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1) Introduction

– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules

– Basic notions, rule generation, interestingness measures

4) Further Topics

5) Extensions and Summary
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What is Frequent Itemset Mining?

Frequent Itemset Mining:

Finding frequent patterns, associations, correlations, or causal structures 
among sets of items or objects in transaction databases, relational 
databases, and other information repositories.

• Given: 

– A set of items 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚}

– A  database of transactions 𝐷, where a transaction 𝑇 ⊆ 𝐼 is a set of items 

• Task 1: find all subsets of items that occur together in many 
transactions.

– E.g.: 85% of transactions contain the itemset {milk, bread, butter}

• Task 2: find all rules that correlate the presence of one set of items with 
that of another set of items in the transaction database.

– E.g.: 98% of people buying tires and auto accessories also get automotive service 
done

• Applications: Basket data analysis, cross-marketing, catalog design, 
loss-leader analysis, clustering, classification, recommendation systems, 
etc.

Frequent Itemset Mining  Introduction 3
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Example: Basket Data Analysis

• Transaction database

D= {{butter, bread, milk, sugar};
{butter, flour, milk, sugar};
{butter, eggs, milk, salt};
{eggs};
{butter, flour, milk, salt, sugar}}

• Question of interest:

– Which items are bought together frequently?

• Applications

– Improved store layout

– Cross marketing

– Focused attached mailings / add-on sales
– *  Maintenance Agreement

(What the store should do to boost Maintenance Agreement sales)
– Home Electronics  * (What other products should the store stock up?)

Frequent Itemset Mining  Introduction 4

items frequency

{butter} 4

{milk} 4

{butter, milk} 4

{sugar} 3

{butter, sugar} 3

{milk, sugar} 3

{butter, milk, sugar} 3

{eggs} 2

…
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Chapter 3: Frequent Itemset Mining

1) Introduction

– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules

– Basic notions, rule generation, interestingness measures

4) Further Topics

– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary

Outline 5
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Mining Frequent Itemsets: Basic 
Notions

 Items 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} : a set of literals (denoting items)

• Itemset 𝑋: Set of items 𝑋 ⊆ 𝐼

• Database 𝐷: Set of transactions 𝑇, each transaction is a set of items T ⊆
𝐼

• Transaction 𝑇 contains an itemset 𝑋: 𝑋 ⊆ 𝑇

• The items in transactions and itemsets are sorted lexicographically:

– itemset 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑘 ), where 𝑥1 𝑥2…  𝑥𝑘
• Length of an itemset: number of elements in the itemset

• k-itemset: itemset of length k

• The support of an itemset X is defined as: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 = 𝑇 ∈ 𝐷|𝑋 ⊆ 𝑇

• Frequent itemset: an itemset X is called frequent for database 𝐷 iff it is 
contained in more than 𝑚𝑖𝑛𝑆𝑢𝑝 many transactions: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) ≥
𝑚𝑖𝑛𝑆𝑢𝑝

• Goal 1: Given a database 𝐷and a threshold 𝑚𝑖𝑛𝑆𝑢𝑝 , find all frequent
itemsets X ∈ 𝑃𝑜𝑡(𝐼).

Frequent Itemset Mining  Algorithms 6
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Mining Frequent Itemsets: Basic Idea

• Naïve Algorithm

– count the frequency of all possible subsets of 𝐼 in the database

 too expensive since there are 2m such itemsets for |𝐼| = 𝑚 items 

• The Apriori principle (anti-monotonicity):

Any non-empty subset of a frequent itemset is frequent, too!
A ⊆ I with support A ≥ minSup ⇒ ∀A′ ⊂ A ∧ A′ ≠ ∅: support A′ ≥ minSup

Any superset of a non-frequent itemset is non-frequent, too!
A ⊆ I with support A < minSup ⇒ ∀A′ ⊃ A: support A′ < minSup

• Method based on the apriori principle

– First count the 1-itemsets, then the 2-itemsets, 
then the 3-itemsets, and so on

– When counting (k+1)-itemsets, only consider those 
(k+1)-itemsets where all subsets of length k have been 
determined as frequent in the previous step

Frequent Itemset Mining  Algorithms  Apriori Algorithm 7

cardinality of power set

 
Ø 

A B C D

AB AC AD BC BD CD

ABC ABD ACD BCD

ABCD not frequent
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The Apriori Algorithm

variable Ck: candidate itemsets of size k

variable Lk: frequent itemsets of size k

L1 = {frequent items}

for (k = 1; Lk !=; k++) do begin

// JOIN STEP: join Lk with itself to produce Ck+1

// PRUNE STEP: discard (k+1)-itemsets from Ck+1 that 

contain non-frequent k-itemsets as subsets

Ck+1 = candidates generated from Lk

for each transaction t in database do

Increment the count of all candidates in Ck+1

that are contained in t

Lk+1 = candidates in Ck+1 with min_support

return k Lk

Frequent Itemset Mining  Algorithms  Apriori Algorithm 8

produce
candidates

prove
candidates
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Generating Candidates (Join Step)

• Requirements for set of all candidate 𝑘 + 1 -itemsets 𝐶𝑘+1
– Completeness: 

Must contain all frequent 𝑘 + 1 -itemsets (superset property 𝐶𝑘+1 𝐿𝑘+1)

– Selectiveness:

Significantly smaller than the set of all 𝑘 + 1 -subsets

– Suppose the items are sorted by any order (e.g., lexicograph.)

• Step 1: Joining (𝐶𝑘+1 = 𝐿𝑘 ⋈ 𝐿𝑘)

– Consider frequent 𝑘-itemsets 𝑝 and 𝑞

– 𝑝 and 𝑞 are joined if they share the same first 𝑘 − 1 items

insert into Ck+1

select p.i1, p.i2, …, p.ik–1, p.ik, q.ik

from Lk : p, Lk : q

where p.i1=q.i1, …, p.ik –1 =q.ik–1, p.ik < q.ik

Frequent Itemset Mining  Algorithms  Apriori Algorithm 9

p  Lk=3 (A, C, F)

(A, C, F, G)  Ck+1=4

q  Lk=3 (A, C, G)
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Generating Candidates (Prune Step)

• Step 2: Pruning (𝐿𝑘+1 = {X ∈ 𝐶𝑘+1|𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 ≥ 𝑚𝑖𝑛𝑆𝑢𝑝} )

– Naïve: Check support of every itemset in 𝐶𝑘+1  inefficient for huge 𝐶𝑘+1
– Instead, apply Apriori principle first: Remove candidate (k+1) -itemsets

which contain a non-frequent k -subset s, i.e., s  Lk

forall itemsets c in Ck+1 do
forall k-subsets s of c do

if (s is not in Lk) then delete c from Ck+1

• Example 1

– L3 = {(ACF), (ACG), (AFG), (AFH), (CFG)}

– Candidates after the join step: {(ACFG), (AFGH)} 

– In the pruning step: delete (AFGH) because (FGH)  L3, i.e., (FGH) is not a 
frequent 3-itemset; also (AGH)  L3

 C4 = {(ACFG)}   check the support to generate L4

Frequent Itemset Mining  Algorithms  Apriori Algorithm 10
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Apriori Algorithm – Full Example

TID items
100 1 3 4 6
200 2 3 5
300 1 2 3 5
400 1 5 6

Frequent Itemset Mining  Algorithms  Apriori Algorithm 11

itemset count
{1} 3
{2} 2
{3} 3
{4} 1
{5} 3
{6} 2

database D
scan D

minSup=0.5 C1 itemset count
{1} 3
{2} 2
{3} 3
{5} 3
{6} 2

L1

𝐿1 ⋈ 𝐿1

itemset
{1 2}
{1 3}
{1 5}
{1 6}
{2 3}
{2 5}
{2 6}
{3 5}
{3 6}
{5 6}

C2

prune C1 scan D

C2 C2 itemsetcount
{1 3} 2
{1 5} 2
{1 6} 2
{2 3} 2
{2 5} 2
{3 5} 2

L2
itemset

{1 2}
{1 3}
{1 5}
{1 6}
{2 3}
{2 5}
{2 6}
{3 5}
{3 6}
{5 6}

itemsetcount
{1 2} 1
{1 3} 2
{1 5} 2
{1 6} 2
{2 3} 2
{2 5} 2
{2 6} 0
{3 5} 2
{3 6} 1
{5 6} 1

𝐿2 ⋈ 𝐿2

itemset
{1 3 5}
{1 3 6}
{1 5 6}
{2 3 5}

C3

prune C2

itemset
{1 3 5}
{1 3 6} ✗
{1 5 6} ✗
{2 3 5}

C3

scan D

itemsetcount
{1 3 5} 1
{2 3 5} 2

C3 itemsetcount
{2 3 5} 2

L3

𝐿3 ⋈ 𝐿3
C4 is empty
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How to Count Supports of 
Candidates?

• Why is counting supports of candidates a problem?

– The total number of candidates can be very huge

– One transaction may contain many candidates

• Method: Hash-Tree

– Candidate itemsets are stored in a hash-tree

– Leaf nodes of hash-tree contain lists of itemsets and their support (i.e., 
counts)

– Interior nodes contain hash tables

– Subset function finds all the candidates contained in a transaction

Frequent Itemset Mining  Algorithms  Apriori Algorithm 12

h(K) = K mod 3

e.g. for 3-Itemsets

0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)
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Hash-Tree – Construction

• Searching for an itemset

– Start at the root (level 1)

– At level d: apply the hash function h to the d-th item in the itemset

• Insertion of an itemset

– search for the corresponding leaf node, and insert the itemset into that leaf

– if an overflow occurs:

• Transform the leaf node into an internal node

• Distribute the entries to the new leaf nodes according to the hash 
function

Frequent Itemset Mining  Algorithms  Apriori Algorithm 13

h(K) = K mod 3

for 3-Itemsets

0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)
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Hash-Tree – Counting

• Search all candidate itemsets contained in a transaction T = (t1 t2 ... tn) for a 
current itemset length of k

• At the root

– Determine the hash values for each item t1 t2 ... tn-k+1 in T

– Continue the search in the resulting child nodes

• At an internal node at level d (reached after hashing of item 𝑡𝑖)
– Determine the hash values and continue the search for each item 𝑡𝑗 with 𝑖 < 𝑗 ≤ 𝑛 −

𝑘 + 𝑑

• At a leaf node

– Check whether the itemsets in the leaf node are contained in transaction T

Frequent Itemset Mining  Algorithms  Apriori Algorithm 14

0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)

3

9 7 3,9 7

1,7

9,12

Pruned subtrees

Tested leaf nodes

Transaction (1, 3, 7, 9, 12)

h(K) = K mod 3

in our example n=5 and k=3
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Is Apriori Fast Enough? —
Performance Bottlenecks

• The core of the Apriori algorithm:

– Use frequent (k – 1)-itemsets to generate candidate frequent k-itemsets

– Use database scan and pattern matching to collect counts for the candidate 
itemsets

• The bottleneck of Apriori: candidate generation

– Huge candidate sets:

• 104 frequent 1-itemsets will generate 107 candidate 2-itemsets

• To discover a frequent pattern of size 100, e.g., {a1, a2, …, a100}, one 
needs to generate 2100  1030 candidates.

– Multiple scans of database: 

• Needs n or n+1 scans, n is the length of the longest pattern

 Is it possible to mine the complete set of frequent itemsets without 
candidate generation?

Frequent Itemset Mining  Algorithms  Apriori Algorithm 15
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Mining Frequent Patterns Without 
Candidate Generation

• Compress a large database into a compact, Frequent-Pattern tree (FP-
tree) structure

– highly condensed, but complete for frequent pattern mining

– avoid costly database scans

• Develop an efficient, FP-tree-based frequent pattern mining method

– A divide-and-conquer methodology: decompose mining tasks into smaller 
ones

– Avoid candidate generation: sub-database test only!

• Idea:

– Compress database into FP-tree, retaining the itemset association 
information

– Divide the compressed database into conditional databases, each associated  
with one frequent item and mine each such database separately. 

Frequent Itemset Mining  Algorithms  FP-Tree 16
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Construct FP-tree from a Transaction 
DB

Steps for compressing the database into a FP-tree:

1. Scan DB once, find frequent 1-itemsets (single items)

2. Order frequent items in frequency descending order

Frequent Itemset Mining  Algorithms  FP-Tree 17

item frequency

f 4

c 4

a 3
b 3

m 3

p 3

1&2
header table:

TID items bought

100 {f, a, c, d, g, i, m, p}

200 {a, b, c, f, l, m, o}

300 {b, f, h, j, o}

400 {b, c, k, s, p}

500 {a, f, c, e, l, p, m, n}

sort items in the order 

of descending support
minSup=0.5
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Construct FP-tree from a Transaction 
DB

Steps for compressing the database into a FP-tree:

1. Scan DB once, find frequent 1-itemsets (single items)

2. Order frequent items in frequency descending order

3. Scan DB again, construct FP-tree starting with most frequent item per transaction

Frequent Itemset Mining  Algorithms  FP-Tree 18

item frequency
f 4
c 4
a 3
b 3
m 3
p 3

header table:

TID items bought (ordered) frequent 
items

100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}

200 {a, b, c, f, l, m, o} {f, c, a, b, m}

300 {b, f, h, j, o} {f, b}

400 {b, c, k, s, p} {c, b, p}

500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

for each transaction only 
keep its frequent items 
sorted in descending 
order of their frequencies

1&2
3a

for each transaction build a path in the FP-tree:
- If  a path with common prefix exists: 

increment frequency of nodes on this path 
and append suffix

- Otherwise: create a new branch
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Construct FP-tree from a Transaction 
DB

Steps for compressing the database into a FP-tree:

1. Scan DB once, find frequent 1-itemsets (single items)

2. Order frequent items in frequency descending order

3. Scan DB again, construct FP-tree starting with most frequent item per transaction

Frequent Itemset Mining  Algorithms  FP-Tree 19

item frequency head

f 4

c 4

a 3
b 3

m 3

p 3

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

header table:

TID items bought (ordered) frequent 
items

100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}

200 {a, b, c, f, l, m, o} {f, c, a, b, m}

300 {b, f, h, j, o} {f, b}

400 {b, c, k, s, p} {c, b, p}

500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

1&2
3a

3b

header table 
references the 
occurrences of the 
frequent items in  the 
FP-tree
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Benefits of the FP-tree Structure

• Completeness: 

– never breaks a long pattern of any transaction

– preserves complete information for frequent pattern mining

• Compactness

– reduce irrelevant information—infrequent items are gone

– frequency descending ordering: more frequent items are more likely to be 
shared

– never be larger than the original database (if not count node-links and 
counts)

– Experiments demonstrate compression ratios over 100

Frequent Itemset Mining  Algorithms  FP-Tree 20
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Mining Frequent Patterns Using 
FP-tree

• General idea (divide-and-conquer)

– Recursively grow frequent pattern path using the FP-tree

• Method 

– For each item, construct its conditional pattern-base (prefix paths), and then 
its conditional FP-tree

– Repeat the process on each newly created conditional FP-tree …

– …until the resulting FP-tree is empty, or it contains only one path (single 
path will generate all the combinations of its sub-paths, each of which is a 
frequent pattern)

Frequent Itemset Mining  Algorithms  FP-Tree 21
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Major Steps to Mine FP-tree

1) Construct conditional pattern base for each node in the FP-tree

2) Construct conditional FP-tree from each conditional pattern-base

3) Recursively mine conditional FP-trees and grow frequent patterns 
obtained so far

– If the conditional FP-tree contains a single path, simply enumerate all the 
patterns

Frequent Itemset Mining  Algorithms  FP-Tree 22
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Major Steps to Mine FP-tree: 
Conditional Pattern Base

1) Construct conditional pattern base for each node in the FP-tree

– Starting at the frequent header table in the FP-tree

– Traverse FP-tree by following the link of each frequent item (dashed lines)

– Accumulate all of transformed prefix paths of that item to form a conditional 
pattern base 

• For each item its prefixes are regarded as condition for it being a suffix. These 
prefixes form the conditional pattern base. The frequency of  the prefixes can be 
read in the node of the item.

Frequent Itemset Mining  Algorithms  FP-Tree 23

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

item frequency head

f 4

c 4

a 3
b 3

m 3

p 3

header table:

item cond. pattern base

f {}

c f:3, {}

a fc:3

b fca:1, f:1, c:1
m fca:2, fcab:1

p fcam:2, cb:1

conditional pattern base:
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Properties of FP-tree for Conditional 
Pattern Bases

• Node-link property

– For any frequent item ai, all the possible frequent patterns that contain ai

can be obtained by following ai's node-links, starting from ai's head in the 
FP-tree header

• Prefix path property

– To calculate the frequent patterns for a node ai in a path P, only the prefix 
sub-path of ai in P needs to be accumulated, and its frequency count should 
carry the same count as node ai.

Frequent Itemset Mining  Algorithms  FP-Tree 24
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Major Steps to Mine FP-tree: 
Conditional FP-tree

1) Construct conditional pattern base for each node in the FP-tree ✔

2) Construct conditional FP-tree from each conditional pattern-base

– The prefix paths of a suffix represent the conditional basis. 
They can be regarded as transactions of a database.

– Those prefix paths whose support ≥ minSup, induce a conditional FP-tree

– For each pattern-base

• Accumulate the count for each item in the base

• Construct the FP-tree for the frequent items of the pattern base

Frequent Itemset Mining  Algorithms  FP-Tree 25

conditional pattern base: m-conditional FP-tree

{}|m

f:3

c:3

a:3

item frequency

f 3 ..

c 3 ..

a 3  ..
b 1✗

item cond. pattern base

f {}

c f:3

a fc:3

b fca:1, f:1, c:1
m fca:2, fcab:1

p fcam:2, cb:1
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Major Steps to Mine FP-tree: 
Conditional FP-tree

1) Construct conditional pattern base for each node in the FP-tree ✔

2) Construct conditional FP-tree from each conditional pattern-base

Frequent Itemset Mining  Algorithms  FP-Tree 26

conditional pattern base:

{}|m

f:3

c:3

a:3

item cond. pattern base

f {}

c f:3

a fc:3

b fca:1, f:1, c:1
m fca:2, fcab:1

p fcam:2, cb:1

{}|f = {} {}|c

f:3

{}|a

f:3

c:3

{}|b = {} {}|p

c:3
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Major Steps to Mine FP-tree

1) Construct conditional pattern base for each node in the FP-tree ✔

2) Construct conditional FP-tree from each conditional pattern-base ✔

3) Recursively mine conditional FP-trees and grow frequent patterns 
obtained so far

– If the conditional FP-tree contains a single path, simply enumerate all the 
patterns (enumerate all combinations of sub-paths)

Frequent Itemset Mining  Algorithms  FP-Tree 27

example:
m-conditional FP-tree

{}|m

f:3

c:3

a:3

All frequent patterns 
concerning m

m, 

fm, cm, am, 

fcm, fam, cam, 

fcam

just a single path
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FP-tree: Full Example 

Frequent Itemset Mining  Algorithms  FP-Tree 28

item frequency head

f 4

b 3

c 3

{}

b:1

c:1

header table:

TID items bought (ordered) frequent items

100 {b, c, f} {f, b, c}

200 {a, b, c} {b, c}

300 {d, f} {f}

400 {b, c, e, f} {f, b, c}

500 {f, g} {f}

minSup=0.4
f:4

b:2

c:2

database:

item cond. pattern base

f {}

b f:2, {}

c fb:2, b:1

conditional pattern base:
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FP-tree: Full Example 

Frequent Itemset Mining  Algorithms  FP-Tree 29

{}

b:1

c:1

f:4

b:2

c:2

item cond. pattern base

f {}

b f:2

c fb:2, b:1

conditional pattern base 1:

{}|f = {} {}|b

f:2

{}|c

b:1f:2

b:2

item cond. pattern base

b f:2

f {}

conditional pattern base 2:

{}|fc = {} {}|bc

f:2

{{f}}
{{b},{fb}}

{{fc}}
{{bc},{fbc}}
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Principles of Frequent Pattern 
Growth

• Pattern growth property

– Let  be a frequent itemset in DB, B be 's conditional pattern base, and 
be an itemset in B.  Then    is a frequent itemset in DB iff  is frequent 
in B. 

• “abcdef ” is a frequent pattern, if and only if

– “abcde ” is a frequent pattern, and

– “f ” is frequent in the set of transactions containing “abcde ”

Frequent Itemset Mining  Algorithms  FP-Tree 30
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Why Is Frequent Pattern Growth 
Fast?

• Performance study in [Han, Pei&Yin ’00] shows 

– FP-growth is an order of 
magnitude faster than Apriori, 
and is also faster than 
tree-projection

• Reasoning

– No candidate generation, no candidate test

• Apriori algorithm has to proceed breadth-first

– Use compact data structure

– Eliminate repeated database scan

– Basic operation is counting and FP-tree building

Frequent Itemset Mining  Algorithms  FP-Tree 31

Data set T25I20D10K:
T 25 avg. length of transactions
I 20 avg. length of frequent itemsets
D 10K database size (#transactions)
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Maximal or Closed Frequent Itemsets

• Big challenge: database contains potentially a huge number of frequent 
itemsets (especially if minSup is set too low).

– A frequent itemset of length 100 contains 2100-1 many frequent subsets

• Closed frequent itemset:
An itemset X is closed in a data set D if there exists no proper super-
itemset Y such that 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑌) in D.

– The set of closed frequent itemsets contains complete information regarding 
its corresponding frequent itemsets.

• Maximal frequent itemset:
An itemset X is maximal in a data set D if there exists no proper super-
itemset Y such that 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑌 ≥ 𝑚𝑖𝑛𝑆𝑢𝑝 in D.

– The set of maximal itemsets does not contain the complete support 
information

– More compact representation
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Chapter 3: Frequent Itemset Mining

1) Introduction

– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules

– Basic notions, rule generation, interestingness measures

4) Further Topics

– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary

Outline 33
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Simple Association Rules: 
Introduction

• Transaction database:

D= {{butter, bread, milk, sugar};
{butter, flour, milk, sugar};
{butter, eggs, milk, salt};
{eggs};
{butter, flour, milk, salt, sugar}}

• Frequent itemsets:

• Question of interest:

– If milk and sugar are bought, will the customer always buy butter as well?

𝑚𝑖𝑙𝑘, 𝑠𝑢𝑔𝑎𝑟 ⇒ 𝑏𝑢𝑡𝑡𝑒𝑟 ?

– In this case, what would be the probability of buying butter?
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items support

{butter} 4

{milk} 4

{butter, milk} 4

{sugar} 3

{butter, sugar} 3

{milk, sugar} 3

{butter, milk, sugar} 3
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Simple Association Rules: Basic 
Notions

 Items 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} : a set of literals (denoting items)

• Itemset 𝑋: Set of items 𝑋 ⊆ 𝐼

• Database 𝐷: Set of transactions 𝑇, each transaction is a set of items T ⊆ 𝐼

• Transaction 𝑇 contains an itemset 𝑋: 𝑋 ⊆ 𝑇

• The items in transactions and itemsets are sorted lexicographically:

– itemset 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑘 ), where 𝑥1  𝑥2  …  𝑥𝑘

• Length of an itemset: cardinality of the itemset (k-itemset: itemset of length 
k)

• The support of an itemset X is defined as: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 = 𝑇 ∈ 𝐷|𝑋 ⊆ 𝑇

• Frequent itemset: an itemset X is called frequent iff 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) ≥ 𝑚𝑖𝑛𝑆𝑢𝑝

• Association rule: An association rule is an implication of the form 𝑋 ⇒ 𝑌
where 𝑋, 𝑌 ⊆ 𝐼 are two itemsets with 𝑋 ∩ 𝑌 = ∅.

• Note: simply enumerating all possible association rules is not reasonable!
 What are the interesting association rules w.r.t. 𝐷?
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Interestingness of Association Rules

• Interestingness of an association rule:
Quantify the interestingness of an association rule with respect to a 
transaction database D:

– Support: frequency (probability) of the entire rule with respect to D

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 ⇒ 𝑌 = 𝑃 𝑋 ∪ 𝑌 =
{𝑇 ∈ 𝐷|𝑋 ∪ 𝑌 ⊆ 𝑇}

𝐷
= 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪ 𝑌)

“probability that a transaction in 𝐷 contains the itemset 𝑋 ∪ 𝑌”

– Confidence: indicates the strength of implication in the rule

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑋 ⇒ 𝑌 = 𝑃 𝑌|𝑋 =
{𝑇 ∈ 𝐷|𝑋 ∪ 𝑌 ⊆ 𝑇}

{𝑇 ∈ 𝐷|𝑋 ⊆ 𝑇}
=
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪ 𝑌)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)
“conditional probability that a transaction in 𝐷 containing the itemset 𝑋 also 
contains itemset 𝑌”

– Rule form: “𝐵𝑜𝑑𝑦 ⇒ 𝐻𝑒𝑎𝑑 [𝑠𝑢𝑝𝑝𝑜𝑟𝑡, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒]”

• Association rule examples:

– buys diapers  buys beers [0.5%, 60%]

– major in CS ∧ takes DB  avg. grade A [1%, 75%]
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buys beer

buys diapers
buys both
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Mining of Association Rules

• Task of mining association rules:
Given a database 𝐷, determine all association rules having a 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ≥
𝑚𝑖𝑛𝑆𝑢𝑝 and a 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ≥ 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 (so-called strong association 
rules).

• Key steps of mining association rules:

1) Find frequent itemsets, i.e., itemsets that have at least support = 𝑚𝑖𝑛𝑆𝑢𝑝

2) Use the frequent itemsets to generate association rules

• For each itemset 𝑋 and every nonempty subset  Y ⊂ 𝑋 generate rule Y ⇒ (𝑋 −
𝑌) if 𝑚𝑖𝑛𝑆𝑢𝑝 and 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 are fulfilled 

• we have 2|𝑋| − 2 many association rule candidates for each itemset 𝑋

• Example
frequent itemsets

rule candidates: A ⇒ 𝐵; 𝐵 ⇒ 𝐴; A ⇒ 𝐶; 𝐶 ⇒ A; 𝐵 ⇒ 𝐶; C ⇒ 𝐵;
𝐴, 𝐵 ⇒ 𝐶; 𝐴, 𝐶 ⇒ 𝐵; 𝐶, 𝐵 ⇒ 𝐴; 𝐴 ⇒ 𝐵, 𝐶; 𝐵 ⇒ 𝐴, 𝐶; 𝐶 ⇒ 𝐴, 𝐵
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1-itemset count 2-itemset count 3-itemset count

{A}

{B}

{C}

3

4

5

{A, B}

{A, C}

{B, C}

3

2

4

{A, B, C} 2
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Generating Rules from Frequent 
Itemsets

• For each frequent itemset X

– For each nonempty subset Y of X, form a rule Y ⇒ (𝑋 − 𝑌)

– Delete those rules that do not have minimum confidence 
Note: 1) support always exceeds 𝑚𝑖𝑛𝑆𝑢𝑝

2) the support values of the frequent itemsets suffice to calculate the 
confidence

• Example: 𝑋 = {𝐴, 𝐵, 𝐶}, 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 = 60%
– conf (A  B) = 3/3; ✔

– conf (B  A) = 3/4; ✔

– conf (A  C) = 2/3; ✔

– conf (C  A) = 2/5; ✗

– conf (B  C) = 4/4; ✔

– conf (C  B) = 4/5; ✔

– conf (A  B, C) = 2/3; ✔ conf (B, C  A) = ½ ✗

– conf (B  A, C) = 2/4; ✗ conf (A, C  B) = 1 ✔

– conf (C  A, B) = 2/5; ✗ conf (A, B  C) = 2/3 ✔

• Exploit anti-monotonicity for generating candidates for strong 
association rules!
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itemset count

{A}

{B}

{C}

3

4

5

{A, B}

{A, C}

{B, C}

3

2

4

{A, B, C} 2
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Interestingness Measurements

• Objective measures

– Two popular measurements: 

– support and 

– confidence

• Subjective measures [Silberschatz & Tuzhilin, KDD95]

– A rule (pattern) is interesting if it is

– unexpected (surprising to the user) and/or

– actionable (the user can do something with it)
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Criticism to Support and Confidence

Example 1 [Aggarwal & Yu, PODS98]

• Among 5000 students

– 3000 play basketball (=60%)

– 3750 eat cereal (=75%)

– 2000 both play basket ball and eat cereal (=40%)

• Rule play basketball  eat cereal [40%, 66.7%] is misleading because 
the overall percentage of students eating cereal is 75% which is higher 
than 66.7%

• Rule play basketball  not eat cereal [20%, 33.3%] is far more 
accurate, although with lower support and confidence

• Observation: play basketball and eat cereal are negatively correlated

 Not all strong association rules are interesting and some can be 
misleading. 
 augment the support and confidence values with interestingness 
measures such as the correlation 𝐴 ⇒ 𝐵 [𝑠𝑢𝑝𝑝, 𝑐𝑜𝑛𝑓, 𝑐𝑜𝑟𝑟]
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Other Interestingness Measures: 
Correlation

• Lift is a simple correlation measure between two items A and B:

! The two rules 𝐴 ⇒ 𝐵 and 𝐵 ⇒ 𝐴 have the same correlation coefficient.

• take both P(A) and P(B) in consideration

• 𝑐𝑜𝑟𝑟𝐴,𝐵 > 1 the two items A and B are positively correlated

• 𝑐𝑜𝑟𝑟𝐴,𝐵 = 1 there is no correlation between the two items A and B 

• 𝑐𝑜𝑟𝑟𝐴,𝐵 < 1 the two items A and B are negatively correlated
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𝑐𝑜𝑟𝑟𝐴,𝐵 =
𝑃(𝐴 ڂ 𝐵)

𝑃 𝐴 𝑃(𝐵)
=

𝑃 𝐵 𝐴 )

𝑃 𝐵
=

𝑐𝑜𝑛𝑓(𝐴⇒𝐵)

𝑠𝑢𝑝𝑝(𝐵)
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Other Interestingness Measures: 
Correlation

• Example 2:

• X and Y: positively correlated

• X and Z: negatively related

• support and confidence of X=>Z dominates 

• but items X and Z are negatively correlated

• Items X and Y are positively correlated
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X 1 1 1 1 0 0 0 0

Y 1 1 0 0 0 0 0 0

Z 0 1 1 1 1 1 1 1

rule support confidence correlation

𝑋 ⇒ 𝑌 25% 50% 2

𝑋 ⇒ 𝑍 37.5% 75% 0.86

𝑌 ⇒ 𝑍 12.5% 50% 0.57
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Chapter 3: Frequent Itemset Mining

1) Introduction

– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules

– Basic notions, rule generation, interestingness measures

4) Further Topics

– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary

Outline 43
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Hierarchical Association Rules: 
Motivation

• Problem of association rules in plain itemsets

– High minsup: apriori finds only few rules

– Low minsup: apriori finds unmanagably many rules

• Exploit item taxonomies (generalizations, is-a hierarchies) which exist 
in many applications

• New task: find all generalized association rules between generalized 
items  Body and Head of a rule may have items of any level of the 
hierarchy

• Generalized association rule: 𝑋 ⇒ 𝑌
with 𝑋, 𝑌 ⊂ 𝐼, 𝑋 ∩ 𝑌 = ∅ and no item in 𝑌 is an ancestor of any item in 𝑋
i.e., 𝑗𝑎𝑐𝑘𝑒𝑡𝑠 ⇒ 𝑐𝑙𝑜𝑡ℎ𝑒𝑠 is essentially true
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shoes

sports shoes bootsouterwear

jackets jeans

clothes

shirts
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Hierarchical Association Rules: 
Motivating Example

• Examples

Jeans  boots

jackets  boots

Outerwear boots Support > minsup

• Characteristics

– Support(“outerwear  boots”) is not necessarily equal to the sum 
support(“jackets  boots”) + support( “jeans  boots”)
e.g. if a transaction with jackets, jeans and boots exists

– Support for sets of generalizations (e.g., product groups) is higher 
than support for sets of individual items
If the support of rule “outerwear  boots” exceeds minsup, then the 
support of rule “clothes  boots” does, too
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Support < minSup
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Mining Multi-Level Associations

• A top_down, progressive deepening approach:

– First find high-level strong rules:

• milk  bread [20%, 60%].

– Then find their lower-level “weaker” rules:

• 1.5% milk  wheat bread [6%, 50%].

• Different min_support threshold across multi-levels lead to different 
algorithms:

– adopting the same min_support across multi-levels

– adopting reduced min_support at lower levels
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Food

breadmilk

3.5%

SunsetFraser

1.5% whitewheat

Wonder
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Minimum Support for Multiple Levels

• Uniform Support

+ the search procedure is simplified (monotonicity)

+ the user is required to specify only one support threshold

• Reduced Support
(Variable Support)

+ takes the lower frequency of items in lower levels into consideration
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minsup = 5 %

minsup = 5 %milk
support = 10 %

3.5%
support = 6 %

1.5%
support = 4 % 

milk
support = 10 %

3.5%
support = 6 %

1.5%
support = 4 % 

minsup = 3 %

minsup = 5 %
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Multilevel Association Mining using
Reduced Support

• A top_down, progressive deepening approach:

– First find high-level strong rules:

• milk  bread [20%, 60%].

– Then find their lower-level “weaker” rules:

• 1.5% milk  wheat bread [6%, 50%].

3 approaches using reduced Support:

• Level-by-level independent method:

– Examine each node in the hierarchy, regardless of whether or not its parent 
node is found to be frequent

• Level-cross-filtering by single item:

– Examine a node only if its parent node at the preceding level is frequent

• Level-cross- filtering by k-itemset: 

– Examine a k-itemset at a given level only if its parent k-itemset at the 
preceding level is frequent
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Food

breadmilk

3.5%

SunsetFraser

1.5% whitewheat

Wonder

level-wise processing (breadth first)
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Multilevel Associations: Variants

• A top_down, progressive deepening approach:

– First find high-level strong rules:

• milk  bread [20%, 60%].

– Then find their lower-level “weaker” rules:

• 1.5% milk  wheat bread [6%, 50%].

• Variations at mining multiple-level association rules.

– Level-crossed association rules:

• 1.5 % milk  Wonder wheat bread

– Association rules with multiple, alternative hierarchies:

• 1.5 % milk  Wonder bread
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Food

breadmilk

3.5%

SunsetFraser

1.5% whitewheat

Wonder
level-wise processing (breadth first)
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Multi-level Association: Redundancy 
Filtering

• Some rules may be redundant due to “ancestor” relationships between 
items.

• Example

– 𝑅1: milk  wheat bread    [support = 8%, confidence = 70%]

– 𝑅2: 1.5% milk  wheat bread [support = 2%, confidence = 72%]

• We say that rule 1 is an ancestor of rule 2.

• Redundancy:
A rule is redundant if its support is close to the “expected” value, based 
on the rule’s ancestor.
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Interestingness of Hierarchical
Association Rules: Notions

Let 𝑋, 𝑋′, 𝑌, 𝑌′ ⊆ 𝐼 be itemsets.

• An itemset 𝑋′ is an ancestor of 𝑋 iff there exist ancestors 𝑥1
′ , … , 𝑥𝑘

′ of 
𝑥1, … , 𝑥𝑘 ∈ 𝑋 and 𝑥𝑘+1, … , 𝑥𝑛 with 𝑛 = 𝑋 such that 

𝑋′ = {𝑥1
′ , … , 𝑥𝑘

′ , 𝑥𝑘+1, … , 𝑥𝑛}. 

• Let 𝑋′ and 𝑌′ be ancestors of 𝑋 and 𝑌. Then we call the rules 𝑋′ 𝑌′, 
𝑋𝑌′, and 𝑋′𝑌 ancestors of the rule X  Y .

• The rule X´  Y´ is a direct ancestor of rule X  Y in a set of rules if:

– Rule X´  Y‘ is an ancestor of rule X  Y, and

– There is no rule X“  Y“ such that X“  Y“ is an ancestor of
X  Y and X´  Y´ is an ancestor of X“  Y“

• A hierarchical association rule X  Y is called R-interesting if: 

– There are no direct ancestors of X  Y or

– The actual support is larger than R times the expected support or

– The actual confidence is larger than R times the expected confidence
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Expected Support and Expected 
Confidence

• How to compute the expected support?
Given the rule for X  Y and its ancestor rule X´  Y´ the expected 
support of X  Y is defined as:

𝐸𝑍′ P 𝑍 =
P(𝑧1)

P(𝑧1
′)
× ⋯×

P 𝑧𝑗

P(𝑧𝑗
′)
× P 𝑍′

where 𝑍 = 𝑋 ∪ 𝑌 = {𝑧1, … , 𝑧𝑛}, 𝑍
′ = 𝑋′ ∪ 𝑌′ = {𝑧1

′ , … , 𝑧𝑗
′, 𝑧𝑗+1, … , 𝑧𝑛} and 

each 𝑧𝑖
′ ∈ 𝑍′ is an ancestor of 𝑧𝑖 ∈ 𝑍
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[SA’95] R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.
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Expected Support and Expected 
Confidence

• How to compute the expected confidence?
Given the rule for X  Y and its ancestor rule X´  Y´, then the
expected confidence of X  Y is defined as:

𝐸𝑋′⇒𝑌′ P 𝑌|𝑋 =
P(𝑦1)

P(𝑦1
′)
× ⋯×

P 𝑦𝑗

P 𝑦𝑗
′
× P 𝑌′|𝑋′

where 𝑌 = {𝑦1, … , 𝑦𝑛} and 𝑌′ = 𝑦1
′ , … , 𝑦𝑗

′, 𝑦𝑗+1, … , 𝑦𝑛 and each 𝑦𝑖
′ ∈ 𝑌′ is

an ancestor of 𝑦𝑖 ∈ 𝑌
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Interestingness of Hierarchical
Association Rules:Example

• Example

– Let R = 1.6

•
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Item Support

clothes 20

outerwear 10

jackets 4

No rule support R-interesting?

1 clothes  shoes 10 yes: no ancestors

2 outerwear  shoes 9 yes: 
Support > R *exp. support (wrt. rule 1) =

(1.6 ⋅ (
10

20
⋅ 10)) = 8

3 jackets  shoes 4 Not wrt. support: 
Support > R * exp. support (wrt. rule 1) = 3.2
Support < R * exp. support (wrt. rule 2) = 5.75
 still need to check the confidence!
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Chapter 3: Frequent Itemset Mining

1) Introduction

– Transaction databases, market basket data analysis

2) Simple Association Rules

– Basic notions, rule generation, interestingness measures

3) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

4) Further Topics

– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Multidimensional and Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Summary

Outline 55
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Multi-Dimensional Association: 
Concepts

• Single-dimensional rules:

– buys milk  buys bread

• Multi-dimensional rules:  2 dimensions

– Inter-dimension association rules (no repeated dimensions)

• age between 19-25  status is student  buys coke

– hybrid-dimension association rules (repeated dimensions)

• age between 19-25  buys popcorn  buys coke
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Techniques for Mining Multi-
Dimensional Associations

• Search for frequent k-predicate set:

– Example: {age, occupation, buys} is a 3-predicate set.

– Techniques can be categorized by how age is treated.

1. Using static discretization of quantitative attributes

– Quantitative attributes are statically discretized by using predefined concept 
hierarchies.

2. Quantitative association rules

– Quantitative attributes are dynamically discretized into “bins”based on the 
distribution of the data.

3. Distance-based association rules

– This is a dynamic discretization process that considers the distance between 
data points.
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Quantitative Association Rules

• Up to now: associations of boolean attributes only

• Now: numerical attributes, too

• Example:

– Original database

– Boolean database
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ID age marital status # cars

1 23 single 0

2 38 married 2

ID age: 20..29 age: 30..39 m-status: single m-status: married . . .

1 1 0 1 0 . . .

2 0 1 0 1 . . .
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Quantitative Association Rules: Ideas

• Static discretization

– Discretization of all attributes before mining the association rules

– E.g. by using a generalization hierarchy for each attribute

– Substitute numerical attribute values by ranges or intervals

• Dynamic discretization

– Discretization of the attributes during association rule mining

– Goal (e.g.): maximization of confidence

– Unification of neighboring association rules to a generalized rule
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Partitioning of Numerical Attributes

• Problem: Minimum support

– Too many intervals too small support for each individual interval

– Too few intervals  too small confidence of the rules

• Solution

– First, partition the domain into many intervals

– Afterwards, create new intervals by merging adjacent interval

• Numeric attributes are dynamically discretized such that the confidence 
or compactness of the rules mined is maximized.
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Quantitative Association Rules

• 2-D quantitative association rules: Aquan1  Aquan2  Acat

• Cluster “adjacent” association
rules to form general  rules 
using a 2-D  grid.

• Example:
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Chapter 3: Frequent Itemset Mining

1) Introduction

– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules

– Basic notions, rule generation, interestingness measures

4) Further Topics

– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Summary
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Chapter 3: Summary

• Mining frequent itemsets

– Apriori algorithm, hash trees, FP-tree

• Simple association rules

– support, confidence, rule generation, interestingness measures
(correlation), …

• Further topics

– Hierarchical association rules: algorithms (top-down progressive 
deepening), multilevel support thresholds, redundancy and R-
interestingness

– Quantitative association rules: partitioning numerical attributes, adaptation
of apriori algorithm, interestingness

• Extensions: multi-dimensional association rule mining
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