

Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme

Knowledge Discovery in Databases SS 2016

Chapter 3: Frequent Itemset Mining

Lecture: Prof. Dr. Thomas Seidl

Tutorials: Julian Busch, Evgeniy Faerman, Florian Richter, Klaus Schmid

Knowledge Discovery in Databases I: Data Representation

Chapter 3: Frequent Itemset Mining

- 1) Introduction
 - Transaction databases, market basket data analysis
- 2) Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree
- 3) Simple Association Rules
 - Basic notions, rule generation, interestingness measures
- 4) Further Topics
- 5) Extensions and Summary

What is Frequent Itemset Mining?

Frequent Itemset Mining:

Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.

- Given:
 - A set of items $I = \{i_1, i_2, \dots, i_m\}$
 - A database of transactions D, where a transaction $T \subseteq I$ is a set of items
- <u>Task 1:</u> find all subsets of items that occur together in many transactions.
 - E.g.: 85% of transactions contain the itemset {milk, bread, butter}
- <u>Task 2:</u> find all rules that correlate the presence of one set of items with that of another set of items in the transaction database.
 - E.g.: 98% of people buying tires and auto accessories also get automotive service done
- Applications: Basket data analysis, cross-marketing, catalog design, loss-leader analysis, clustering, classification, recommendation systems, etc.

Example: Basket Data Analysis

- Transaction database
 - D= {{butter, bread, milk, sugar};
 {butter, flour, milk, sugar};
 {butter, eggs, milk, salt};
 {eggs};
 {butter, flour, milk, salt, sugar}}
- Question of interest:
 - Which items are bought together frequently?
- Applications
 - Improved store layout
 - Cross marketing
 - Focused attached mailings / add-on sales
 - ** ⇒ Maintenance Agreement* (What the store should do to boost Maintenance Agreement sales)
 - Home Electronics \Rightarrow * (What other products should the store stock up?)

items	frequency			
{butter}	4			
{milk}	4			
{butter, milk}	4			
{sugar}	3			
{butter, sugar}	3			
{milk, sugar}	3			
{butter, milk, sugar}	3			
{eggs}	2			

Chapter 3: Frequent Itemset Mining

- 1) Introduction
 - Transaction databases, market basket data analysis
- 2) Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree
- 3) Simple Association Rules
 - Basic notions, rule generation, interestingness measures
- 4) Further Topics
 - Hierarchical Association Rules
 - Motivation, notions, algorithms, interestingness
 - Quantitative Association Rules
 - Motivation, basic idea, partitioning numerical attributes, adaptation of apriori algorithm, interestingness
- 5) Extensions and Summary

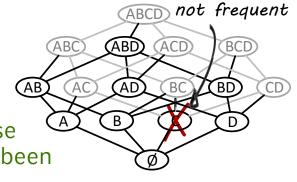
Mining Frequent Itemsets: Basic Notions

- *Items I* = { $i_1, i_2, ..., i_m$ } : a set of literals (denoting items)
- *Itemset X*: Set of items $X \subseteq I$
- Database D: Set of transactions T, each transaction is a set of items $T \subseteq I$
- Transaction *T* contains an itemset $X: X \subseteq T$
- The items in transactions and itemsets are sorted lexicographically:
 - itemset $X = (x_1, x_2, ..., x_k)$, where $x_1 \le x_2 \le ... \le x_k$
- Length of an itemset: number of elements in the itemset
- *k-itemset:* itemset of length *k*
- The *support* of an itemset X is defined as: $support(X) = |\{T \in D | X \subseteq T\}|$
- Frequent itemset: an itemset X is called frequent for database D iff it is contained in more than minSup many transactions: support(X) ≥ minSup
- <u>Goal 1:</u> Given a database *D* and a threshold *minSup*, find all frequent itemsets $X \in Pot(I)$.

- Naïve Algorithm
 - count the frequency of all possible subsets of I in the database
 - \rightarrow too expensive since there are 2^m such itemsets for |I| = m items

 \smile cardinality of power set

- The Apriori principle (anti-monotonicity):
 Any non-empty subset of a frequent itemset is frequent, too!
 A ⊆ I with support(A) ≥ minSup ⇒ ∀A' ⊂ A ∧ A' ≠ Ø: support(A') ≥ minSup
 Any superset of a non-frequent itemset is non-frequent, too!
 A ⊆ I with support(A) < minSup ⇒ ∀A' ⊃ A: support(A') < minSup
- Method based on the apriori principle
 - First count the 1-itemsets, then the 2-itemsets, then the 3-itemsets, and so on
 - When counting (k+1)-itemsets, only consider those
 (k+1)-itemsets where all subsets of length k have been determined as frequent in the previous step



The Apriori Algorithm

variable C_k: candidate itemsets of size k variable L_k : frequent itemsets of size k $L_1 = \{\text{frequent items}\}$ for $(k = 1; L_k != \emptyset; k++)$ do begin // JOIN STEP: join L_k with itself to produce C_{k+1} // PRUNE STEP: discard (k+1)-itemsets from C_{k+1} that produce candidates contain non-frequent k-itemsets as subsets C_{k+1} = candidates generated from L_k **for each** transaction t in database do Increment the count of all candidates in C_{k+1} prove that are contained in t candidates L_{k+1} = candidates in C_{k+1} with min_support **return** $\cup_k L_k$

- Requirements for set of all candidate (k + 1)-itemsets C_{k+1}
 - Completeness: Must contain all frequent (k + 1)-itemsets (superset property $C_{k+1} \supseteq L_{k+1}$)
 - Selectiveness: Significantly smaller than the set of all (k + 1)-subsets
 - Suppose the items are sorted by any order (e.g., lexicograph.)
- Step 1: Joining $(C_{k+1} = L_k \bowtie L_k)$
 - Consider frequent k-itemsets p and q
 - p and q are joined if they share the same first k 1 items

insert into C_{k+1} select $p.i_1, p.i_2, \dots, p.i_{k-1}, p.i_k, q.i_k$ from $L_k : p, L_k : q$ where $p.i_1=q.i_1, \dots, p.i_{k-1}=q.i_{k-1}, p.i_k < q.i_k$ $p \in L_{k=3}$ (A, C, F) (A, C, F, G) $\in C_{k+1=4}$ $\uparrow \uparrow$ $q \in L_{k=3}$ (A, C, G)

- Step 2: Pruning $(L_{k+1} = \{X \in C_{k+1} | support(X) \ge minSup\})$
 - Naïve: Check support of every itemset in $C_{k+1} \leftarrow$ inefficient for huge C_{k+1}
 - − Instead, apply Apriori principle first: Remove candidate (k+1) -itemsets which contain a non-frequent k -subset s, i.e., $s \notin L_k$

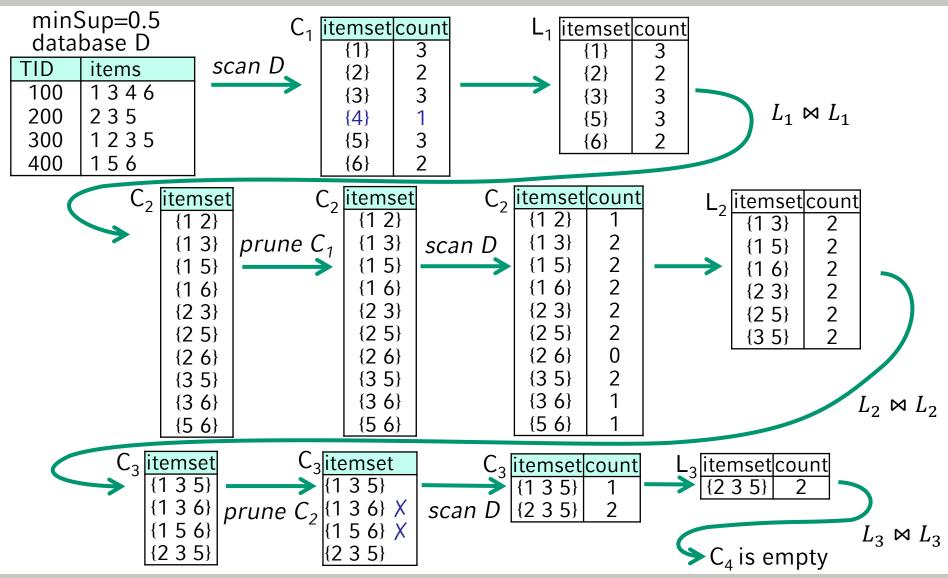
forall itemsets c in C_{k+1} do

forall k-subsets s of c do

if (s is not in L_k) then delete c from C_{k+1}

- Example 1
 - $L_3 = \{(ACF), (ACG), (AFG), (AFH), (CFG)\}$
 - Candidates after the join step: {(ACFG), (AFGH)}
 - − In the pruning step: delete (AFGH) because (FGH) $\notin L_3$, i.e., (FGH) is not a frequent 3-itemset; also (AGH) $\notin L_3$
 - → $C_4 = \{(ACFG)\}$ → check the support to generate L_4

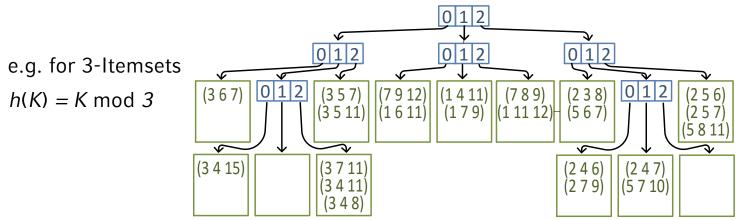
Apriori Algorithm – Full Example



Frequent Itemset Mining → Algorithms → Apriori Algorithm

How to Count Supports of Candidates?

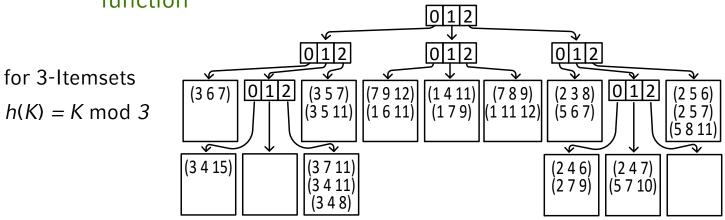
- Why is counting supports of candidates a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates
- Method: Hash-Tree
 - Candidate itemsets are stored in a hash-tree
 - Leaf nodes of hash-tree contain lists of itemsets and their support (i.e., counts)
 - Interior nodes contain hash tables
 - Subset function finds all the candidates contained in a transaction



Frequent Itemset Mining → Algorithms → Apriori Algorithm

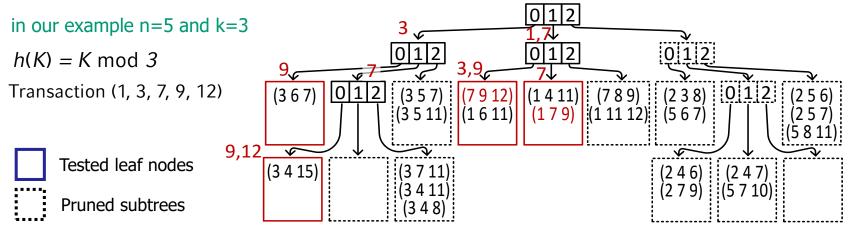
Hash-Tree – Construction

- Searching for an itemset
 - Start at the root (level 1)
 - At level *d*: apply the hash function *h* to the *d*-th item in the itemset
- Insertion of an itemset
 - search for the corresponding leaf node, and insert the itemset into that leaf
 - if an overflow occurs:
 - Transform the leaf node into an internal node
 - Distribute the entries to the new leaf nodes according to the hash function



Hash-Tree – Counting

- Search all candidate itemsets contained in a transaction $T = (t_1 \ t_2 \ ... \ t_n)$ for a current itemset length of k
- At the root
 - Determine the hash values for each item $t_1 t_2 \dots t_{n-k+1}$ in T
 - Continue the search in the resulting child nodes
- At an internal node at level d (reached after hashing of item t_i)
 - Determine the hash values and continue the search for each item t_j with $i < j \le n k + d$
- At a leaf node
 - Check whether the itemsets in the leaf node are contained in transaction T



Frequent Itemset Mining \rightarrow Algorithms \rightarrow Apriori Algorithm

Is Apriori Fast Enough? — Performance Bottlenecks

- The core of the Apriori algorithm:
 - − Use frequent (*k* − 1)-itemsets to generate candidate frequent *k*-itemsets
 - Use database scan and pattern matching to collect counts for the candidate itemsets
- The bottleneck of Apriori: candidate generation
 - Huge candidate sets:
 - 10⁴ frequent 1-itemsets will generate 10⁷ candidate 2-itemsets
 - To discover a frequent pattern of size 100, e.g., $\{a_1, a_2, ..., a_{100}\}$, one needs to generate $2^{100} \approx 10^{30}$ candidates.
 - Multiple scans of database:
 - Needs *n* or *n*+1 scans, *n* is the length of the longest pattern

 \rightarrow Is it possible to mine the complete set of frequent itemsets without candidate generation?

Mining Frequent Patterns Without Candidate Generation

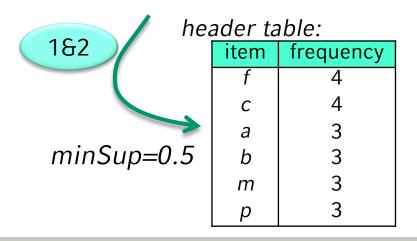
- Compress a large database into a compact, *Frequent-Pattern tree* (*FP-tree*) structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only!
- Idea:
 - Compress database into FP-tree, retaining the itemset association information
 - Divide the compressed database into conditional databases, each associated with one frequent item and mine each such database separately.

Construct FP-tree from a Transaction DB

Steps for compressing the database into a FP-tree:

- 1. Scan DB once, find frequent 1-itemsets (single items)
- 2. Order frequent items in frequency descending order

TID	items bought
100	{f, a, c, d, g, i, m, p}
200	{a, b, c, f, l, m, o}
300	{b, f, h, j, o}
400	{b, c, k, s, p}
500	{a, f, c, e, l, p, m, n}



sort items in the order of descending support

Construct FP-tree from a Transaction DB

Steps for compressing the database into a FP-tree:

- 1. Scan DB once, find frequent 1-itemsets (single items)
- 2. Order frequent items in frequency descending order
- 3. Scan DB again, construct FP-tree starting with most frequent item per transaction

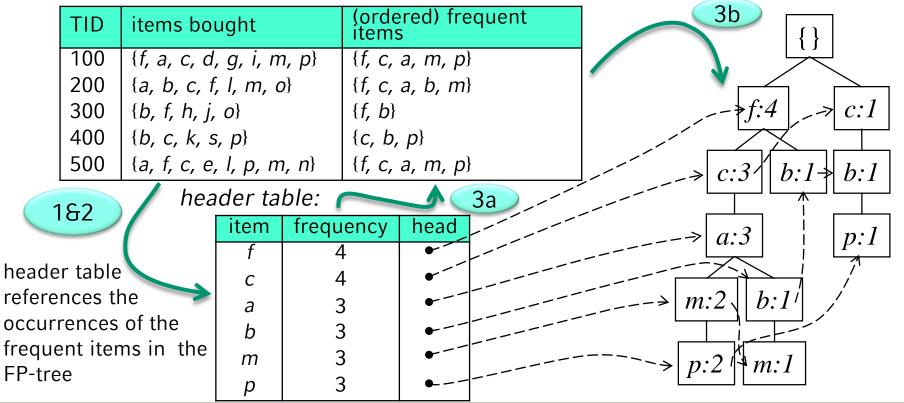
	TID	items bo	ought		(orc iten	lered) frequent	for each transaction only		
	100	{f, a, c,	d, g, i, I	m, p}	{ <i>f, c</i>	r, a, m, p}	keep its frequent items		
	200	{ <i>a, b, c,</i>	f, I, m,	<i>o</i> }	{ <i>f, c</i>	r, a, b, m}	sorted in descending		
	300	{ <i>b, f, h,</i>	, j, o}		{ <i>f</i> , <i>b</i> }		order of their frequencies		
	400 { <i>b, c, k, s, p</i> }		{c, b, p} {f, c, a, m, p}						
	500 { <i>a, f, c, e, l, p, m, n</i> }								
1	82	/ header table:				3a for each transacti - If a path with increment fre and append s	3a n transaction build a path in the FP-tree: path with common prefix exists: rement frequency of nodes on this path append suffix erwise: create a new branch		

Frequent Itemset Mining \rightarrow Algorithms \rightarrow FP-Tree

Construct FP-tree from a Transaction DB

Steps for compressing the database into a FP-tree:

- 1. Scan DB once, find frequent 1-itemsets (single items)
- 2. Order frequent items in frequency descending order
- 3. Scan DB again, construct FP-tree starting with most frequent item per transaction



Frequent Itemset Mining \rightarrow Algorithms \rightarrow FP-Tree

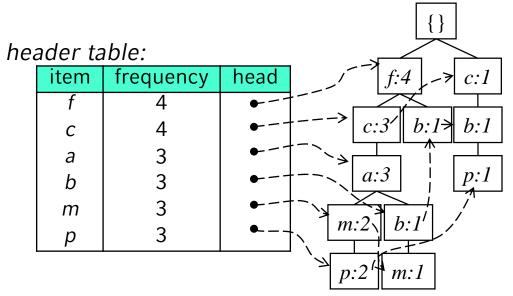
- Completeness:
 - never breaks a long pattern of any transaction
 - preserves complete information for frequent pattern mining
- Compactness
 - reduce irrelevant information—infrequent items are gone
 - frequency descending ordering: more frequent items are more likely to be shared
 - never be larger than the original database (if not count node-links and counts)
 - Experiments demonstrate compression ratios over 100

- General idea (divide-and-conquer)
 - Recursively grow frequent pattern path using the FP-tree
- Method
 - For each item, construct its conditional pattern-base (*prefix paths*), and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree ...
 - ...until the resulting FP-tree is empty, or it contains only one path (single path will generate all the combinations of its sub-paths, each of which is a frequent pattern)

- 1) Construct conditional pattern base for each node in the FP-tree
- 2) Construct conditional FP-tree from each conditional pattern-base
- 3) Recursively mine conditional FP-trees and grow frequent patterns obtained so far
 - If the conditional FP-tree contains a single path, simply enumerate all the patterns

Major Steps to Mine FP-tree: Conditional Pattern Base

- 1) Construct conditional pattern base for each node in the FP-tree
 - Starting at the frequent header table in the FP-tree
 - Traverse FP-tree by following the link of each frequent item (dashed lines)
 - Accumulate all of transformed prefix paths of that item to form a conditional pattern base
 - For each item its prefixes are regarded as condition for it being a suffix. These prefixes form the conditional pattern base. The frequency of the prefixes can be read in the node of the item.



conditional pattern base:

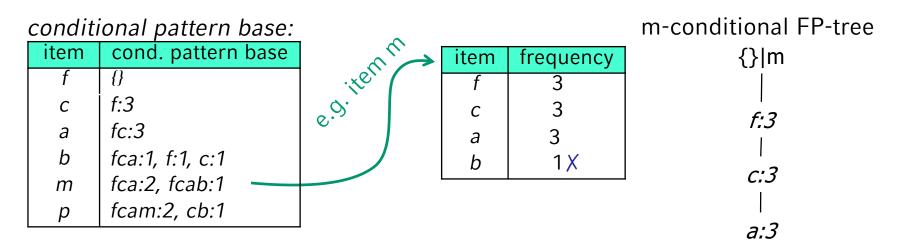
item	cond. pattern base
f	θ
С	f:3, {} fc:3
а	fc:3
b	fca:1, f:1, c:1
т	fca:2, fcab:1
р	fcam:2, cb:1

Properties of FP-tree for Conditional Pattern Bases

- Node-link property
 - For any frequent item a_i , all the possible frequent patterns that contain a_i can be obtained by following a_i 's node-links, starting from a_i 's head in the FP-tree header
- Prefix path property
 - To calculate the frequent patterns for a node a_i in a path P, only the prefix sub-path of a_i in P needs to be accumulated, and its frequency count should carry the same count as node a_i.

Major Steps to Mine FP-tree: Conditional FP-tree

- 1) Construct conditional pattern base for each node in the FP-tree
- 2) Construct conditional FP-tree from each conditional pattern-base
 - The prefix paths of a suffix represent the conditional basis.
 They can be regarded as transactions of a database.
 - − Those prefix paths whose support ≥ minSup, induce a conditional FP-tree
 - For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

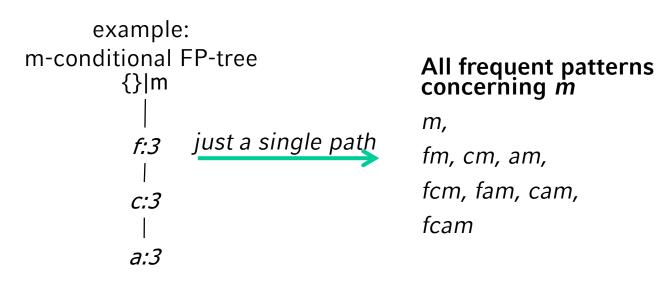


Major Steps to Mine FP-tree: Conditional FP-tree

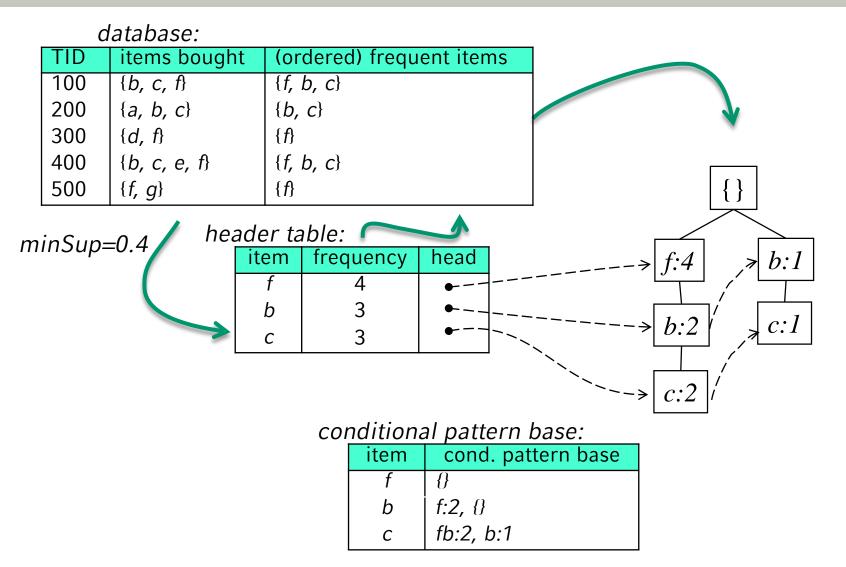
- 1) Construct conditional pattern base for each node in the FP-tree
- 2) Construct conditional FP-tree from each conditional pattern-base

C	onditic	onal pattern ba	ise:			
	item	cond. patterr				
	f	8				
	С	f:3				
	а	fc:3				
	b	fca:1, f:1, c:1				
	m	fca:2, fcab:1				
	р	fcam:2, cb:1				
{} f = {}	{} c <i>f:3</i>	{} a <i>f:3</i> c:3	{} b =	{}	{} m <i>f:3</i> <i>c:3</i>	{} p <i>c:3</i>
					a:3	

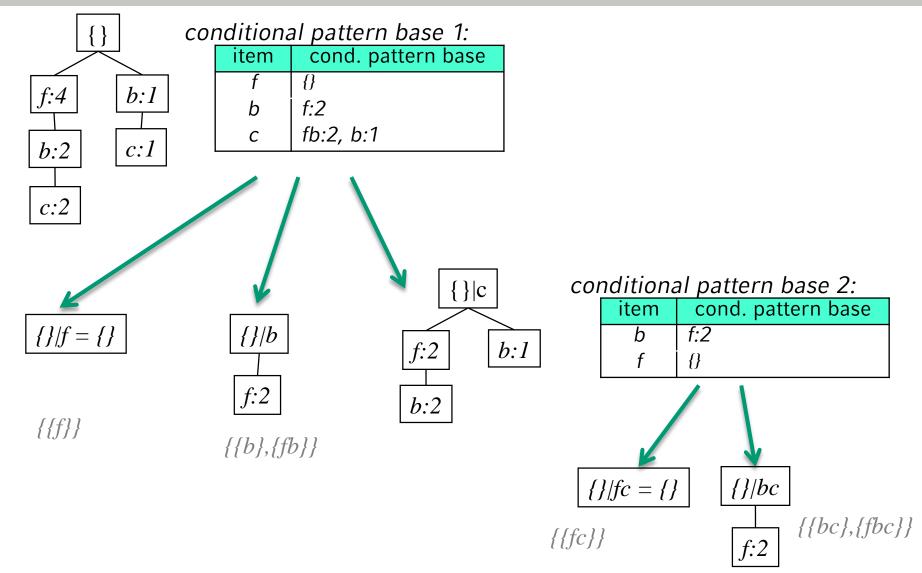
- 1) Construct conditional pattern base for each node in the FP-tree
- 2) Construct conditional FP-tree from each conditional pattern-base
- 3) Recursively mine conditional FP-trees and grow frequent patterns obtained so far
 - If the conditional FP-tree contains a single path, simply enumerate all the patterns (enumerate all combinations of sub-paths)



FP-tree: Full Example



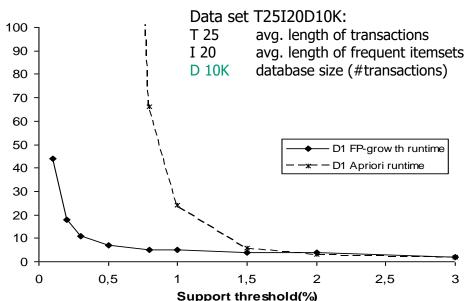
FP-tree: Full Example



Principles of Frequent Pattern Growth

- Pattern growth property
 - Let α be a frequent itemset in DB, B be α 's conditional pattern base, and β be an itemset in B. Then $\alpha \cup \beta$ is a frequent itemset in DB iff β is frequent in B.
- "abcdef" is a frequent pattern, if and only if
 - "abcde" is a frequent pattern, and
 - "f" is frequent in the set of transactions containing "abcde"

- Performance study in [Han, Pei&Yin '00] shows
 - FP-growth is an order of magnitude faster than Apriori, and is also faster than tree-projection



- Reasoning
 - No candidate generation, no candidate test
 - Apriori algorithm has to proceed breadth-first
 - Use compact data structure
 - Eliminate repeated database scan
 - Basic operation is counting and FP-tree building

- Big challenge: database contains potentially a huge number of frequent itemsets (especially if minSup is set too low).
 - A frequent itemset of length 100 contains 2¹⁰⁰-1 many frequent subsets
- Closed frequent itemset: An itemset X is closed in a data set D if there exists no proper superitemset Y such that support(X) = support(Y) in D.
 - The set of closed frequent itemsets contains complete information regarding its corresponding frequent itemsets.
- *Maximal frequent itemset:*

An itemset X is *maximal* in a data set D if there exists no proper superitemset Y such that $support(Y) \ge minSup$ in D.

- The set of maximal itemsets does not contain the complete support information
- More compact representation

Chapter 3: Frequent Itemset Mining

- 1) Introduction
 - Transaction databases, market basket data analysis
- 2) Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree
- 3) Simple Association Rules
 - Basic notions, rule generation, interestingness measures
- 4) Further Topics
 - Hierarchical Association Rules
 - Motivation, notions, algorithms, interestingness
 - Quantitative Association Rules
 - Motivation, basic idea, partitioning numerical attributes, adaptation of apriori algorithm, interestingness
- 5) Extensions and Summary

Simple Association Rules: Introduction

LMU

- Transaction database:
 - D= {{butter, bread, milk, sugar};
 {butter, flour, milk, sugar};
 {butter, eggs, milk, salt};
 {eggs};
 {butter, flour, milk, salt, sugar}}

• Frequent itemsets:

items	support		
{butter}	4		
{milk}	4		
{butter, milk}	4		
{sugar}	3		
{butter, sugar}	3		
{milk, sugar}	3		
{butter, milk, sugar}	3		

- Question of interest:
 - If milk and sugar are bought, will the customer always buy butter as well?
 milk, sugar ⇒ butter ?
 - In this case, what would be the probability of buying butter?

Simple Association Rules: Basic Notions

- *Items I* = $\{i_1, i_2, ..., i_m\}$: a set of literals (denoting items)
- *Itemset X*: Set of items $X \subseteq I$
- Database D: Set of transactions T, each transaction is a set of items $T \subseteq I$
- Transaction *T* contains an itemset $X: X \subseteq T$
- The items in transactions and itemsets are **sorted** lexicographically:
 - itemset $X = (x_1, x_2, ..., x_k)$, where $x_1 \le x_{2 \le} ... \le x_k$
- Length of an itemset: cardinality of the itemset (*k-itemset:* itemset of length k)
- The *support* of an itemset X is defined as: $support(X) = |\{T \in D | X \subseteq T\}|$
- Frequent itemset: an itemset X is called frequent iff $support(X) \ge minSup$
- Association rule: An association rule is an implication of the form $X \Rightarrow Y$ where $X, Y \subseteq I$ are two itemsets with $X \cap Y = \emptyset$.
- Note: simply enumerating all possible association rules is not reasonable!
 → What are the interesting association rules w.r.t. D?

- Interestingness of an association rule: Quantify the interestingness of an association rule with respect to a transaction database D:
 - Support: frequency (probability) of the entire rule with respect to D $support(X \Rightarrow Y) = P(X \cup Y) = \frac{|\{T \in D | X \cup Y \subseteq T\}|}{|D|} = support(X \cup Y)$

"probability that a transaction in D contains the itemset $X \cup Y$ "

 Confidence: indicates the strength of implication in the rule $confidence(X \Rightarrow Y) = P(Y|X) = \frac{|\{T \in D | X \cup Y \subseteq T\}|}{|\{T \in D | X \subseteq T\}|} = \frac{support(X \cup Y)}{support(X)}$

"conditional probability that a transaction in D containing the itemset X also contains itemset Y''buys diapers buys both

- Rule form: "Body \Rightarrow Head [support, confidence]"
- Association rule examples:
 - buys diapers \Rightarrow buys beers [0.5%, 60%] _
 - major in CS \wedge takes DB \Rightarrow avg. grade A [1%, 75%]

buys beer

- Task of mining association rules:
 - Given a database *D*, determine all association rules having a support \geq minSup and a confidence \geq minConf (so-called strong association rules).
- Key steps of mining association rules:

- (1) Find *frequent itemsets*, i.e., itemsets that have at least support = *minSup*
- *Apriori*, 2) Use the frequent itemsets to generate association rules
 - For each itemset X and every nonempty subset $Y \subset X$ generate rule $Y \Rightarrow (X Y)$ if *minSup* and *minConf* are fulfilled
 - we have $2^{|X|} 2$ many association rule candidates for each itemset X

Example frequent itemsets

1-itemset	count	2-itemset	count	3-itemset	count
{A}	3	{A, B}	3	{A, B, C}	2
{B}	4	{A, C}	2		
{C}	5	{B, C}	4		

rule candidates: $A \Rightarrow B; B \Rightarrow A; A \Rightarrow C; C \Rightarrow A; B \Rightarrow C; C \Rightarrow B;$ $A, B \Rightarrow C; A, C \Rightarrow B; C, B \Rightarrow A; A \Rightarrow B, C; B \Rightarrow A, C; C \Rightarrow A, B$

Generating Rules from Frequent Itemsets

- For each frequent itemset *X*
 - For each nonempty subset Y of X, form a rule $Y \Rightarrow (X Y)$
 - Delete those rules that do not have minimum confidence Note: 1) support always exceeds *minSup*

2) the support values of the frequent itemsets suffice to calculate the confidence

- Example: $X = \{A, B, C\}, minConf = 60\%$
 - conf (A \Rightarrow B) = 3/3; \checkmark
 - conf (B \Rightarrow A) = 3/4; \checkmark
 - conf (A \Rightarrow C) = 2/3; √
 - conf (C \Rightarrow A) = 2/5; X
 - conf (B \Rightarrow C) = 4/4; \checkmark
 - conf (C \Rightarrow B) = 4/5; \checkmark

- conf (A
$$\Rightarrow$$
 B, C) = 2/3; √

- conf (B \Rightarrow A, C) = 2/4; X
- conf (C \Rightarrow A, B) = 2/5; X

conf (B, C \Rightarrow A) = $\frac{1}{2}$ X conf (A, C \Rightarrow B) = 1 \checkmark

conf (A, B
$$\Rightarrow$$
 C) = 2/3 \checkmark

itemset	count
{A}	3
{B}	4
{C}	5
{A, B}	3
{A, C}	2
{B, C}	4
{A, B, C}	2

• Exploit anti-monotonicity for generating candidates for strong association rules!

Interestingness Measurements

- *Objective* measures
 - Two popular measurements:
 - support and
 - confidence
- *Subjective* measures [Silberschatz & Tuzhilin, KDD95]
 - A rule (pattern) is interesting if it is
 - unexpected (surprising to the user) and/or
 - actionable (the user can do something with it)

Criticism to Support and Confidence

Example 1 [Aggarwal & Yu, PODS98]

- Among 5000 students
 - 3000 play basketball (=60%)
 - 3750 eat cereal (=75%)
 - 2000 both play basket ball and eat cereal (=40%)
- Rule play basketball ⇒ eat cereal [40%, 66.7%] is misleading because the overall percentage of students eating cereal is 75% which is higher than 66.7%
- Rule play basketball ⇒ not eat cereal [20%, 33.3%] is far more accurate, although with lower support and confidence
- Observation: *play basketball* and *eat cereal* are *negatively correlated*
- Not all strong association rules are interesting and some can be misleading.

 \rightarrow augment the support and confidence values with interestingness measures such as the correlation $A \Rightarrow B$ [supp, conf, corr]

• *Lift* is a simple correlation measure between two items A and *B*:

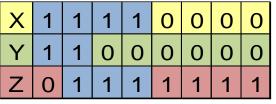
$$corr_{A,B} = \frac{P(A \cup B)}{P(A)P(B)} = \frac{P(B|A)}{P(B)} = \frac{conf(A \Rightarrow B)}{supp(B)}$$

! The two rules $A \Rightarrow B$ and $B \Rightarrow A$ have the same correlation coefficient.

- take both P(A) and P(B) in consideration
- $corr_{A,B} > 1$ the two items A and B are positively correlated
- $corr_{A,B} = 1$ there is no correlation between the two items A and B
- $corr_{A,B} < 1$ the two items A and B are negatively correlated

Other Interestingness Measures: Correlation

• Example 2:



- X and Y: positively correlated
- X and Z: negatively related
- support and confidence of X=>Z dominates
- but items X and Z are negatively correlated
- Items X and Y are positively correlated

rule	support	confidence	correlation
$X \Rightarrow Y$	25%	50%	2
$X \Rightarrow Z$	37.5%	75%	0.86
$Y \Rightarrow Z$	12.5%	50%	0.57

Chapter 3: Frequent Itemset Mining

- 1) Introduction
 - Transaction databases, market basket data analysis
- 2) Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree
- 3) Simple Association Rules
 - Basic notions, rule generation, interestingness measures
- 4) Further Topics
 - Hierarchical Association Rules
 - Motivation, notions, algorithms, interestingness
 - Quantitative Association Rules
 - Motivation, basic idea, partitioning numerical attributes, adaptation of apriori algorithm, interestingness
- 5) Extensions and Summary

Hierarchical Association Rules: Motivation

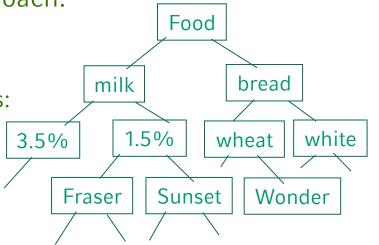
- Problem of association rules in plain itemsets
 - High minsup: apriori finds only few rules
 - Low minsup: apriori finds unmanagably many rules
- Exploit item taxonomies (generalizations, *is-a* hierarchies) which exist in many applications

- New task: find all generalized association rules between generalized items → Body and Head of a rule may have items of any level of the hierarchy
- <u>Generalized association rule</u>: $X \Rightarrow Y$ with $X, Y \subset I, X \cap Y = \emptyset$ and no item in Y is an ancestor of any item in X i.e., *jackets* \Rightarrow *clothes* is essentially true

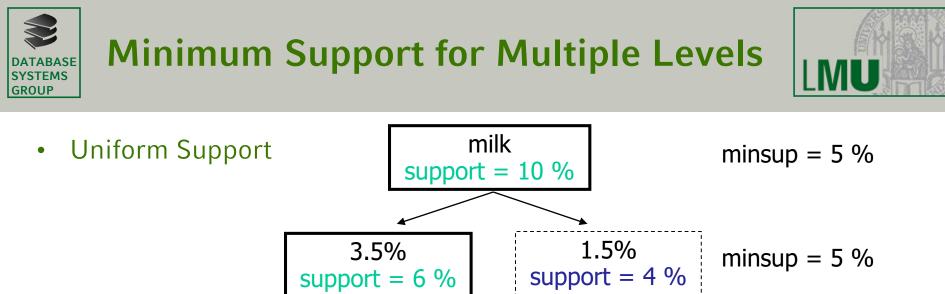
Hierarchical Association Rules: Motivating Example

- Examples
 - Jeans \Rightarrow bootsjackets \Rightarrow bootsOuterwear \Rightarrow bootsSupport < minSup</td>
- Characteristics
 - Support("outerwear ⇒ boots") is not necessarily equal to the sum support("jackets ⇒ boots") + support("jeans ⇒ boots")
 e.g. if a transaction with jackets, jeans and boots exists
 - Support for sets of generalizations (e.g., product groups) is higher than support for sets of individual items
 If the support of rule "outerwear ⇒ boots" exceeds minsup, then the support of rule "clothes ⇒ boots" does, too

- A *top_down*, *progressive deepening* approach:
 - First find high-level strong rules:
 - $milk \Rightarrow bread$ [20%, 60%].
 - Then find their lower-level "weaker" rules:
 - 1.5% milk \Rightarrow wheat bread [6%, 50%].

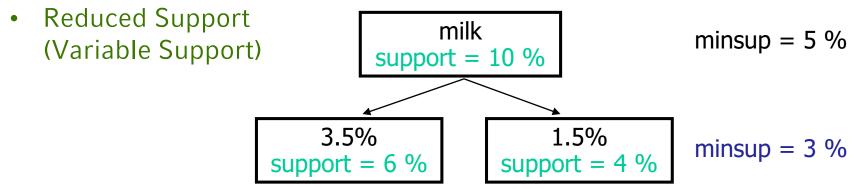


- Different min_support threshold across multi-levels lead to different algorithms:
 - adopting the same min_support across multi-levels
 - adopting reduced min_support at lower levels



+ the search procedure is simplified (monotonicity)

+ the user is required to specify only one support threshold



+ takes the lower frequency of items in lower levels into consideration

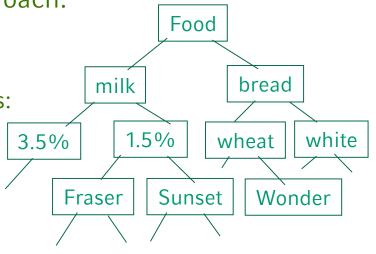
Multilevel Association Mining using Reduced Support

- A top_down, progressive deepening approach:
 - First find high-level strong rules:
 - $milk \Rightarrow bread$ [20%, 60%].
 - Then find their lower-level "weaker" rules:
 - 1.5% milk \Rightarrow wheat bread [6%, 50%].

level-wise processing (breadth first)

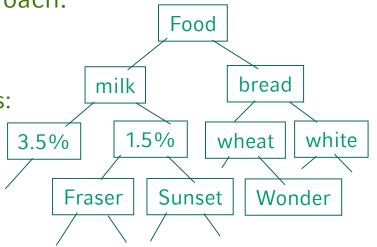
3 approaches using reduced Support:

- Level-by-level independent method:
 - Examine each node in the hierarchy, regardless of whether or not its parent node is found to be frequent
- Level-cross-filtering by single item:
 - Examine a node only if its parent node at the preceding level is frequent
- Level-cross- filtering by k-itemset:
 - Examine a k-itemset at a given level only if its parent k-itemset at the preceding level is frequent



- A top_down, progressive deepening approach:
 - First find high-level strong rules:
 - $milk \Rightarrow bread$ [20%, 60%].
 - Then find their lower-level "weaker" rules:
 - 1.5% milk \Rightarrow wheat bread [6%, 50%].

level-wise processing (breadth first)



- Variations at mining multiple-level association rules.
 - Level-crossed association rules:
 - 1.5 % $milk \Rightarrow$ Wonder wheat bread
 - Association rules with multiple, alternative hierarchies:
 - 1.5 % milk \Rightarrow Wonder bread

Multi-level Association: Redundancy Filtering

- Some rules may be redundant due to "ancestor" relationships between items.
- Example
 - R_1 : milk \Rightarrow wheat bread [support = 8%, confidence = 70%]
 - R_2 : 1.5% milk \Rightarrow wheat bread [support = 2%, confidence = 72%]
- We say that rule 1 is an ancestor of rule 2.
- Redundancy:

A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor.

Interestingness of Hierarchical Association Rules: Notions

Let $X, X', Y, Y' \subseteq I$ be itemsets.

• An itemset X' is an ancestor of X iff there exist ancestors $x'_1, ..., x'_k$ of $x_1, ..., x_k \in X$ and $x_{k+1}, ..., x_n$ with n = |X| such that

$$X' = \{x'_1, \dots, x'_k, x_{k+1}, \dots, x_n\}.$$

- Let X' and Y' be ancestors of X and Y. Then we call the rules $X' \Rightarrow Y'$, $X \Rightarrow Y'$, and $X' \Rightarrow Y$ ancestors of the rule $X \Rightarrow Y$.
- The rule $X' \Rightarrow Y'$ is a *direct ancestor* of rule $X \Rightarrow Y$ in a set of rules if:
 - Rule $X' \Rightarrow Y'$ is an ancestor of rule $X \Rightarrow Y$, and
 - − There is no rule X" ⇒ Y" such that X" ⇒ Y" is an ancestor of X ⇒ Y and X' ⇒ Y' is an ancestor of X" ⇒ Y"
- A hierarchical association rule $X \Rightarrow Y$ is called *R*-interesting if:
 - There are no direct ancestors of $X \Rightarrow Y$ or
 - The actual support is larger than *R* times the expected support or
 - The actual confidence is larger than *R* times the expected confidence

 How to compute the expected support? Given the rule for X ⇒ Y and its ancestor rule X' ⇒ Y' the expected support of X ⇒ Y is defined as:

$$E_{Z'}[P(Z)] = \frac{P(z_1)}{P(z'_1)} \times \dots \times \frac{P(z_j)}{P(z'_j)} \times P(Z')$$

where $Z = X \cup Y = \{z_1, \dots, z_n\}, Z' = X' \cup Y' = \{z'_1, \dots, z'_j, z_{j+1}, \dots, z_n\}$ and each $z'_i \in Z'$ is an ancestor of $z_i \in Z$

[SA'95] R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.

Expected Support and Expected Confidence

How to compute the expected confidence?
 Given the rule for X ⇒ Y and its ancestor rule X' ⇒ Y', then the expected confidence of X ⇒ Y is defined as:

$$E_{X' \Rightarrow Y'}[P(Y|X)] = \frac{P(y_1)}{P(y_1')} \times \dots \times \frac{P(y_j)}{P(y_j')} \times P(Y'|X')$$

where $Y = \{y_1, \dots, y_n\}$ and $Y' = \{y'_1, \dots, y'_j, y_{j+1}, \dots, y_n\}$ and each $y'_i \in Y'$ is an ancestor of $y_i \in Y$

[SA'95] R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.

Interestingness of Hierarchical Association Rules:Example

• Example

-	Let	R =	1.6

Item	Support
clothes	20
outerwear	10
jackets	4

No	rule	support	R-interesting?
1	clothes \Rightarrow shoes	10	yes: no ancestors
2	outerwear ⇒ shoes	9	yes: Support > R *exp. support (wrt. rule 1) = $(1.6 \cdot (\frac{10}{20} \cdot 10)) = 8$
3	jackets ⇒ shoes	4	Not wrt. support: Support > R * exp. support (wrt. rule 1) = 3.2 Support < R * exp. support (wrt. rule 2) = 5.75 \rightarrow still need to check the confidence!

- 1) Introduction
 - Transaction databases, market basket data analysis
- 2) Simple Association Rules
 - Basic notions, rule generation, interestingness measures
- 3) Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree
- 4) Further Topics
 - Hierarchical Association Rules
 - Motivation, notions, algorithms, interestingness
 - Multidimensional and Quantitative Association Rules
 - Motivation, basic idea, partitioning numerical attributes, adaptation of apriori algorithm, interestingness
- 5) Summary

Multi-Dimensional Association: Concepts

- Single-dimensional rules:
 - buys milk \Rightarrow buys bread
- Multi-dimensional rules: \geq 2 dimensions
 - Inter-dimension association rules (*no repeated dimensions*)
 - age between 19-25 \wedge status is student \Rightarrow buys coke
 - hybrid-dimension association rules (*repeated dimensions*)
 - age between 19-25 $\wedge\,$ buys popcorn \Rightarrow buys coke

Techniques for Mining Multi-Dimensional Associations

- Search for frequent *k*-predicate set:
 - Example: {<u>age</u>, occupation, buys} is a 3-predicate set.
 - Techniques can be categorized by how age is treated.
- 1. Using static discretization of quantitative attributes
 - Quantitative attributes are statically discretized by using predefined concept hierarchies.
- 2. Quantitative association rules
 - Quantitative attributes are dynamically discretized into "bins" based on the distribution of the data.
- 3. Distance-based association rules
 - This is a dynamic discretization process that considers the distance between data points.

Quantitative Association Rules

- Up to now: associations of *boolean* attributes only
- Now: *numerical* attributes, too
- Example:
 - Original database

ID	age	marital status	# cars
1	23	single	0
2	38	married	2

– Boolean database

ID	age: 2029	age: 3039	m-status: single	m-status: married	
1	1	0	1	0	
2	0	1	0	1	

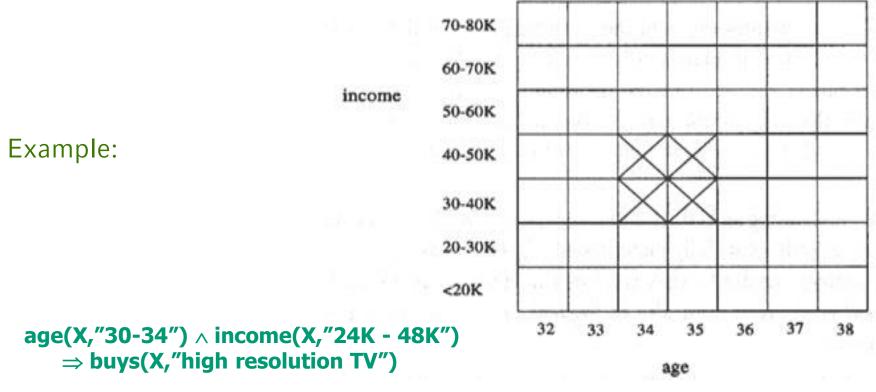
- Static discretization
 - Discretization of all attributes *before* mining the association rules
 - E.g. by using a generalization hierarchy for each attribute
 - Substitute numerical attribute values by ranges or intervals
- Dynamic discretization
 - Discretization of the attributes *during* association rule mining
 - Goal (e.g.): maximization of confidence
 - Unification of neighboring association rules to a generalized rule

•

- Problem: Minimum support
 - Too many intervals \rightarrow too small support for each individual interval
 - Too few intervals \rightarrow too small confidence of the rules
- Solution
 - First, partition the domain into many intervals
 - Afterwards, create new intervals by merging adjacent interval
 - Numeric attributes are *dynamically* discretized such that the confidence or compactness of the rules mined is maximized.

Quantitative Association Rules

2-D quantitative association rules: A_{quan1} ∧ A_{quan2} ⇒ A_{cat}
 Cluster "adjacent" association rules to form general rules using a 2-D grid.



Chapter 3: Frequent Itemset Mining

- 1) Introduction
 - Transaction databases, market basket data analysis
- 2) Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree
- 3) Simple Association Rules
 - Basic notions, rule generation, interestingness measures
- 4) Further Topics
 - Hierarchical Association Rules
 - Motivation, notions, algorithms, interestingness
 - Quantitative Association Rules
 - Motivation, basic idea, partitioning numerical attributes, adaptation of apriori algorithm, interestingness
- 5) Summary

Chapter 3: Summary

- Mining frequent itemsets
 - Apriori algorithm, hash trees, FP-tree
- Simple association rules
 - support, confidence, rule generation, interestingness measures (correlation), ...
- Further topics
 - Hierarchical association rules: algorithms (top-down progressive deepening), multilevel support thresholds, redundancy and Rinterestingness
 - Quantitative association rules: partitioning numerical attributes, adaptation of apriori algorithm, interestingness
- Extensions: multi-dimensional association rule mining