𝚺j

−1 

𝑛=1

𝑁

𝒙𝑛 − 𝝁𝑗
𝜋𝑗 ⋅ 𝒩 𝒙𝑛 𝝁𝑗 , 𝚺𝑗

σ𝑘=1
𝐾 𝜋𝑘 ⋅ 𝒩 𝒙𝑛 𝝁𝑘, 𝚺𝑘

≝ 𝟎

• Define
𝛾𝑗 𝑥𝑛 ≔ 𝜋𝑗 ⋅ 𝒩 𝒙𝑛 𝝁𝑗 , 𝚺𝑗 .

𝛾𝑗 𝑥𝑛 is the probability that component 𝑗 generated the object 𝒙𝑛.
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𝜕

𝜕𝝁𝑗
𝒩 𝒙𝑛 𝝁𝑗 , 𝚺𝑗 = 𝚺j

−1 𝒙𝑛 − 𝝁𝑗 𝒩 𝒙𝑛 𝝁𝑗 , 𝚺𝑗
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Expectation Maximization (EM)

Maximization w.r.t. the means yields:

𝝁𝑗 =
σ𝑛=1
𝑁 𝛾𝑗 𝒙𝑛 𝒙𝑛

σ𝑛=1
𝑁 𝛾𝑗 𝒙𝑛

Maximization w.r.t. the covariance yields:

𝚺𝑗 =
σ𝑛=1
𝑁 𝛾𝑗 𝒙𝑛 𝒙𝑛 − 𝝁𝑗 𝒙𝑛 − 𝝁𝑗

𝑇

σ𝑛=1
𝑁 𝛾𝑗 𝒙𝑛

Maximization w.r.t. the mixing coefficients yields:

𝜋𝑗 =
σ𝑛=1
𝑁 𝛾𝑗 𝒙𝑛

σ𝑘=1
𝐾 σ𝑛=1

𝑁 𝛾𝑘 𝒙𝑛
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(weighted mean)
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Expectation Maximization (EM)

Problem with finding the optimal parameters 𝛩𝑀𝐿:

𝝁𝑗 =
σ𝑛=1
𝑁 𝛾𝑗 𝒙𝑛 𝒙𝑛

σ𝑛=1
𝑁 𝛾𝑗 𝒙𝑛

and     𝛾𝑗 𝒙𝑛 =
𝜋𝑗⋅𝒩 𝒙𝑛 𝝁𝑗 , 𝚺𝑗

σ𝑘=1
𝐾 𝜋𝑘⋅𝒩 𝒙𝑛 𝝁𝑘 , 𝚺𝑘

– Non-linear mutual dependencies.

– Optimizing the Gaussian of cluster 𝑗 depends on all other Gaussians.

There is no closed-form solution!

Approximation through iterative optimization procedures

Break the mutual dependencies by optimizing 𝝁𝑗 and 𝛾𝑗(𝒙𝑛)

independently
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Expectation Maximization (EM)

EM-approach: iterative optimization

1. Initialize means 𝝁𝑗, covariances 𝚺𝑗, and mixing coefficients 𝜋𝑗 and evaluate the initial 
log likelihood.

2. E step: Evaluate the responsibilities using the current parameter values:

𝛾 𝑗
𝑛𝑒𝑤 𝒙𝑛 =

𝜋𝑗 ⋅ 𝒩 𝒙𝑛 𝝁𝑗 , 𝚺𝑗

σ𝑘=1
𝐾 𝜋𝑘 ⋅ 𝒩 𝒙𝑛 𝝁𝑘 , 𝚺𝑘

3. M step: Re-estimate the parameters using the current responsibilities:

𝝁𝑗
𝑛𝑒𝑤 =

σ𝑛=1
𝑁 𝛾 𝑗

𝑛𝑒𝑤 𝒙𝑛 𝒙𝑛

σ𝑛=1
𝑁 𝛾 𝑗

𝑛𝑒𝑤 𝒙𝑛

𝚺𝑗
𝑛𝑒𝑤 =

σ𝑛=1
𝑁 𝛾 𝑗

𝑛𝑒𝑤 𝒙𝑛 𝒙𝑛 − 𝝁𝑗
𝑛𝑒𝑤 𝒙𝑛 − 𝝁𝑗

𝑛𝑒𝑤 𝑇

σ𝑛=1
𝑁 𝛾 𝑗

𝑛𝑒𝑤 𝒙𝑛

𝜋𝑗
𝑛𝑒𝑤 =

σ𝑛=1
𝑁 𝛾 𝑗

𝑛𝑒𝑤 𝒙𝑛

σ𝑘=1
𝐾 σ𝑛=1

𝑁 𝛾 𝑘
𝑛𝑒𝑤 𝒙𝑛

4. Evaluate the new log likelihood log 𝑝 𝐗|Θnew and check for convergence of 
parameters or log likelihood (|log 𝑝 𝐗|Θnew - log 𝑝 𝐗|Θ | ≤ 𝜖). 
If the convergence criterion is not satisfied, set Θ = Θnew and go to step 2.
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EM: Turning the Soft Clustering into a Partitioning

EM obtains a soft clustering (each object belongs to each cluster with a 

certain probability) reflecting the uncertainty of the most appropriate 

assignment.

Modification to obtain a partitioning variant

– Assign each object to the cluster to which it belongs with the highest 

probability

Cluster obj𝑒𝑐𝑡𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘∈{1,…,𝐾}{𝛾 𝑧𝑛𝑘 }
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Example taken from: C. M. Bishop „Pattern Recognition and Machine Learning“, 2009

a) input for EM b) soft clustering result of EM c) original data
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Discussion

Superior to k-Means for clusters of varying size 

or clusters having differing variances

 more accurate data representation

Convergence to (possibly local) maximum

Computational effort for N objects, K derived clusters, and 𝑡 iterations:

– 𝑂(𝑡 ⋅ 𝑁 ⋅ 𝐾)

– #iterations is quite high in many cases

Both - result and runtime - strongly depend on 

– the initial assignment

 do multiple random starts and choose the final estimate with 

highest likelihood

 Initialize with clustering algorithms (e.g., K-Means usually converges much 

faster)

Local maxima and initialization issues have been addressed in various 

extensions of EM

– a proper choice of parameter K (= desired number of clusters)

 Apply principals of model selection (see next slide)

Clustering Expectation Maximization (EM) 48
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EM: Model Selection for Determining Parameter K

Classical trade-off problem for selecting the proper number of components 𝐾

– If 𝐾 is too high, the mixture may overfit the data

– If 𝐾 is too low, the mixture may not be flexible enough to approximate the data

Idea: determine  candidate models ΘK for a range of values of 𝐾 (from 𝐾𝑚𝑖𝑛 to 

𝐾𝑚𝑎𝑥) and select the model ΘK∗ = max{qual(Θ𝐾)|𝐾 ∈ {𝐾𝑚𝑖𝑛, … , 𝐾𝑚𝑎𝑥}}

– Silhouette Coefficient (as for 𝑘-Means) only works for partitioning approaches.

– The MLE (Maximum Likelihood Estimation) criterion is nondecreasing in 𝐾

Solution: deterministic or stochastic model selection methods[MP’00] 

which try to balance the goodness of fit with simplicity.

– Deterministic: 𝑞𝑢𝑎𝑙 Θ𝐾 = log 𝑝 𝐗 Θ𝐾 + 𝒫(𝐾)

where 𝒫(𝐾) is an increasing function penalizing higher values of 𝐾

– Stochastic: based on Markov Chain Monte Carlo (MCMC)

Clustering Expectation Maximization (EM) 49

[MP‘00] G. McLachlan and D. Peel. Finite Mixture Models. Wiley, New York, 2000.
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Contents

1) Introduction to clustering

2) Partitioning Methods

– K-Means
– K-Medoid
– Choice of parameters: Initialization, Silhouette coefficient

3) Expectation Maximization: a statistical approach

4) Density-based Methods: DBSCAN

5) Hierarchical Methods

– Agglomerative  and Divisive Hierarchical Clustering
– Density-based hierarchical clustering: OPTICS

6) Evaluation of Clustering Results

7) Further Clustering Topics

– Ensemble Clustering
– Discussion: an alternative view on DBSCAN
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Density-Based Clustering

Clustering Density-based Methods: DBSCAN 51

 Basic Idea:

– Clusters are dense regions in the data 
space, separated by regions of lower 
object density

 Why Density-Based Clustering?

Results of a 
k-medoid algorithm 
for k=4

 Different density-based approaches exist (see Textbook & 
Papers)
Here we discuss the ideas underlying the DBSCAN algorithm
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Density-Based Clustering: Basic Concept

Clustering Density-based Methods: DBSCAN 52

 Intuition for the formalization of the basic idea

– For any point in a cluster, the local point density around that point 
has to exceed some threshold

– The set of points from one cluster is spatially connected

 Local point density at a point q defined by two parameters

– 𝜀–radius for the neighborhood of point q:
𝑁𝜀 𝑞 := 𝑝 ∈ 𝐷 𝑑𝑖𝑠𝑡 𝑝, 𝑞 ≤ 𝜀} ! contains q itself !

– MinPts – minimum number of points in the given neighbourhood 𝑁𝜀 (𝑞)

 q is called a core object (or core point) 
w.r.t. e, MinPts if | Ne (q) |  MinPts

MinPts = 5  q is a core object

q
𝜺
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Density-Based Clustering: Basic Definitions

Clustering Density-based Methods: DBSCAN 53

 p directly density-reachable from q
w.r.t. e, MinPts if
1) p  Ne(q)  and 
2) q is a core object w.r.t. e, MinPts

 density-reachable: transitive closure 
of directly density-reachable

 p is density-connected to a point q 
w.r.t. e, MinPts if there is a point o
such that both, p and q are 
density-reachable from o w.r.t. e, MinPts. 

p

q

p

q

p

qo
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Density-Based Clustering: Basic Definitions

Clustering Density-based Methods: DBSCAN 54

 Density-Based Cluster: non-empty subset S of database D satisfying:

1) Maximality: if p is in S and q is density-reachable from p then q is in S

2) Connectivity: each object in S is density-connected to all other objects in S

 Density-Based Clustering of a database D : {S1, ..., Sn; N} where

– S1, ..., Sn : all density-based clusters in the database D

– N = D \ {S1 u … u Sn} is called the noise (objects not in any cluster)

Core

Border

Noise

𝜀 = 1.0
𝑀𝑖𝑛𝑃𝑡𝑠 = 5
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Density-Based Clustering: DBSCAN Algorithm

Clustering Density-based Methods: DBSCAN 55

 Density Based Spatial Clustering of Applications with Noise

 Basic Theorem:

– Each object in a density-based cluster C is density-reachable from 
any of its core-objects

– Nothing else is density-reachable from core objects.

– density-reachable objects are collected by performing successive 
e-neighborhood queries. 

for each o D do
if o is not yet classified then  

if o is a core-object then
collect all objects density-reachable from o
and assign them to a new cluster.

else
assign o to NOISE

Ester M., Kriegel H.-P., Sander J., Xu X.: „A Density-Based Algorithm for Discovering Clusters in Large  Spatial Databases with Noise“, 
In KDD 1996, pp. 226—231.
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DBSCAN Algorithm: Example

Clustering Density-based Methods: DBSCAN 56

 Parameter

 e = 2.0

 MinPts = 3

for each o D do
if o is not yet classified then  

if o is a core-object then
collect all objects density-reachable from o
and assign them to a new cluster.

else
assign o to NOISE
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DBSCAN Algorithm: Example

Clustering Density-based Methods: DBSCAN 57

 Parameter

 e = 2.0

 MinPts = 3

for each o D do
if o is not yet classified then  

if o is a core-object then
collect all objects density-reachable from o
and assign them to a new cluster.

else
assign o to NOISE
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DBSCAN Algorithm: Example

Clustering Density-based Methods: DBSCAN 58

 Parameter

 e = 2.0

 MinPts = 3

for each o D do
if o is not yet classified then  

if o is a core-object then
collect all objects density-reachable from o
and assign them to a new cluster.

else
assign o to NOISE
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Determining the Parameters e and MinPts

Clustering Density-based Methods: DBSCAN 59

 Cluster: Point density higher than specified by e and MinPts

 Idea: use the point density of the least dense cluster in the data set as 
parameters – but how to determine this?

 Heuristic: look at the distances to the k-nearest neighbors

 Function k-distance(p): distance from p to the its k-nearest neighbor

 k-distance plot: k-distances of all objects, sorted in decreasing order

p

q

4-distance(p) :

4-distance(q) :
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Determining the Parameters e and MinPts

Clustering Density-based Methods: DBSCAN 60

 Heuristic method: 

– Fix a value for MinPts

– (default: 2  d – 1, d = dimension of data space)

– User selects “border object” o from the MinPts-distance plot;
e is set to MinPts-distance(o)

 Example k-distance plot

1 dim = 2  MinPts = 3

2 Identify border object (kink)

3 Set e
Objects

3
-d

is
ta

n
c
e

first „kink“ 

„border object“ 
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Determining the Parameters e and MinPts

Clustering Density-based Methods: DBSCAN 61

Problematic example

A

B

C

D

E

D’

F

G

B‘ D1

D2

G1

G2

G3

A

B

C

E

D‘

F

G1

G2

A, B, C

B‘

B, D, E

3-
D

is
ta

n
ce

Objects

A, B, C

B‘,D‘,F,G

B, D, E

D1, D2, G1, 
G2, G3

D2
D1

D

B‘

G

G3
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Density-Based Clustering: Discussion

Clustering Density-based Methods: DBSCAN 62

 Advantages

– Clusters can have arbitrary shape and size, i.e. clusters are not restricted 
to have convex shapes

– Number of clusters is determined automatically

– Can separate clusters from surrounding noise

– Can be supported by spatial index structures

– Complexity: 𝑁𝜀-query: O(n) DBSCAN: O(n2 )

 Disadvantages

– Input parameters may be difficult to determine

– In some situations very sensitive to input parameter setting
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Clustering 77
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From Partitioning to Hierarchical Clustering

Clustering Hierarchical Methods 78

 Global parameters to separate all clusters with a partitioning 
clustering method may not exist

 Need a hierarchical clustering algorithm in these situations

hierarchical 
cluster 

structure

largely differing 
densities and 

sizes

and/or
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Hierarchical Clustering: Basic Notions

Clustering Hierarchical Methods 79

 Hierarchical decomposition of the data set (with respect to a given 
similarity measure) into a set of nested clusters 

 Result represented by a so called dendrogram (greek dendro = tree)

– Nodes in the dendrogram represent possible clusters

– can be constructed bottom-up (agglomerative approach) or 
top down (divisive approach)

Step 0 Step 1 Step 2 Step 3 Step 4

Step 4 Step 3 Step 2 Step 1 Step 0

agglomerative

divisive

a

b

d

e

c

ab

de

cde

abcde
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 Interpretation of the dendrogram

– The root represents the whole data set

– A leaf represents a single object in the data set

– An internal node represents the union of all objects in its sub-tree

– The height of an internal node represents the distance between its two 
child nodes 

Hierarchical Clustering: Example

Clustering Hierarchical Methods 80

1

2

3

4

5

6

7

8 9

5

1

51 1 2 3 4 5 6 7 8 9
0

1

2

3

4

distance 
between 
clusters
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Agglomerative Hierarchical Clustering

Clustering Hierarchical Methods Agglomerative Hierarchical Clustering 82

1. Initially, each object forms its own cluster

2. Consider all pairwise distances between the initial clusters (objects)

3. Merge the closest pair (A, B) in the set of the current clusters into a new 

cluster C = A  B

4. Remove A and B from the set of current clusters; insert C into the set of 
current clusters

5. If the set of current clusters contains only C (i.e., if C represents all objects 
from the database): STOP

6. Else: determine the distance between the new cluster C and all other 
clusters in the set of current clusters; go to step 3.

 Requires a distance function for clusters (sets of objects)
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Single Link Method and Variants

Clustering Hierarchical Methods Agglomerative Hierarchical Clustering 83

 Given: a distance function dist(p, q) for database objects

 The following distance functions for clusters (i.e., sets of objects) X and Y are 
commonly used for hierarchical clustering:

),(min),(_
,

yxdistYXsldist
YyXx 



),(max),(_
,

yxdistYXcldist
YyXx 










YyXx

yxdist
YX

YXaldist
,

),(
||||

1
),(_

Single-Link:

Complete-Link:

Average-Link:
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Divisive Hierarchical Clustering

General approach: Top Down

– Initially, all objects form one cluster

– Repeat until all objects are singletons

• Choose a cluster to split 

• Replace the chosen cluster with the sub-clusters
e.g., ‘reversing’ agglomerative approach and split into two

Example solution: DIANA

– Select the cluster 𝐶 with largest diameter for splitting

– Search the most disparate observation 𝑜 in 𝐶 (highest average dissimilarity)

• 𝑆𝑝𝑙𝑖𝑛𝑡𝑒𝑟𝐺𝑟𝑜𝑢𝑝 ≔ {𝑜}

• Iteratively assign the 𝑜′ ∈ 𝐶\𝑆𝑝𝑙𝑖𝑛𝑡𝑒𝑟𝐺𝑟𝑜𝑢𝑝 with the highest 
𝐷 𝑜′ > 0 to the splinter group until for all 𝑜′ ∈
𝐶\𝑆𝑝𝑙𝑖𝑛𝑡𝑒𝑟𝐺𝑟𝑜𝑢𝑝: 𝐷 𝑜′ ≤ 0

D o′ =
oj∈𝐶\𝑆𝑝𝑙𝑖𝑛𝑡𝑒𝑟𝐺𝑟𝑜𝑢𝑝

𝑑 𝑜′, 𝑜𝑗

|𝐶\𝑆𝑝𝑙𝑖𝑛𝑡𝑒𝑟𝐺𝑟𝑜𝑢𝑝|
−

oi∈𝑆𝑝𝑙𝑖𝑛𝑡𝑒𝑟𝐺𝑟𝑜𝑢𝑝

𝑑 𝑜′, 𝑜𝑖
|𝑆𝑝𝑙𝑖𝑛𝑡𝑒𝑟𝐺𝑟𝑜𝑢𝑝|

Clustering Hierarchical Methods Divisive Hierarchical Clustering 84

how to split ?

how ?
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Discussion Agglomerative vs. Divisive HC

Divisive HC and Agglomerative HC need n-1 steps

– Agglomerative  HC has to consider 
𝑛∙(𝑛−1)

2
= 𝑛

2
combinations in the first 

step

– Divisive HC has 2𝑛−1 − 1 many possibilities to split the data in its first step

Not every possibility has to be considered (DIANA)

Divisive HC is conceptually more complex since it needs a second ‘flat’ 
clustering algorithm (splitting procedure)

Agglomerative HC decides based on local patterns

Divisive HC uses complete information about the global data distribution
more accurate than Agglomerative HC?!

Clustering Hierarchical Methods Divisive Hierarchical Clustering 85
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Contents

1) Introduction to clustering

2) Partitioning Methods

– K-Means
– K-Medoid
– Choice of parameters: Initialization, Silhouette coefficient

3) Expectation Maximization: a statistical approach

4) Density-based Methods: DBSCAN

5) Hierarchical Methods

– Agglomerative  and Divisive Hierarchical Clustering
– Density-based hierarchical clustering: OPTICS

6) Evaluation of Clustering Results

7) Further Clustering Topics

– Ensemble Clustering
– Discussion: an alternative view on DBSCAN
– Outlier Detection
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Density-Based Hierarchical Clustering

Clustering Hierarchical Methods Density-based HC: OPTICS 87

 Observation: Dense clusters are completely contained 
by less dense clusters

 Idea: Process objects in the “right” order and keep track of point density in 
their neighborhood 

D

MinPts = 3C

C1

e2 e1

C2

C1 C2

C
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Core Distance and Reachability Distance

Clustering Hierarchical Methods Density-based HC: OPTICS 88

 Parameters: “generating” distance e, fixed value MinPts

 core-distancee,MinPts(o)

“smallest distance such that o is a core object”
(if core-distance >e :“?”)

 reachability-distancee,MinPts(p, o)

“smallest distance such that p is 
directly density-reachable from o”
(if reachability-distance > e :∞)

𝑟𝑒𝑎𝑐ℎ_𝑑𝑖𝑠𝑡 𝑝, 𝑜 = ൞

𝑑𝑖𝑠𝑡(𝑝, 𝑜) , 𝑑𝑖𝑠𝑡 𝑝, 𝑜 ≥ 𝑐𝑜𝑟𝑒_𝑑𝑖𝑠𝑡(𝑜)

𝑐𝑜𝑟𝑒_𝑑𝑖𝑠𝑡(𝑜) , 𝑑𝑖𝑠𝑡 𝑝, 𝑜 < 𝑐𝑜𝑟𝑒_𝑑𝑖𝑠𝑡(𝑜)

∞ , 𝑑𝑖𝑠𝑡 𝑝, 𝑜 > 𝜖

core-distance(o)
reachability-distance(p,o)
reachability-distance(q,o)

o
p

q 𝜀

MinPts = 5
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The Algorithm OPTICS

Clustering Hierarchical Methods Density-based HC: OPTICS 89

 OPTICS: Ordering Points To Identify the Clustering Structure

 Basic data structure: controlList

– Memorize shortest reachability distances seen so far 
(“distance of a jump to that point”)

 Visit each point

– Make always a shortest jump

 Output:

– order of points

– core-distance of points

– reachability-distance of points

Ankerst M., Breunig M., Kriegel H.-P., Sander J.: „OPTICS: Ordering Points To Identify the Clustering Structure“, In SIGMOD 1999, pp. 49-60. 
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The Algorithm OPTICS

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS 90

foreach o  Database

// initially, o.processed = false for all objects o

if o.processed = false; 

insert (o, ∞) into ControlList;

while ControlList contains objects not yet processed

select first element (o, r-dist) from ControlList;

retrieve Ne(o) and determine c_dist = core-distance(o);

set o.processed = true;

write (o, r_dist, c_dist) to file; 

if o is a core object at any distance £ e 

foreach p Î Ne(o) not yet processed; 

determine r_distp = reachability-distance(p, o); 

if (p, _) Ï ControlList

insert (p, r_distp) in ControlList;

else if (p, old_r_dist) Î ControlList and r_distp < old_r_dist

update (p, r_distp) in ControlList;

ControlList ordered by 
reachability-distance.

cluster-ordered
file

ControlList



database
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The Algorithm OPTICS - Example

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

44



reach

seed list:

• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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The Algorithm OPTICS – Example (2)

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

seed list: (B,40) (I, 40)

A

44

reach



core-
distance

e

• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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The Algorithm OPTICS – Example (3)

seed list: (I, 40) (C, 40)

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

A B

44

reach



• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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The Algorithm OPTICS – Example (4)

seed list: (J, 20) (K, 20) (L, 31) (C, 40) (M, 40) (R, 43)

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

A B I

44

reach



• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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The Algorithm OPTICS – Example (5)

seed list: (L, 19) (K, 20) (R, 21) (M, 30) (P, 31) (C, 40)

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

A B I J

44

reach



• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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The Algorithm OPTICS – Example (6)

seed list: (M, 18) (K, 18) (R, 20) (P, 21) (N, 35) (C, 40)

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

A B I J L

44

reach



• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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The Algorithm OPTICS – Example (7)

seed list: (K, 18) (N, 19) (R, 20) (P, 21) (C, 40)

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

A B I J L M

44

reach



• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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The Algorithm OPTICS – Example (8)

seed list: (N, 19) (R, 20) (P, 21) (C, 40)

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

A B I J L M K

44

reach



• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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The Algorithm OPTICS – Example (9)

seed list: (R, 20) (P, 21) (C, 40)

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

A B I J L M K N

44

reach



• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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The Algorithm OPTICS – Example (10)

seed list: (P, 21) (C, 40)

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

A B I J L M K N R

44

reach



• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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The Algorithm OPTICS – Example (11)

seed list: (C, 40)

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

A B I J L M K N R P

44

reach



• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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The Algorithm OPTICS – Example (12)

seed list: (D, 22) (F, 22) (E, 30) (G, 35)

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

A B I J L M K N R P C

44

reach



• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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The Algorithm OPTICS – Example (13)

seed list: (F, 22) (E, 22) (G, 32)

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

A B I J L M K N R P C D

44

reach



• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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The Algorithm OPTICS – Example (14)

seed list: (G, 17) (E, 22) 

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

A B I J L M K N R P C D F

44

reach



• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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The Algorithm OPTICS – Example (15)

seed list: (E, 15) (H, 43)

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

A B I J L M K N R P C D F G

44

reach



• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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The Algorithm OPTICS – Example (16)

seed list: (H, 43)

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

A B I J L M K N R P C D F G E

44

reach



• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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The Algorithm OPTICS – Example (17)

seed list: -

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

A B I J L M K N R P C D F G E H

44

reach



• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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The Algorithm OPTICS – Example (18)

A
I

B

J

K

L

R

M

P

N

C
F

D
E

G
H

A B I J L M K N R P C D F G E H

44

reach



• Example Database (2-dimensional, 16 points)
• e= 44,   MinPts = 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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OPTICS: The Reachability Plot

Reachability diagram

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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OPTICS: The Reachability Plot

110

 plot the points together with their reachability-distances. Use the 
order in which they where returned by the algorithm

– represents the density-based clustering structure

– easy to analyze 

– independent of the dimension of the data

re
ac

h
ab

il
it

y
 d
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ta

n
ce

cluster ordering

re
ac

h
ab

il
it

y
 d

is
ta

n
ce

cluster ordering

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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OPTICS: Properties

111

 “Flat” density-based clusters wrt. e* e and MinPts afterwards:

– Start with an object o where c-dist(o)  e* and r-dist(o) > e* 

– Continue while r-dist  e* 

 Performance: approx. runtime( DBSCAN(e, MinPts) )

– O( n * runtime(e-neighborhood-query) )

 without spatial index support (worst case): O( n2 )

 e.g. tree-based spatial index support: O( n * log(n) )

Core-distance Reachability-distance

4

1
2
3 16 18

17

1

2

34

16 17

18

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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OPTICS: Parameter Sensitivity

112

 Relatively insensitive to parameter settings

 Good result if parameters are just “large enough”
1

2

3

MinPts = 10, e = 10

1 2 3

MinPts = 10, e = 5 MinPts = 2, e = 10

1 2 3

1 2 3

Clustering Hierarchical Methods Density-based hierarchical clustering: OPTICS
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Hierarchical Clustering: Discussion

Clustering Hierarchical Methods 113

 Advantages

– Does not require the number of clusters to be known in advance

– No (standard methods) or very robust parameters (OPTICS)

– Computes a complete hierarchy of clusters

– Good result visualizations integrated into the methods

– A “flat” partition can be derived afterwards (e.g. via a cut through the 
dendrogram or the reachability plot)

 Disadvantages

– May not scale well

 Runtime for the standard methods: O(n2 log n2)

 Runtime for OPTICS: without index support O(n2)

– User has to choose the final clustering
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Evaluation of Clustering Results

Clustering  Evaluation of Clustering Results 115

 Evaluation based on expert‘s opinion

+ may reveal new insight into the data

– very expensive, results are not comparable

 Evaluation based on internal measures

+ no additional information needed

– approaches optimizing the evaluation criteria
will always be preferred

 Evaluation based on external measures

+ objective evaluation

– needs „ground truth“

e.g., comparison of two clusterings
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Evaluation based on internal measures

Given a clustering 𝒞 = (𝐶1, … , 𝐶𝑘) for Dataset 𝐷𝐵

– Sum of square distances: 𝑆𝑆𝐷 𝒞 =
1

|𝐷𝐵|
σ𝐶𝑖∈𝒞

σ𝑝∈𝐶𝑖
𝑑𝑖𝑠𝑡 𝑝, 𝜇 𝐶𝑖

2

– Cohesion: measures the similarity of objects within a cluster

– Separation: measures the dissimilarity of one cluster to another one

– Silhouette Coefficient: combines cohesion and separation

Clustering  Evaluation of Clustering Results 116
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Evaluation based on external measures (1)

Given clustering 𝒞 = (𝐶1, … , 𝐶𝑘) and ground truth 𝒢 = (𝐺1, … , 𝐺𝑙) for 
dataset 𝐷𝐵

– Recall: 𝑟𝑒𝑐 𝐶𝑖 , 𝐺𝑗 =
|𝐶𝑖∩𝐺𝑗|

|𝐺𝑗|
Precision: 𝑝𝑟𝑒𝑐 𝐶𝑖 , 𝐺𝑗 =

|𝐶𝑖∩𝐺𝑗|

|𝐶𝑖|

– F-Measure: 𝐹 𝐶𝑖 , 𝐺𝑗 =
2∗𝑟𝑒𝑐 𝐶𝑖,𝐺𝑗 ∗𝑝𝑟𝑒𝑐 𝐶𝑖,𝐺𝑗

𝑟𝑒𝑐 𝐶𝑖,𝐺𝑗 +𝑝𝑟𝑒𝑐 𝐶𝑖,𝐺𝑗

– Purity (P): 𝑃 𝒞, 𝒢 = σ𝐶𝑖∈𝒞
𝐶𝑖

𝐷𝐵
𝑝𝑢𝑟(𝐶𝑖 , 𝒢) 𝑝𝑢𝑟 𝐶𝑖 , 𝒢 =

max
Gj∈𝒢

𝑝𝑟𝑒𝑐(𝐶𝑖 , 𝐺𝑗)

– Rand Index: 𝑅𝐼 𝒞, 𝒢 = (𝑎 + 𝑏)/
|𝐷𝐵|
2

„normalized number of

agreements “
𝑎 = 𝑜𝑖 , 𝑜𝑗 ∈ 𝐷𝐵 × 𝐷𝐵|𝑜𝑖 ≠ 𝑜𝑗 ∧ ∃C ∈ 𝒞: 𝑜𝑖 , 𝑜𝑗 ∈ 𝐶 ∧ ∃𝐺 ∈ 𝒢: 𝑜𝑖 , 𝑜𝑗 ∈ 𝐺

𝑏 = 𝑜𝑖 , 𝑜𝑗 ∈ 𝐷𝐵 × 𝐷𝐵|𝑜𝑖 ≠ 𝑜𝑗 ∧ ¬∃C ∈ 𝒞: 𝑜𝑖 , 𝑜𝑗 ∈ 𝐶 ∧ ¬∃𝐺 ∈ 𝒢: 𝑜𝑖 , 𝑜𝑗 ∈ 𝐺

– Jaccard Coefficient (JC)  

– …

Clustering  Evaluation of Clustering Results 117



DATABASE
SYSTEMS
GROUP

Evaluation based on external measures (2)

Given clustering 𝒞 = (𝐶1, … , 𝐶𝑘) and ground truth 𝒢 = (𝐺1, … , 𝐺𝑙) for 
dataset 𝐷𝐵

– Mutual Entropy: 𝐻 𝒞|𝒢 = −σ𝐶𝑖∈𝒞
𝑝 𝐶𝑖 σ𝐺𝑗∈𝒢

𝑝 𝐺𝑗 𝐶𝑖 𝑙𝑜𝑔 𝑝 𝐺𝑗 𝐶𝑖

= −σ𝐶𝑖∈𝒞
𝐶𝑖

𝐷𝐵
σ𝐺𝑗∈𝒢

|𝐶𝑖∩𝐺𝑗|

|𝐶𝑖|
∗ log2(

|𝐶𝑖∩𝐺𝑗|

|𝐶𝑖|
)

– Mutual Information: 𝐼 𝒞, 𝒢 = 𝐻 𝒞 − 𝐻 𝒞 𝒢 = 𝐻 𝒢 − 𝐻 𝒢 𝒞

where entropy 𝐻 𝒞 = −σ𝐶𝑖∈𝒞
𝑝 𝐶𝑖 ⋅ log 𝑝 𝐶𝑖 = −σ𝐶∈𝒞

𝐶𝑖

𝐷𝐵
⋅ log

𝐶𝑖

𝐷𝐵

– Normalized Mutual Information: 𝑁𝑀𝐼 𝒞, 𝒢 =
𝐼(𝒞,𝒢)

𝐻 𝒞 𝐻(𝒢)
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Ambiguity of Clusterings

Different possibilities to cluster a set of objects

124

from: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)

Clustering  Evaluation of Clustering Results



DATABASE
SYSTEMS
GROUP

Ambiguity of Clusterings

• Kind of a philosophical problem:

“What is a correct clustering?”

• Most approaches find clusters in every dataset, 
even in uniformly distributed object 

• Are there clusters?
• Apply clustering algorithm

• Check for reasonability of clusters

• Problem: No clusters found ⇏ no clusters existing
• Maybe clusters exists only in certain models, but can not be 

found by used clustering approach

• Independent of clustering: Is there a data-given 
cluster tendency?

126Clustering  Evaluation of Clustering Results
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Sample

Hopkins statistics

wi: distances of selected objects to the next neighbor in dataset

ui: distances of uniformly distributed objects to the next neighbor in dataset

127

dataset
(n objects)

Random selection 
(m objects)         m << n

m uniformly 
distributed objects

w3

w4

w5

w6

w1

w2
u1

u2

u3
u4

u5

u6












m

i i

m

i i

m

i i

wu

u
H

11

1 0  H  1
H  0 :    data are very regular (e.g. on grid)
H  0,5 : data are uniformly distributed
H  1 :    data are strongly clustered

Clustering  Evaluation of Clustering Results
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Cohesion and Separation

• Suitable for globular cluster, but not for stretched clusters

144Clustering  Evaluation of Clustering Results
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Evaluating the Similarity Matrix

145

from: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)

Similarity matrix
(sorted by k-means Cluster-labels)

dataset
(well separated clusters)

Clustering  Evaluation of Clustering Results
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k-means

Evaluating the Similarity Matrix (cont’d)

similarity matrices differ for different clustering approaches

146

nach: Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)

complete linkDBSCAN

Clustering  Evaluation of Clustering Results
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Example: Pen digit clustering

Example Pendigits-dataset:

• Label for each digit: 0,...,9

• Features: temporal ordered points in the draw lines

• Useful concepts depending of the given classes:

• One digit can have subgroups for varying writing styles

• Different digits can have similarities

160Clustering  Evaluation of Clustering Results
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Ensemble Clustering

Problem:

– Many differing cluster definitions

– Parameter choice usually highly influences the result

 What is a ‚good‘ clustering?

Idea: Find a consensus solution (also ensemble clustering) that consolidates  multiple 
clustering solutions.

Benefits of Ensemble Clustering:

– Knowledge Reuse: possibility to integrate the knowledge of multiple known, good clusterings

– Improved quality: often ensemble clustering leads to “better” results than its individual base 
solutions.

– Improved robustness: combining several clustering approaches with differing data modeling 
assumptions leads to an increased robustness across a wide range of datasets.

– Model Selection: novel approach for determining the final number of clusters

– Distributed Clustering: if data is inherently distributed (either feature-wise or object-wise) and 
each clusterer has only access to a subset of objects and/or features, ensemble methods can be 
used to compute a unifying result.
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Ensemble Clustering – Basic Notions

Given: a set of 𝐿 clusterings ℭ = 𝒞1, … , 𝒞𝐿 for dataset 𝐗 = 𝐱1, … , 𝐱𝑁 ∈ ℝ𝐷

Goal : find a consensus clustering 𝒞∗

What exactly is a consensus clustering?

We can differentiate between 2 categories for ensemble clustering:

– Approaches based on pairwise similarity
Idea: find a consensus clustering 𝒞∗ for which the similarity function 

𝜙 ℭ, 𝒞∗ =
1

𝐿
σ𝑙=1
𝐿 𝜙(𝒞𝑙 , 𝒞

∗) is maximal.

– Probabilistic approaches :
Assume that the 𝐿 labels for the objects 𝐱𝑖 ∈ 𝐗 follow a certain distribution

 We will present one exemplary approach for both categories in the
following
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Ensemble Clustering – Similarity-based Approaches

Given: a set of 𝐿 clusterings ℭ = 𝒞1, … , 𝒞𝐿 for dataset 𝐗 = 𝐱1, … , 𝐱𝑁 ∈ ℝ𝐷

 Goal : find a consensus clustering 𝒞∗ for which the similarity function 

𝜙 ℭ, 𝒞∗ =
1

𝐿
σ𝑙=1
𝐿 𝜙(𝒞𝑙 , 𝒞

∗) is maximal.

– Popular choices for 𝜙 in the literature: 

• Pair counting-based measures: Rand Index (RI), Adjusted RI, 
Probabilistic RI

• Information theoretic measures:
Mutual Information (I), Normalized Mutual Information (NMI), Variation 
of Information (VI)

Problem: the above objective is intractable

Solutions:

– Methods based on the co-association matrix (related to RI)

– Methods  using cluster labels without co-association matrix (often related to NMI)

• Mostly graph partitioning 

• Cumulative voting
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Ensemble Clust. – Approaches based on 
Co-Association

Given: a set of 𝐿 clusterings ℭ = 𝒞1, … , 𝒞𝐿 for dataset 𝐗 = 𝐱1, … , 𝐱𝑁 ∈ ℝ𝐷

The co-association matrix 𝐒 ℭ is an 𝑁 × 𝑁 matrix representing the label

similarity of object pairs: 𝑠𝑖,𝑗
ℭ
= σ𝑙=1

𝐿 𝛿 𝐶 𝒞𝑙 , 𝐱𝑖 , 𝐶 𝒞𝑙 , 𝐱𝑗

where 𝛿 𝑎, 𝑏 = ቊ
1 𝑖𝑓 𝑎 = 𝑏
0 𝑒𝑙𝑠𝑒

Based on the similarity matrix defined by 𝐒 ℭ traditional clustering 
approaches can be used

Often 𝐒 ℭ is interpreted as weighted adjacency matrix, such that methods 
for graph partitioning can be applied.

In [Mirkin’96]  a connection of consensus clustering based on the co-
association matrix and the optimization of the pairwise similarity based 

on the Rand Index (𝒞𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝒞∗
1

𝐿
σ𝒞𝑙∈ℭ

𝑅𝐼(𝒞𝑙 , 𝒞
∗) ) 

has been proven.
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cluster label of 𝐱𝑖, 𝐱𝑗 in clustering 𝒞𝑙

[Mirkin’96] B. Mirkin: Mathematical Classification and Clustering. Kluwer, 1996.
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Ensemble Clust. – Approaches based on 
Cluster Labels

 Consensus clustering 𝒞∗ for which
1

𝐿
σ𝒞𝑙∈ℭ

𝜙(𝒞𝑙 , 𝒞
∗) is maximal

 Information theoretic approach: choose 𝜙 as mutual information (I), 
normalized mutual information (NMI), information bottleneck (IB),…

 Problem: Usually a hard optimization problem

 Solution 1: Use meaningful optimization approaches (e.g. gradient descent) or 
heuristics to approximate the best clustering solution (e.g. [SG02])

 Solution 2: Use a similar but solvable objective (e.g. [TJP03])

• Idea: use as objective 𝒞𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝒞∗
1

𝐿
σ𝒞𝑙∈ℭ

𝐼𝑠(𝒞𝑙 , 𝒞
∗)

where 𝐼𝑠 is the mutual information based on the generalized entropy of degree 𝑠: 
𝐻𝑠 𝑋 = 21−𝑠 − 1 −1σ𝑥𝑖∈𝑋

(𝑝𝑖
𝑠 − 1)

 For s = 2, 𝐼𝑠(𝒞𝑙 , 𝒞
∗) is equal to the category utility function whose maximization is 

proven to be equivalent to the minimization of the square-error clustering criterion

 Thus apply a simple label transformation and use e.g. K-Means
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[SG02] A. Strehl, J. Ghosh: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. 
Journal of Machine Learning Research, 3, 2002, pp. 583-617.

[TJP03]A. Topchy, A.K. Jain, W. Punch. Combining multiple weak clusterings. In ICDM, pages 331-339, 2003.
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Ensemble Clustering – A Probabilistic Approach

Assumption 1: all clusterings 𝒞𝑙 ∈ ℭ are partitionings of the dataset 𝐗.

Assumption 2: there are 𝐾∗ consensus clusters

The dataset 𝐗 is represented by the set 

𝐘 = 𝒚𝑛 ∈ ℕ0
𝐿 ∃𝐱𝑛 ∈ 𝐗. ∀𝒞𝑙 ∈ ℭ. y𝑛𝑙= 𝐶 𝒞𝑙 , 𝐱𝑛

we have a new feature Space ℕ0
𝐿, where the 𝑙th feature represents the cluster labels from partition 𝒞𝑙

Assumption 3: the dataset 𝐘 (labels of base clusterings) follow a multivariate 
mixture distribution:

𝑃 𝐘 𝚯 =ෑ

𝑛=1

𝑁



𝑘=1

𝐾∗

𝛼𝑘𝑃𝑘(𝒚𝑛|𝛉𝑘) =ෑ

𝑛=1

𝑁



𝑘=1

𝐾∗

𝛼𝑘ෑ

𝑙=1

𝐿

𝑃𝑘𝑙 (𝑦𝑛𝑙|𝛉𝑘𝑙)

𝑃𝑘𝑙 (𝑦𝑛𝑙|𝛉𝑘𝑙)~𝑀 1, 𝑝𝑘,𝑙,1, … , 𝑝𝑘,𝑙,|𝒞𝑙| follows a 𝒞𝑙 -dimensional multinomial 

distribution: 𝑃𝑘𝑙 (𝑦𝑛𝑙|𝛉𝑘𝑙) = ς
𝑘′=1
𝒞𝑙 𝑝

𝑘,𝑙,𝑘′
𝛿(𝑦𝑛𝑙,𝑘

′)
therefore: 𝛉𝑘𝑙= 𝑝𝑘,𝑙,1, … , 𝑝𝑘,𝑙,|𝒞𝑙|

Goal: find the parameters 𝚯 = 𝛼1, 𝛉1, … , 𝛼𝐾∗ , 𝛉𝐾∗ such that the likelihood 𝑃 𝐘 𝚯
is maximized

Solution: optimizing the parameters via the EM approach.  (details omitted)
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cluster label of x𝑛
in clustering 𝒞𝑙

conditional independence assumptions for 𝒞𝑙 ∈ ℭ

Presented approach:  Topchy, Jain, Punch: A mixture model for clustering ensembles. In ICDM, pp. 379-390, 2004.
Later extensions: H. Wang, H. Shan, A. Banerjee: Bayesian cluster ensembles. In ICDM, pp. 211-222, 2009.

P. Wang, C. Domeniconi, K. Laskey: Nonparametric Bayesian clustering ensembles. In PKDD, pp. 435-450, 2010.
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Database Support for Density-Based Clustering

Reconsider DBSCAN algorithm
– Standard DBSCAN evaluation is based on recursive database traversal.
– Böhm et al. (2000) observed that DBSCAN, among other clustering 

algorithms, may be efficiently built on top of similarity join operations.

Similarity joins
– An e-similarity join yields all pairs of e-similar objects from two data sets

P, Q:

𝑃⨝𝜀𝑄 = 𝑝, 𝑞 | 𝑝 ∈ 𝑃 ∧ 𝑞 ∈ 𝑄 ∧ 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝜀
• SQL-Query:  SELECT * FROM P, Q WHERE 𝑑𝑖𝑠𝑡(P, Q) ≤ 𝜀

– An e-similarity self join yields all pairs of e-similar objects from a 
database DB:

𝐷𝐵⨝𝜀𝐷𝐵 = 𝑝, 𝑞 | 𝑝 ∈ 𝐷𝐵 ∧ 𝑞 ∈ 𝐷𝐵 ∧ 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝜀
• SQL-Query:  SELECT * FROM DB p, DB q WHERE 
𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝜀

Böhm C., Braunmüller, B., Breunig M., Kriegel H.-P.: High performance clustering based on the similarity join. CIKM 2000: 298-305.
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Similarity Join for Density-Based Clustering

e-Similarity self join: 
𝐷𝐵⨝𝜀𝐷𝐵 = 𝑝, 𝑞 | 𝑝 ∈ 𝐷𝐵 ∧ 𝑞 ∈ 𝐷𝐵 ∧ 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝜀

Relation „directly e, MinPts-density reachable“ may be expressed in 
terms of an e-similarity self join:

𝑑𝑑𝑟𝜀,𝜇 = 𝑝, 𝑞 | 𝑝 is 𝜀, 𝜇−core point ∧ 𝑞 ∈ 𝑁𝜀 𝑝

= 𝑝, 𝑞 |𝑝, 𝑞 ∈ 𝐷𝐵 ∧ 𝑑𝑖𝑠𝑡 𝑝, 𝑞 ≤ 𝜀 ∧ ∃≥𝜇 𝑞′ ∈ 𝐷𝐵: 𝑑𝑖𝑠𝑡 𝑝, 𝑞′ ≤ 𝜀

= 𝑝, 𝑞 | 𝑝, 𝑞 ∈ 𝐷𝐵⨝𝜀𝐷𝐵 ∧ ∃≥𝜇 𝑞′: 𝑝, 𝑞′ ∈ 𝐷𝐵⨝𝜀𝐷𝐵

= 𝜎 𝜋𝑝 𝐷𝐵⨝𝜀𝐷𝐵 ≥𝜇 𝐷𝐵⨝𝜀𝐷𝐵 =:𝐷𝐵⨝𝜀,𝜇 𝐷𝐵

– SQL-Query: SELECT * FROM DB p, DB q WHERE 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝜀
GROUP BY p.id HAVING count 𝑝. 𝑖𝑑 ≥ μ

– Remark: 𝐷𝐵⨝𝜀𝐷𝐵 is a symmetric relation, 𝑑𝑑𝑟𝜀,𝜇 = 𝐷𝐵⨝𝜀,𝜇 𝐷𝐵 is not.

DBSCAN then computes the connected components within 
𝐷𝐵⨝𝜀,𝜇 𝐷𝐵.
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Efficient Similarity Join Processing

For very large databases, efficient join techniques are available

– Block nested loop or index-based nested loop joins exploit secondary 
storage structure of large databases.

– Dedicated similarity join, distance join, or spatial join methods based on 
spatial indexing structures (e.g., R-Tree) apply particularly well. They may 
traverse their hierarchical directories in parallel (see illustration below).

– Other join techniques including sort-merge join or hash join are not 
applicable.
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Clustering – Summary

Partitioning Methods: K-Means, K-Medoid, K-Mode, K-Median 

Probabilistic Model-Based Clusters: Expectation Maximization 

Density-based Methods: DBSCAN 

Hierarchical Methods
– Agglomerative and Divisive Hierarchical Clustering 

– Density-based hierarchical clustering: OPTICS 

Evaluation of Clustering Results
– Evaluation based on an expert‘s knowledge; internal evaluation

measures; external evaluation measures

Further Clustering Topics 
– Ensemble Clustering: finding a consensus clustering agreeing with

multiple base clustering and its advantages

• co-assocaition matrix, information theoretic approaches, 
probabilistic approaches

– Discussion of DBSCAN as Join operation
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