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Expectation Maximization (EM)

Statistical approach for  finding maximum likelihood estimates of parameters in 
probabilistic models

Here: using EM as clustering algorithm

Approach:
Observations are drawn from one of 
several components of a mixture distribution.

Main idea:

– Define clusters as probability distributions 
 each object has a certain probability of 

belonging to each cluster

– Iteratively improve the parameters of each 
distribution (e.g. center, “width” and “height” 
of a Gaussian distribution) until some quality 
threshold is reached

Clustering Expectation Maximization (EM) 39

Additional Literature: C. M. Bishop „Pattern Recognition and Machine Learning“, Springer, 2009
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Excursus: Gaussian Mixture Distributions

Note: EM is not restricted to Gaussian distributions, but they will serve as example in this lecture.

Gaussian distribution:

– Univariate: single variable x ∈ ℝ:

𝑝 𝑥 𝜇, 𝜎2 = 𝒩 𝑥 𝜇, 𝜎2 =
1

2𝜋𝜎2
⋅ 𝑒

−
1

2𝜎2
⋅ 𝑥−𝜇 2

– Multivariate: 𝑑-dimensional vector 𝒙 ∈ ℝ𝑑:

𝑝 𝒙 𝝁, 𝜮 = 𝒩 𝒙 𝝁, 𝜮 =
1

2𝜋 𝑑 𝜮
⋅ 𝑒−

1

2
⋅ 𝒙−𝝁 𝑇⋅ 𝜮 −1⋅ 𝒙−𝝁

Gaussian mixture distribution with 𝐾 components:

– 𝑑-dimensional vector 𝒙 ∈ ℝ𝑑:

𝑝 𝒙 = σ𝑘=1
𝐾 𝜋𝑘 ⋅ 𝒩 𝒙|𝝁𝑘 , 𝜮𝑘

Clustering Expectation Maximization (EM) 40

mean vector ∈ ℝ𝑑 covariance matrix ∈ ℝ𝑑×𝑑

mean ∈ ℝ variance ∈ ℝ

mixing coefficients ∈ ℝ : σ𝑘𝜋𝑘 = 1 and 0 ≤ 𝜋𝑘 ≤ 1
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Expectation Maximization (EM): 
Exemplary Application

Example taken from: C. M. Bischop „Pattern Recognition and Machine Learning“, 2009

Clustering Expectation Maximization (EM) 41

iter. 1

iter. 2 iter. 5 iter. 
20
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Note: EM is not restricted to Gaussian distributions, but they will serve as example in this lecture.

A clustering ℳ = 𝐶1, … , 𝐶𝐾 is represented by a mixture distribution with parameters Θ =
𝜋1, 𝝁1, 𝚺1, … , 𝜋𝐾 , 𝝁𝐾, 𝚺𝐾 :

𝑝 𝒙|𝛩 = σ𝑘=1
𝐾 𝜋𝑘 ⋅ 𝒩 𝒙|𝝁𝑘 , 𝜮𝑘

Each cluster is represented by one 
component of the mixture distribution:
𝑝 𝒙 𝝁𝑘 , 𝜮𝑘 = 𝒩 𝒙 𝝁𝑘 , 𝜮𝑘

Given a dataset 𝐗 = 𝒙1, … , 𝒙𝑁 ⊆ ℝ𝑑, we can write the likelihood 
that all data points 𝐱𝑛 ∈ 𝐗 are generated (independently) 
by the mixture model with parameters Θ as:

log 𝑝 𝐗|Θ = logෑ

𝑛=1

𝑁

𝑝(𝑥𝑛|Θ)

Goal: Find the parameters 𝛩𝑀𝐿 with 
maximal (log-)likelihood estimation (MLE)

Θ𝑀𝐿 = argmax
Θ

log 𝑝 𝐗|Θ

Expectation Maximization (EM)

Clustering Expectation Maximization (EM) 42



DATABASE
SYSTEMS
GROUP

Expectation Maximization (EM)

• Goal: Find the parameters 𝛩𝑀𝐿 with the maximal (log-)likelihood estimation!
Θ𝑀𝐿 = argmax

Θ
log𝑝 𝐗|Θ

log 𝑝 𝐗|Θ = logෑ

𝑛=1

𝑁



𝑘=1

𝐾

𝜋𝑘 ⋅ p 𝐱𝑛 𝝁𝑘 , 𝚺𝑘 = 

𝑛=1

𝑁

log

𝑘=1

𝐾

𝜋𝑘 ⋅ p 𝐱𝑛 𝝁𝑘 , 𝚺𝑘

• Maximization with respect to the means:

𝜕 log 𝑝 𝐗|Θ

𝜕 𝝁𝑗
= 

𝑛=1

𝑁
𝜕log 𝑝 𝒙𝑛|Θ

𝜕 𝝁𝑗
= 

𝑛=1

𝑁
𝜕𝑝 𝒙𝑛|Θ
𝜕 𝝁𝑗

𝑝 𝒙𝑛|Θ
= 

𝑛=1

𝑁
𝜕 𝜋𝑗 ⋅ 𝑝 𝒙𝑛 𝝁𝑗 , 𝚺𝑗

𝜕 𝝁𝑗
σ𝑘=1
𝐾 𝑝 𝒙𝑛 𝝁𝑘, 𝚺𝑘

= 

𝑛=1

𝑁
𝜋𝑗 ⋅ 𝚺j

−1 𝒙𝑛 − 𝝁𝑗 𝒩 𝒙𝑛 𝝁𝑗 , 𝚺𝑗

σ𝑘=1
𝐾 𝑝 𝒙𝑛 𝝁𝑘 , 𝚺𝑘

𝜕 log 𝑝 𝐗|Θ

𝜕 𝝁𝑗
= 𝚺j

−1 

𝑛=1

𝑁

𝒙𝑛 − 𝝁𝑗
𝜋𝑗 ⋅ 𝒩 𝒙𝑛 𝝁𝑗 , 𝚺𝑗

σ𝑘=1
𝐾 𝜋𝑘 ⋅ 𝒩 𝒙𝑛 𝝁𝑘, 𝚺𝑘

≝ 𝟎

• Define
𝛾𝑗 𝑥𝑛 ≔ 𝜋𝑗 ⋅ 𝒩 𝒙𝑛 𝝁𝑗 , 𝚺𝑗 .

𝛾𝑗 𝑥𝑛 is the probability that component 𝑗 generated the object 𝒙𝑛.

Clustering Expectation Maximization (EM) 43

𝜕

𝜕𝝁𝑗
𝒩 𝒙𝑛 𝝁𝑗 , 𝚺𝑗 = 𝚺j

−1 𝒙𝑛 − 𝝁𝑗 𝒩 𝒙𝑛 𝝁𝑗 , 𝚺𝑗
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Expectation Maximization (EM)

Maximization w.r.t. the means yields:

𝝁𝑗 =
σ𝑛=1
𝑁 𝛾𝑗 𝒙𝑛 𝒙𝑛

σ𝑛=1
𝑁 𝛾𝑗 𝒙𝑛

Maximization w.r.t. the covariance yields:

𝚺𝑗 =
σ𝑛=1
𝑁 𝛾𝑗 𝒙𝑛 𝒙𝑛 − 𝝁𝑗 𝒙𝑛 − 𝝁𝑗

𝑇

σ𝑛=1
𝑁 𝛾𝑗 𝒙𝑛

Maximization w.r.t. the mixing coefficients yields:

𝜋𝑗 =
σ𝑛=1
𝑁 𝛾𝑗 𝒙𝑛

σ𝑘=1
𝐾 σ𝑛=1

𝑁 𝛾𝑘 𝒙𝑛

Clustering Expectation Maximization (EM) 44

(weighted mean)
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Expectation Maximization (EM)

Problem with finding the optimal parameters 𝛩𝑀𝐿:

𝝁𝑗 =
σ𝑛=1
𝑁 𝛾𝑗 𝒙𝑛 𝒙𝑛

σ𝑛=1
𝑁 𝛾𝑗 𝒙𝑛

and     𝛾𝑗 𝒙𝑛 =
𝜋𝑗⋅𝒩 𝒙𝑛 𝝁𝑗 , 𝚺𝑗

σ𝑘=1
𝐾 𝜋𝑘⋅𝒩 𝒙𝑛 𝝁𝑘 , 𝚺𝑘

– Non-linear mutual dependencies.

– Optimizing the Gaussian of cluster 𝑗 depends on all other Gaussians.

There is no closed-form solution!

Approximation through iterative optimization procedures

Break the mutual dependencies by optimizing 𝝁𝑗 and 𝛾𝑗(𝒙𝑛)

independently

Clustering Expectation Maximization (EM) 45
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Expectation Maximization (EM)

EM-approach: iterative optimization

1. Initialize means 𝝁𝑗, covariances 𝚺𝑗, and mixing coefficients 𝜋𝑗 and evaluate the initial 
log likelihood.

2. E step: Evaluate the responsibilities using the current parameter values:

𝛾 𝑗
𝑛𝑒𝑤 𝒙𝑛 =

𝜋𝑗 ⋅ 𝒩 𝒙𝑛 𝝁𝑗 , 𝚺𝑗

σ𝑘=1
𝐾 𝜋𝑘 ⋅ 𝒩 𝒙𝑛 𝝁𝑘 , 𝚺𝑘

3. M step: Re-estimate the parameters using the current responsibilities:

𝝁𝑗
𝑛𝑒𝑤 =

σ𝑛=1
𝑁 𝛾 𝑗

𝑛𝑒𝑤 𝒙𝑛 𝒙𝑛

σ𝑛=1
𝑁 𝛾 𝑗

𝑛𝑒𝑤 𝒙𝑛

𝚺𝑗
𝑛𝑒𝑤 =

σ𝑛=1
𝑁 𝛾 𝑗

𝑛𝑒𝑤 𝒙𝑛 𝒙𝑛 − 𝝁𝑗
𝑛𝑒𝑤 𝒙𝑛 − 𝝁𝑗

𝑛𝑒𝑤 𝑇

σ𝑛=1
𝑁 𝛾 𝑗

𝑛𝑒𝑤 𝒙𝑛

𝜋𝑗
𝑛𝑒𝑤 =

σ𝑛=1
𝑁 𝛾 𝑗

𝑛𝑒𝑤 𝒙𝑛

σ𝑘=1
𝐾 σ𝑛=1

𝑁 𝛾 𝑘
𝑛𝑒𝑤 𝒙𝑛

4. Evaluate the new log likelihood log 𝑝 𝐗|Θnew and check for convergence of 
parameters or log likelihood (|log 𝑝 𝐗|Θnew - log 𝑝 𝐗|Θ | ≤ 𝜖). 
If the convergence criterion is not satisfied, set Θ = Θnew and go to step 2.

Clustering Expectation Maximization (EM) 46
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EM: Turning the Soft Clustering into a Partitioning

EM obtains a soft clustering (each object belongs to each cluster with a 

certain probability) reflecting the uncertainty of the most appropriate 

assignment.

Modification to obtain a partitioning variant

– Assign each object to the cluster to which it belongs with the highest 

probability

Cluster obj𝑒𝑐𝑡𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘∈{1,…,𝐾}{𝛾 𝑧𝑛𝑘 }

Clustering Expectation Maximization (EM) 47

Example taken from: C. M. Bishop „Pattern Recognition and Machine Learning“, 2009

a) input for EM b) soft clustering result of EM c) original data
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Discussion

Superior to k-Means for clusters of varying size 

or clusters having differing variances

 more accurate data representation

Convergence to (possibly local) maximum

Computational effort for N objects, K derived clusters, and 𝑡 iterations:

– 𝑂(𝑡 ⋅ 𝑁 ⋅ 𝐾)

– #iterations is quite high in many cases

Both - result and runtime - strongly depend on 

– the initial assignment

 do multiple random starts and choose the final estimate with 

highest likelihood

 Initialize with clustering algorithms (e.g., K-Means usually converges much 

faster)

Local maxima and initialization issues have been addressed in various 

extensions of EM

– a proper choice of parameter K (= desired number of clusters)

 Apply principals of model selection (see next slide)

Clustering Expectation Maximization (EM) 48
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EM: Model Selection for Determining Parameter K

Classical trade-off problem for selecting the proper number of components 𝐾

– If 𝐾 is too high, the mixture may overfit the data

– If 𝐾 is too low, the mixture may not be flexible enough to approximate the data

Idea: determine  candidate models ΘK for a range of values of 𝐾 (from 𝐾𝑚𝑖𝑛 to 

𝐾𝑚𝑎𝑥) and select the model ΘK∗ = max{qual(Θ𝐾)|𝐾 ∈ {𝐾𝑚𝑖𝑛, … , 𝐾𝑚𝑎𝑥}}

– Silhouette Coefficient (as for 𝑘-Means) only works for partitioning approaches.

– The MLE (Maximum Likelihood Estimation) criterion is nondecreasing in 𝐾

Solution: deterministic or stochastic model selection methods[MP’00] 

which try to balance the goodness of fit with simplicity.

– Deterministic: 𝑞𝑢𝑎𝑙 Θ𝐾 = log 𝑝 𝐗 Θ𝐾 + 𝒫(𝐾)

where 𝒫(𝐾) is an increasing function penalizing higher values of 𝐾

– Stochastic: based on Markov Chain Monte Carlo (MCMC)

Clustering Expectation Maximization (EM) 49

[MP‘00] G. McLachlan and D. Peel. Finite Mixture Models. Wiley, New York, 2000.
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Density-Based Clustering

Clustering Density-based Methods: DBSCAN 51

 Basic Idea:

– Clusters are dense regions in the data 
space, separated by regions of lower 
object density

 Why Density-Based Clustering?

Results of a 
k-medoid algorithm 
for k=4

 Different density-based approaches exist (see Textbook & 
Papers)
Here we discuss the ideas underlying the DBSCAN algorithm
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Density-Based Clustering: Basic Concept

Clustering Density-based Methods: DBSCAN 52

 Intuition for the formalization of the basic idea

– For any point in a cluster, the local point density around that point 
has to exceed some threshold

– The set of points from one cluster is spatially connected

 Local point density at a point q defined by two parameters

– 𝜀–radius for the neighborhood of point q:
𝑁𝜀 𝑞 := 𝑝 ∈ 𝐷 𝑑𝑖𝑠𝑡 𝑝, 𝑞 ≤ 𝜀} ! contains q itself !

– MinPts – minimum number of points in the given neighbourhood 𝑁𝜀 (𝑞)

 q is called a core object (or core point) 
w.r.t. e, MinPts if | Ne (q) |  MinPts

MinPts = 5  q is a core object

q
𝜺
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Density-Based Clustering: Basic Definitions

Clustering Density-based Methods: DBSCAN 53

 p directly density-reachable from q
w.r.t. e, MinPts if
1) p  Ne(q)  and 
2) q is a core object w.r.t. e, MinPts

 density-reachable: transitive closure 
of directly density-reachable

 p is density-connected to a point q 
w.r.t. e, MinPts if there is a point o
such that both, p and q are 
density-reachable from o w.r.t. e, MinPts. 

p

q

p

q

p

qo
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Density-Based Clustering: Basic Definitions

Clustering Density-based Methods: DBSCAN 54

 Density-Based Cluster: non-empty subset S of database D satisfying:

1) Maximality: if p is in S and q is density-reachable from p then q is in S

2) Connectivity: each object in S is density-connected to all other objects in S

 Density-Based Clustering of a database D : {S1, ..., Sn; N} where

– S1, ..., Sn : all density-based clusters in the database D

– N = D \ {S1 u … u Sn} is called the noise (objects not in any cluster)

Core

Border

Noise

𝜀 = 1.0
𝑀𝑖𝑛𝑃𝑡𝑠 = 5
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Density-Based Clustering: DBSCAN Algorithm

Clustering Density-based Methods: DBSCAN 55

 Density Based Spatial Clustering of Applications with Noise

 Basic Theorem:

– Each object in a density-based cluster C is density-reachable from 
any of its core-objects

– Nothing else is density-reachable from core objects.

– density-reachable objects are collected by performing successive 
e-neighborhood queries. 

for each o D do
if o is not yet classified then  

if o is a core-object then
collect all objects density-reachable from o
and assign them to a new cluster.

else
assign o to NOISE

Ester M., Kriegel H.-P., Sander J., Xu X.: „A Density-Based Algorithm for Discovering Clusters in Large  Spatial Databases with Noise“, 
In KDD 1996, pp. 226—231.
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DBSCAN Algorithm: Example

Clustering Density-based Methods: DBSCAN 56

 Parameter

 e = 2.0

 MinPts = 3

for each o D do
if o is not yet classified then  

if o is a core-object then
collect all objects density-reachable from o
and assign them to a new cluster.

else
assign o to NOISE
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DBSCAN Algorithm: Example

Clustering Density-based Methods: DBSCAN 57

 Parameter

 e = 2.0

 MinPts = 3

for each o D do
if o is not yet classified then  

if o is a core-object then
collect all objects density-reachable from o
and assign them to a new cluster.

else
assign o to NOISE



DATABASE
SYSTEMS
GROUP

DBSCAN Algorithm: Example

Clustering Density-based Methods: DBSCAN 58

 Parameter

 e = 2.0

 MinPts = 3

for each o D do
if o is not yet classified then  

if o is a core-object then
collect all objects density-reachable from o
and assign them to a new cluster.

else
assign o to NOISE


