1) Introduction to clustering

2)  Partitioning Methods

— K-Means
— K-Medoid
— Choice of parameters: Initialization, Silhouette coefficient

3) Expectation Maximization: a statistical approach
4)  Density-based Methods: DBSCAN

5)  Hierarchical Methods

— Agglomerative and Divisive Hierarchical Clustering
— Density-based hierarchical clustering: OPTICS

6)  Evaluation of Clustering Results

7)  Further Clustering Topics

— Ensemble Clustering
— Discussion: an alternative view on DBSCAN
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Expectation Maximization (EM)
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Statistical approach for finding maximum likelihood estimates of parameters in

probabilistic models

Here: using EM as clustering algorithm

Approach:
Observations are drawn from one of
several components of a mixture distribution.

Main idea:

— Define clusters as probability distributions
—> each object has a certain probability of
belonging to each cluster

— lteratively improve the parameters of each
distribution (e.g. center, “width” and “height”
of a Gaussian distribution) until some quality
threshold is reached

0 1 2 3 4 5 6 7T & 9 W

Additional Literature: C. M. Bishop , Pattern Recognition and Machine Learning”, Springer, 2009

Clustering—> Expectation Maximization (EM)
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Note: EM is not restricted to Gaussian distributions, but they will serve as example in this lecture.
Gaussian distribution:
— Univariate: single variable x € R:

1

z
2y _ 2y _ _ 1 —— (x—p)? :
X ) o - N X o —_ - @ 20 :504
POl ) = N el o) =
mean € R variance € R o )
— Multivariate: d-di ' | a.
ultivariate: Imensional vector x € R*:
1 — -l @ - 2o
x|l t)=N(x\ult) =——-¢e 2 :
p(/lu ,{ (xlp, ) = s A
5 ot 5/ \\?
Q //II"‘\\\\\
mean vector € R®  covariance matrix € R4*4 g SN

ZsteSen

Gaussian mixture distribution with K components:

x1

- d-dimensional vector x € R%:

p(x) = YR_q e - N (x| pye, Z)

mixing coefficients ER: Y, m, =1 and 0 <m, <1

Clustering> Expectation Maximization (EM) 40
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Example taken from: C. M. Bischop ,,Pattern Recognition and Machine Learning”, 2009
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Note: EM is not restricted to Gaussian distributions, but they will serve as example in this lecture.

A clustering M = {Cy, ..., Cx} is represented by a mixture distribution with parameters @ =

Given a dataset X = {x4, ..., x5} € R%, we can write the likelihood

{7T1; ”1'21' v g, Uy, ZK} .
p(x|0) = Yo i - N (x| pye, Zie)

Each cluster is represented by one
component of the mixture distribution:

p(x|py, Zy) = N (x|pg, Zy)

that all data points x,, € X are generated (independently)
by the mixture model with parameters 0 as:

N
logp(X|0) = lognp(xnIG)
n=1

Goal: Find the parameters @, with
maximal (log-)likelihood estimation (MLE)

Cl

O, = argmax{log p(X|©)}

ustering—> Expectation Maximization (EM)
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Goal: Find the parameters 0,,;, with the maximal (log-)likelihood estimation!
Oy, = arg max{log p(X|0)}

N

N K K
logp(X|0) = logn z Ty - pP(Xp |y, Zg) = z logz Ty - P(Xn | M, Zi)
k=1

n=1k=1 n=1

Maximization with respect to the means: -
a_”_N(xn“'Lszj) = I (s — )V (21, 5))
J
0p(x,|0) 9 m; - p(xnlp;, %))
dlogp(X|6) _ i Alogp(x,|0) _ i on N o n; Y 2" (xn = 1))V (%1, )
0 1 o 1y p(xn|®) L Vo p (el Zie) Yie=1 P(Xnltic, Z)

n=1 n=1 n=1

=%

efo

N
dlogp(X|0) " m; -N(xn|uj,2j)
Hj ~ =1k - N Qenl i, Zi)

Define /

viGan) = - N (o |y, Zp)-
v (x,) is the probability that component j generated the object x,.

Clustering—> Expectation Maximization (EM)
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Maximization w.r.t. the means yields:

. Zﬁ=1 Vi (xn) Xn
ﬁ=1 Vi (xn)

KU (weighted mean)

Maximization w.r.t. the covariance yields:

Y. = 211’\11:1 Vj(xn)(xn — ”])(xn . ”])T
] Zﬁ:l Yj (xn)

Maximization w.r.t. the mixing coefficients yields:

S g=1 yj (xn)
! II§=1 Zg=1 Yie(X5)
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Problem with finding the optimal parameters @, :

_ Yn=1 Vj(xn) xn

| N (%X |1, Zj)
Bi= 211’\[:1 Yji(xn)

Y1 TV (Xp | Uk, Zi)

and  yj(x,) =

— Non-linear mutual dependencies.
— Optimizing the Gaussian of cluster j depends on all other Gaussians.
= There is no closed-form solution!

= Approximation through iterative optimization procedures

— Break the mutual dependencies by optimizing g; and y;(x,)
independently

Clustering> Expectation Maximization (EM) 45
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EM-approach: iterative optimization

1. Initialize means u;, covariances ¥;, and mixing coefficients m; and evaluate the initial
log likelihood.

2. E step: Evaluate the responsibilities using the current parameter values:

new (y ) = - N(xnluj'zj)
]/] n’/ = K
ke=1Tk - N (n | i, Zi)

3. M step: Re-estimate the parameters using the current responsibilities:
new __ g 1 y]ew(xn) Xn

M =
! n=1 V5 ()

Zn=1V7"" (xn)(xn o) (e — )’

n=1 Y7ew (xn)

ynew

Thew — n 1 yrjzew (xn)

! k=1Zn=17 k" (xn)
4. Evaluate the new log |Ike|lh00d log p(X|®™") and check for convergence of

parameters or log likelihood (|log p(X|@™¢Y) - log p(X|®)| < €).
If the convergence criterion is not satisfied, set @ = ©"®Y and go to step 2.

Clustering—> Expectation Maximization (EM)

46



w

oarasase| EM: Turning the Soft Clustering into a Partitioning

V78 BARR B
.77-'.\.~ ?‘ ! ;‘.,.‘\]
=11 f
SYSTEMS I_MU i
GROUP ) ¥ird

EM obtains a soft clustering (each object belongs to each cluster with a
certain probability) reflecting the uncertainty of the most appropriate
assignment.

Example taken from: C. M. Bishop , Pattern Recognition and Machine Learning”, 2009

1t : 1 1

as®e
.ﬁ.‘.
> ° A,
- f 05| g% S
. . 0

0 0.5 1 0 0.5 1 0 0.5 1
a) input for EM b) soft clustering result of EM ¢) original data

057

Modification to obtain a partitioning variant

— Assign each object to the cluster to which it belongs with the highest
probability
Cluster(objecty,) = argmaxyeq,.,k3{¥ (Zni)}

Clustering—> Expectation Maximization (EM)



. . . k-Means Clustering
Superior to k-Means for clusters of varying size
or clusters having differing variances
—> more accurate data representation

Convergence to (possibly local) maximum

Computational effort for N objects, K derived clusters, and t iterations:
- 0(t-N-K)

—  #iterations is quite high in many cases

Both - result and runtime - strongly depend on

— the initial assignment

- do multiple random starts and choose the final estimate with
highest likelihood

= Initialize with clustering algorithms (e.g., K-Means usually converges much
faster)

- Local maxima and initialization issues have been addressed in various
extensions of EM

— aproper choice of parameter K (= desired number of clusters)

- Apply principals of model selection (see next slide)
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Classical trade-off problem for selecting the proper number of components K
— If K is too high, the mixture may overfit the data
— If K is too low, the mixture may not be flexible enough to approximate the data
|dea: determine candidate models Ok for a range of values of K (from K,,;,, to
Knay) and select the model O+ = max{qual(Og)|K € {Knin, - » Kmax}}
— Silhouette Coefficient (as for k-Means) only works for partitioning approaches.
— The MLE (Maximum Likelihood Estimation) criterion is nondecreasing in K
Solution: deterministic or stochastic model selection methodstMP00]
which try to balance the goodness of fit with simplicity.

— Deterministic: qual(0g) = logp(X|0k) + P(K)
where P(K) is an increasing function penalizing higher values of K
— Stochastic: based on Markov Chain Monte Carlo (MCMC)

[MP*00] G. McLachlan and D. Peel. Finite Mixture Models. Wiley, New York, 2000.

Clustering> Expectation Maximization (EM) 49



1) Introduction to clustering

2)  Partitioning Methods

— K-Means
— K-Medoid
— Choice of parameters: Initialization, Silhouette coefficient

3)  Expectation Maximization: a statistical approach
4) Density-based Methods: DBSCAN

5) Hierarchical Methods

— Agglomerative and Divisive Hierarchical Clustering
— Density-based hierarchical clustering: OPTICS

6)  Evaluation of Clustering Results

7)  Further Clustering Topics

— Ensemble Clustering
— Discussion: an alternative view on DBSCAN
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Density-Based Clustering (SR

= Basic ldea:

09 o
— Clusters are dense regions in the data ° o ° .:.:'
space, separated by regions of lower o 0 Oog% ':.-. °
object density 050%90% 022%0. © %°
. . (o] o]
= Why Density-Based Clustering? N LA
Results of a

k-medoid algorithm

4| 0 for k=4

= Different density-based approaches exist (see Textbook &
Papers)
Here we discuss the ideas underlying the DBSCAN algorithm

Clustering—> Density-based Methods: DBSCAN
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= |ntuition for the formalization of the basic idea

— For any point in a cluster, the local point density around that point
has to exceed some threshold

— The set of points from one cluster is spatially connected
= Local point density at a point g defined by two parameters

— ¢&-radius for the neighborhood of point g:
N.(q):= {p € Dl|dist(p,q) < €} ! contains g itself !

— MinPts — minimum number of points in the given neighbourhood N, (q)

MinPts =5 - q is a core object °
o

= ¢ Is called a core object (or core point)
w.r.t. g MinPtsif | N_(q) | > MinPts

Clustering—> Density-based Methods: DBSCAN 52
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Density-Based Clustering: Basic Definitions

p directly density-reachable from q
w.r.t. & MinPts if

1) pe N q) and

2) g is a core object w.r.t. g MinPts

density-reachable: transitive closure
of directly density-reachable

p is density-connected to a point g
w.r.t. & MinPts if there is a point o
such that both, p and g are
density-reachable from o w.r.t. ¢ MinPts.

Clustering—> Density-based Methods: DBSCAN
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» Density-Based Cluster: non-empty subset S of database D satisfying:
1) Maximality: if pisin S and g is density-reachable from pthen gisin S

2) Connectivity: each object in S is density-connected to all other objects in S

» Density-Based Clustering of a database D : {S,, ..., S,; N} where
— S, ..., S, : all density-based clusters in the database D

— N=D\{S,u..uS,} is called the noise (objects not in any cluster)

L P . Noise
Border {>e ® | ec— e =10
’. . e MlnPtS — 5
.‘" @ "'. ¢ ®
7 e, °
Core . g @ °
o

Clustering—> Density-based Methods: DBSCAN >4
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Density-Based Clustering: DBSCAN Algorithm
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= Density Based Spatial Clustering of Applications with Noise
= Basic Theorem:

— Each object in a density-based cluster C is density-reachable from
any of its core-objects

— Nothing else is density-reachable from core objects.

for each o e Ddo
if 0 is not yet classified then
if 0 is a core-object then
collect all objects density-reachable from o
and assign them to a new cluster.
else
assign o to NOISE

— density-reachable objects are collected by performing successive
e-neighborhood queries.

Ester M., Kriegel H.-P., Sander J., Xu X.: ,,A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise”,
In KDD 1996, pp. 226—231.

Clustering—> Density-based Methods: DBSCAN 35
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= Parameter
— ¢=2.0
— MinPts=3

for each o € Ddo
if 0 is not yet classified then
if 0 is a core-object then
collect all objects density-reachable from o
and assign them to a new cluster.
else
assign o to NOISE

Clustering—> Density-based Methods: DBSCAN
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