

- 1) Introduction to clustering
- 2) Partitioning Methods
 - K-Means
 - K-Medoid
 - Choice of parameters: Initialization, Silhouette coefficient
- 3) Expectation Maximization: a statistical approach
- 4) Density-based Methods: DBSCAN
- 5) Hierarchical Methods
 - Agglomerative and Divisive Hierarchical Clustering
 - Density-based hierarchical clustering: OPTICS
- 6) Evaluation of Clustering Results
- 7) Further Clustering Topics
 - Ensemble Clustering
 - Discussion: an alternative view on DBSCAN

Clustering

Statistical approach for finding maximum likelihood estimates of parameters in probabilistic models

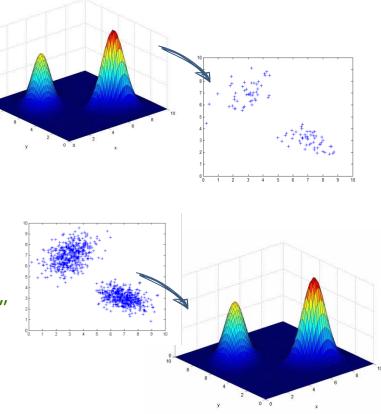
Here: using EM as clustering algorithm

Approach:

Observations are drawn from one of several components of a mixture distribution.

Main idea:

- Define clusters as probability distributions
 → each object has a certain probability of belonging to each cluster
- Iteratively improve the parameters of each distribution (e.g. center, "width" and "height" of a Gaussian distribution) until some quality threshold is reached



Additional Literature: C. M. Bishop "Pattern Recognition and Machine Learning", Springer, 2009

Clustering→ Expectation Maximization (EM)

Note: EM is not restricted to Gaussian distributions, but they will serve as example in this lecture. Gaussian distribution:

- Univariate: single variable $x \in \mathbb{R}$:

$$p(x|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{1}{2\sigma^2} \cdot (x-\mu)^2}$$

- Multivariate: *d*-dimensional vector $x \in \mathbb{R}^d$:

$$p(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}} \cdot e^{-\frac{1}{2} \cdot (\boldsymbol{x}-\boldsymbol{\mu})^T \cdot (\boldsymbol{\Sigma})^{-1} \cdot (\boldsymbol{x}-\boldsymbol{\mu})}$$

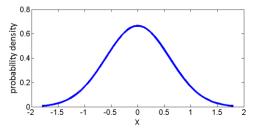
mean vector $\in \mathbb{R}^d$ *covariance matrix* $\in \mathbb{R}^{d \times d}$ Gaussian mixture distribution with K components:

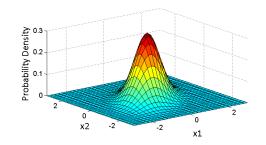
- *d*-dimensional vector $\mathbf{x} \in \mathbb{R}^d$:

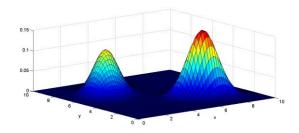
mean $\in \mathbb{R}$ variance $\in \mathbb{R}$

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

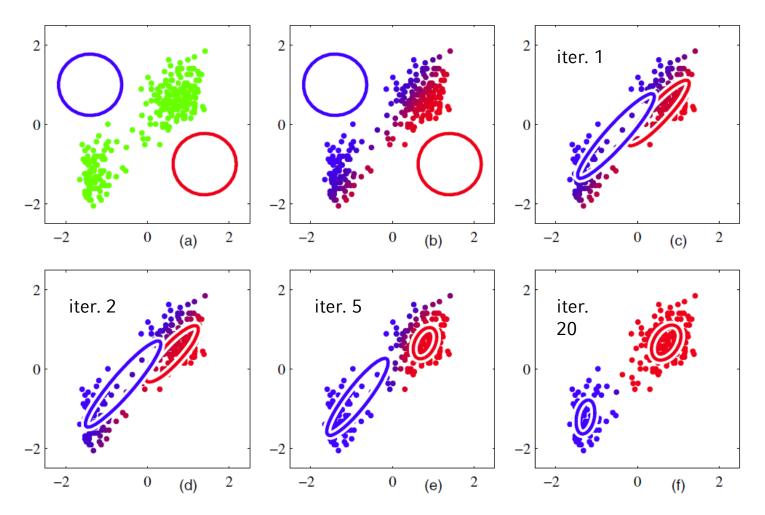
$$\uparrow$$
mixing coefficients $\in \mathbb{R} : \sum_k \pi_k = 1 \text{ and } 0 \le \pi_k \le 1$







Expectation Maximization (EM): Exemplary Application



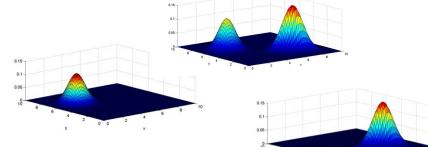
Clustering→ Expectation Maximization (EM)

Expectation Maximization (EM)

Note: EM is not restricted to Gaussian distributions, but they will serve as example in this lecture.

A clustering $\mathcal{M} = \{C_1, ..., C_K\}$ is represented by a mixture distribution with parameters $\Theta = \{\pi_1, \mu_1, \Sigma_1, ..., \pi_K, \mu_K, \Sigma_K\}$: $p(\mathbf{x}|\Theta) = \sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$

Each *cluster* is represented by one component of the mixture distribution: $p(\mathbf{x}|\mathbf{\mu}_k, \mathbf{\Sigma}_k) = \mathcal{N}(\mathbf{x}|\mathbf{\mu}_k, \mathbf{\Sigma}_k)$

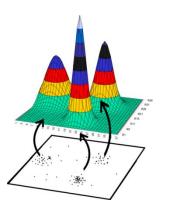


Given a dataset $\mathbf{X} = \{x_1, ..., x_N\} \subseteq \mathbb{R}^d$, we can write the likelihood that all data points $\mathbf{x}_n \in \mathbf{X}$ are generated (independently) by the mixture model with parameters Θ as:

$$\log p(\mathbf{X}|\Theta) = \log \prod_{n=1}^{N} p(x_n|\Theta)$$

Goal: Find the parameters Θ_{ML} with **maximal (log-)likelihood estimation** (MLE)

$$\Theta_{ML} = \arg \max_{\Theta} \{\log p(\mathbf{X}|\Theta)\}$$



• Goal: Find the parameters Θ_{ML} with the **maximal (log-)likelihood estimation**! $\Theta_{ML} = \arg \max_{\Theta} \{\log p(\mathbf{X}|\Theta)\}$

$$\log p(\mathbf{X}|\Theta) = \log \prod_{n=1}^{N} \sum_{k=1}^{K} \pi_k \cdot p(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \cdot p(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

• Maximization with respect to the means:

$$\frac{\partial}{\partial \boldsymbol{\mu}_{j}} \mathcal{N}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}) = \boldsymbol{\Sigma}_{j}^{-1} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{j}) \mathcal{N}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})$$

$$\frac{\partial \log p(\mathbf{X}|\Theta)}{\partial \boldsymbol{\mu}_{j}} = \sum_{n=1}^{N} \frac{\partial \log p(\boldsymbol{x}_{n}|\Theta)}{\partial \boldsymbol{\mu}_{j}} = \sum_{n=1}^{N} \frac{\frac{\partial p(\boldsymbol{x}_{n}|\Theta)}{\partial \boldsymbol{\mu}_{j}}}{p(\boldsymbol{x}_{n}|\Theta)} = \sum_{n=1}^{N} \frac{\frac{\partial \pi_{j} \cdot p(\boldsymbol{x}_{n}|\boldsymbol{\mu}_{j},\boldsymbol{\Sigma}_{j})}{\partial \boldsymbol{\mu}_{j}}}{\sum_{k=1}^{K} p(\boldsymbol{x}_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k})} = \sum_{n=1}^{N} \frac{\pi_{j} \cdot \boldsymbol{\Sigma}_{j}^{-1}(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{j})\mathcal{N}(\boldsymbol{x}_{n}|\boldsymbol{\mu}_{j},\boldsymbol{\Sigma}_{j})}{\sum_{k=1}^{K} p(\boldsymbol{x}_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k})} = \sum_{n=1}^{N} \frac{\pi_{j} \cdot \boldsymbol{\Sigma}_{j}^{-1}(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{j})\mathcal{N}(\boldsymbol{x}_{n}|\boldsymbol{\mu}_{j},\boldsymbol{\Sigma}_{j})}{\sum_{k=1}^{K} p(\boldsymbol{x}_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k})} = \sum_{n=1}^{N} \frac{\pi_{j} \cdot \boldsymbol{\Sigma}_{j}^{-1}(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{j})\mathcal{N}(\boldsymbol{x}_{n}|\boldsymbol{\mu}_{j},\boldsymbol{\Sigma}_{j})}{\sum_{k=1}^{K} p(\boldsymbol{x}_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k})}$$

$$\frac{\partial \log p(\mathbf{X}|\Theta)}{\partial \boldsymbol{\mu}_{j}} = \boldsymbol{\Sigma}_{j}^{-1} \sum_{n=1}^{N} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{j}) \frac{\pi_{j} \cdot \mathcal{N}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}{\sum_{k=1}^{K} \pi_{k} \cdot \mathcal{N}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})} \stackrel{\text{def}}{=} \boldsymbol{0}$$
$$\gamma_{j}(\boldsymbol{x}_{n}) \coloneqq \pi_{j} \cdot \mathcal{N}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}).$$

• Define

 $\gamma_j(x_n)$ is the probability that component *j* generated the object x_n .

Maximization w.r.t. the means yields:

$$\boldsymbol{\mu}_j = \frac{\sum_{n=1}^N \gamma_j(\boldsymbol{x}_n) \, \boldsymbol{x}_n}{\sum_{n=1}^N \gamma_j(\boldsymbol{x}_n)}$$

(weighted mean)

Maximization w.r.t. the covariance yields:

$$\boldsymbol{\Sigma}_{j} = \frac{\sum_{n=1}^{N} \gamma_{j}(\boldsymbol{x}_{n}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{j}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{j})^{T}}{\sum_{n=1}^{N} \gamma_{j}(\boldsymbol{x}_{n})}$$

Maximization w.r.t. the mixing coefficients yields:

$$\pi_j = \frac{\sum_{n=1}^N \gamma_j(\boldsymbol{x}_n)}{\sum_{k=1}^K \sum_{n=1}^N \gamma_k(\boldsymbol{x}_n)}$$

Clustering→ Expectation Maximization (EM)

Problem with finding the optimal parameters Θ_{ML} :

$$\boldsymbol{\mu}_{j} = \frac{\sum_{n=1}^{N} \gamma_{j}(\boldsymbol{x}_{n}) \boldsymbol{x}_{n}}{\sum_{n=1}^{N} \gamma_{j}(\boldsymbol{x}_{n})} \quad \text{and} \quad \gamma_{j}(\boldsymbol{x}_{n}) = \frac{\pi_{j} \cdot \mathcal{N}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}{\sum_{k=1}^{K} \pi_{k} \cdot \mathcal{N}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}$$

- Non-linear mutual dependencies.
- Optimizing the Gaussian of cluster *j* depends on all other Gaussians.
- \rightarrow There is no closed-form solution!
- → Approximation through iterative optimization procedures
- → Break the mutual dependencies by optimizing μ_j and $\gamma_j(x_n)$ independently

EM-approach: iterative optimization

- 1. Initialize means μ_j , covariances Σ_j , and mixing coefficients π_j and evaluate the initial log likelihood.
- 2. <u>E step:</u> Evaluate the responsibilities using the current parameter values:

$$\gamma_j^{new}(\boldsymbol{x}_n) = \frac{\pi_j \cdot \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$$

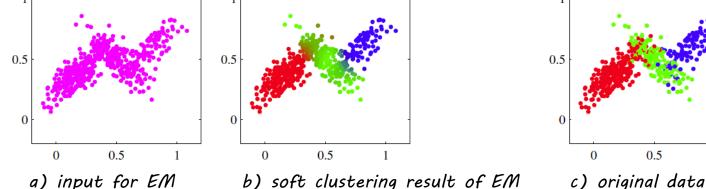
3. <u>M step:</u> Re-estimate the parameters using the current responsibilities:

$$\boldsymbol{\mu}_{j}^{new} = \frac{\sum_{n=1}^{N} \gamma_{j}^{new}(\boldsymbol{x}_{n}) \boldsymbol{x}_{n}}{\sum_{n=1}^{N} \gamma_{j}^{new}(\boldsymbol{x}_{n})}$$
$$\boldsymbol{\Sigma}_{j}^{new} = \frac{\sum_{n=1}^{N} \gamma_{j}^{new}(\boldsymbol{x}_{n}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{j}^{new}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{j}^{new})^{T}}{\sum_{n=1}^{N} \gamma_{j}^{new}(\boldsymbol{x}_{n})}$$
$$\boldsymbol{\pi}_{j}^{new} = \frac{\sum_{k=1}^{N} \gamma_{j}^{new}(\boldsymbol{x}_{n})}{\sum_{k=1}^{K} \sum_{n=1}^{N} \gamma_{k}^{new}(\boldsymbol{x}_{n})}$$

4. Evaluate the new log likelihood $\log p(\mathbf{X}|\Theta^{\text{new}})$ and check for convergence of parameters or log likelihood ($|\log p(\mathbf{X}|\Theta^{\text{new}}) - \log p(\mathbf{X}|\Theta)| \le \epsilon$). If the convergence criterion is not satisfied, set $\Theta = \Theta^{\text{new}}$ and go to step 2.

1

EM obtains a *soft* clustering (each object belongs to each cluster with a certain probability) reflecting the uncertainty of the most appropriate assignment.



Modification to obtain a *partitioning* variant

Assign each object to the cluster to which it belongs with the highest probability

$$Cluster(object_n) = argmax_{k \in \{1,...,K\}} \{\gamma(z_{nk})\}$$

Superior to k-Means for clusters of varying size

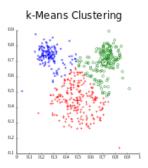
- or clusters having differing variances
- \rightarrow more accurate data representation
- Convergence to (possibly local) maximum

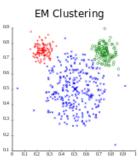
Computational effort for *N* objects, *K* derived clusters, and *t* iterations:

- $O(t \cdot N \cdot K)$
- #iterations is quite high in many cases
- Both result and runtime strongly depend on
 - the initial assignment

 \rightarrow do multiple random starts and choose the final estimate with highest likelihood

- \rightarrow Initialize with clustering algorithms (e.g., K-Means usually converges much faster)
- \rightarrow Local maxima and initialization issues have been addressed in various extensions of EM
- a proper choice of parameter *K* (= desired number of clusters)
 - \rightarrow Apply principals of model selection (see next slide)





Classical trade-off problem for selecting the proper number of components K

- If *K* is too high, the mixture may overfit the data
- If *K* is too low, the mixture may not be flexible enough to approximate the data

Idea: determine candidate models Θ_{K} for a range of values of K (from K_{min} to

- K_{max}) and select the model $\Theta_{K^*} = \max\{qual(\Theta_K) | K \in \{K_{min}, \dots, K_{max}\}\}$
 - Silhouette Coefficient (as for *k*-Means) only works for partitioning approaches.
 - The MLE (Maximum Likelihood Estimation) criterion is nondecreasing in K
- Solution: deterministic or stochastic *model selection* methods^[MP'00] which try to balance the goodness of fit with simplicity.
 - Deterministic: $qual(\Theta_K) = \log p(\mathbf{X}|\Theta_K) + \mathcal{P}(K)$ where $\mathcal{P}(K)$ is an increasing function penalizing higher values of K
 - Stochastic: based on Markov Chain Monte Carlo (MCMC)

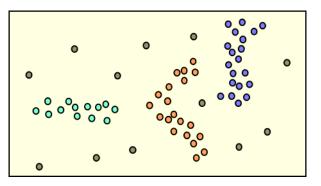
[MP'00] G. McLachlan and D. Peel. Finite Mixture Models. Wiley, New York, 2000.

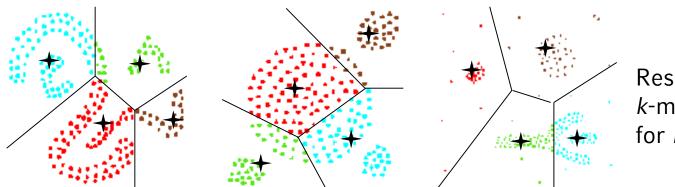
- 1) Introduction to clustering
- 2) Partitioning Methods
 - K-Means
 - K-Medoid
 - Choice of parameters: Initialization, Silhouette coefficient
- 3) Expectation Maximization: a statistical approach
- 4) <u>Density-based Methods: DBSCAN</u>
- 5) Hierarchical Methods
 - Agglomerative and Divisive Hierarchical Clustering
 - Density-based hierarchical clustering: OPTICS
- 6) Evaluation of Clustering Results
- 7) Further Clustering Topics
 - Ensemble Clustering
 - Discussion: an alternative view on DBSCAN

Clustering

Density-Based Clustering

- Basic Idea:
 - Clusters are dense regions in the data space, separated by regions of lower object density
- Why Density-Based Clustering?





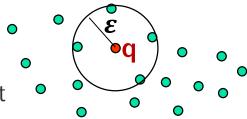
Results of a *k*-medoid algorithm for *k*=4

 Different density-based approaches exist (see Textbook & Papers)
 Here we discuss the ideas underlying the DBSCAN algorithm

Clustering→ Density-based Methods: DBSCAN

- Intuition for the formalization of the basic idea
 - For any point in a cluster, the local point density around that point has to exceed some threshold
 - The set of points from one cluster is spatially connected
- Local point density at a point q defined by two parameters
 - $\begin{array}{ll} & \varepsilon \text{radius for the neighborhood of point } q: \\ & N_{\varepsilon}(q) := \left\{ p \in D | dist(p,q) \leq \varepsilon \right\} & \underline{! \ contains \ q \ itself \ !} \end{array}$
 - **MinPts** minimum number of points in the given neighbourhood $N_{\varepsilon}(q)$
- q is called a **core object** (or core point) w.r.t. ε , *MinPts* if $|N_{\varepsilon}(q)| \ge MinPts$

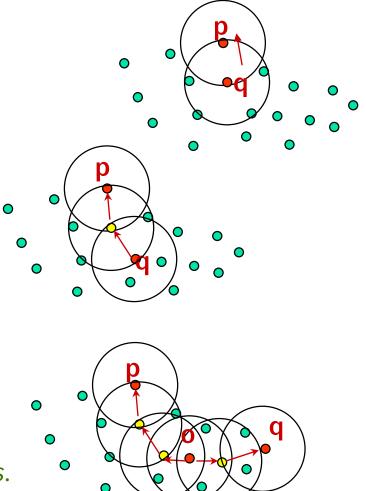
 $MinPts = 5 \rightarrow q$ is a core object



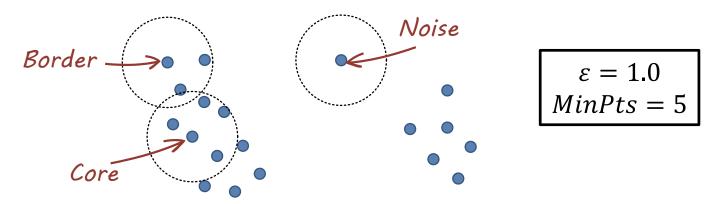
Density-Based Clustering: Basic Definitions

- *p* directly density-reachable from *q* w.r.t. ε, MinPts if
 1) *p* ∈ N_ε(*q*) and
 2) *q* is a core object w.r.t. ε, MinPts
- density-reachable: transitive closure of *directly* density-reachable

p is *density-connected* to a point *q* w.r.t. ε, *MinPts* if there is a point *o* such that both, *p* and *q* are
 density-reachable from *o* w.r.t. ε, *MinPts*.



- Density-Based Cluster: non-empty subset S of database D satisfying:
 1) Maximality: if p is in S and q is density-reachable from p then q is in S
 2) Connectivity: each object in S is density-connected to all other objects in S
- **Density-Based Clustering** of a database $D : \{S_1, ..., S_n; N\}$ where
 - $S_1, ..., S_n$: all density-based clusters in the database D
 - $N = D \setminus \{S_1 \cup ... \cup S_n\}$ is called the **noise** (objects not in any cluster)



- Density Based Spatial Clustering of Applications with Noise
- Basic Theorem:
 - Each object in a density-based cluster C is density-reachable from any of its core-objects
 - Nothing else is density-reachable from core objects.

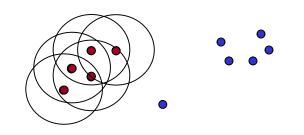
for each $o \in D$ do if o is not yet classified then if o is a core-object then collect all objects density-reachable from oand assign them to a new cluster. else assign o to NOISE

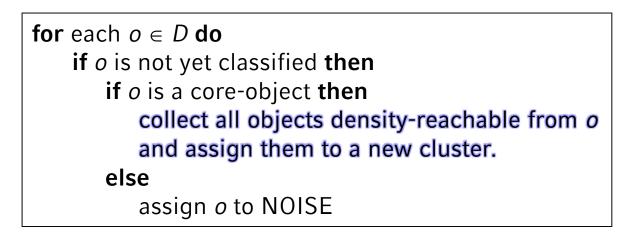
– density-reachable objects are collected by performing successive $\epsilon\text{-neighborhood}$ queries.

Ester M., Kriegel H.-P., Sander J., Xu X.: "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise", In KDD 1996, pp. 226—231.

DBSCAN Algorithm: Example

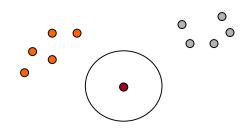
- Parameter
 - $-\varepsilon = 2.0$
 - MinPts = 3

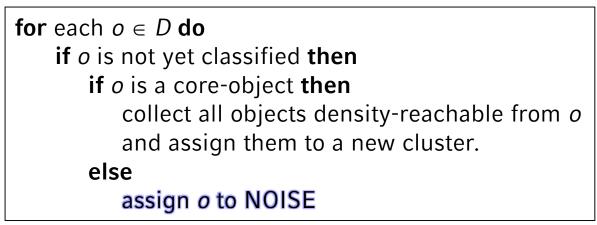




DBSCAN Algorithm: Example

- Parameter
 - $-\varepsilon = 2.0$
 - MinPts = 3





DBSCAN Algorithm: Example

- Parameter
 - $-\varepsilon = 2.0$
 - MinPts = 3

