Chapter 3: Frequent Itemset Mining

Lecture: Prof. Dr. Thomas Seidl
Tutorials: Julian Busch, Evgeniy Faerman, Florian Richter, Klaus Schmid
Chapter 3: Frequent Itemset Mining

1) Introduction
 – Transaction databases, market basket data analysis

2) Mining Frequent Itemsets
 – Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules
 – Basic notions, rule generation, interestingness measures

4) Further Topics

5) Extensions and Summary
What is Frequent Itemset Mining?

Frequent Itemset Mining:
Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.

- **Given:**
 - A set of items \(I = \{i_1, i_2, \ldots, i_m\} \)
 - A database of transactions \(D \), where a transaction \(T \subseteq I \) is a set of items

- **Task 1:** find all subsets of items that occur together in many transactions.
 - E.g.: 85% of transactions contain the itemset \{milk, bread, butter\}

- **Task 2:** find all rules that correlate the presence of one set of items with that of another set of items in the transaction database.
 - E.g.: 98% of people buying tires and auto accessories also get automotive service done

- **Applications:** Basket data analysis, cross-marketing, catalog design, loss-leader analysis, clustering, classification, recommendation systems, etc.
Example: Basket Data Analysis

- **Transaction database**

 \[D = \{\{\text{butter, bread, milk, sugar}\}; \]
 \[\{\text{butter, flour, milk, sugar}\}; \]
 \[\{\text{butter, eggs, milk, salt}\}; \]
 \[\{\text{eggs}\}; \]
 \[\{\text{butter, flour, milk, salt, sugar}\}\} \]

- **Question of interest:**
 - Which items are bought together frequently?

- **Applications**
 - Improved store layout
 - Cross marketing
 - Focused attached mailings / add-on sales
 - * ⇒ *Maintenance Agreement* (What the store should do to boost Maintenance Agreement sales)
 - *Home Electronics* ⇒ * (What other products should the store stock up?)

<table>
<thead>
<tr>
<th>items</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>{butter}</td>
<td>4</td>
</tr>
<tr>
<td>{milk}</td>
<td>4</td>
</tr>
<tr>
<td>{butter, milk}</td>
<td>4</td>
</tr>
<tr>
<td>{sugar}</td>
<td>3</td>
</tr>
<tr>
<td>{butter, sugar}</td>
<td>3</td>
</tr>
<tr>
<td>{milk, sugar}</td>
<td>3</td>
</tr>
<tr>
<td>{butter, milk, sugar}</td>
<td>3</td>
</tr>
<tr>
<td>{eggs}</td>
<td>2</td>
</tr>
</tbody>
</table>

...
Chapter 3: Frequent Itemset Mining

1) Introduction
 - Transaction databases, market basket data analysis

2) Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules
 - Basic notions, rule generation, interestingness measures

4) Further Topics
 - Hierarchical Association Rules
 • Motivation, notions, algorithms, interestingness
 - Quantitative Association Rules
 • Motivation, basic idea, partitioning numerical attributes, adaptation of apriori algorithm, interestingness

5) Extensions and Summary
Mining Frequent Itemsets: Basic Notions

- **Items** $I = \{i_1, i_2, \ldots, i_m\}$: a set of literals (denoting items)
- **Itemset** X: Set of items $X \subseteq I$
- **Database** D: Set of transactions T, each transaction is a set of items $T \subseteq I$
- Transaction T contains an itemset X: $X \subseteq T$
- The items in transactions and itemsets are sorted lexicographically:
 - itemset $X = (x_1, x_2, \ldots, x_k)$, where $x_1 \leq x_2 \leq \ldots \leq x_k$
- **Length** of an itemset: number of elements in the itemset
- **k-itemset**: itemset of length k
- The **support** of an itemset X is defined as: $support(X) = |\{T \in D | X \subseteq T\}|$
- **Frequent itemset**: an itemset X is called frequent for database D iff it is contained in more than $minSup$ many transactions: $support(X) \geq minSup$
- **Goal 1**: Given a database D and a threshold $minSup$, find all frequent itemsets $X \in Pot(I)$.
Mining Frequent Itemsets: Basic Idea

• Naïve Algorithm
 – count the frequency of all possible subsets of \(I \) in the database
 \(\Rightarrow \) too expensive since there are \(2^m \) such itemsets for \(|I| = m \) items

• The Apriori principle (anti-monotonicity):
 Any non-empty subset of a frequent itemset is frequent, too!
 \(A \subseteq I \) with \(\text{support}(A) \geq \text{minSup} \) \(\Rightarrow \forall A' \subset A \land A' \neq \emptyset : \text{support}(A') \geq \text{minSup} \)
 Any superset of a non-frequent itemset is non-frequent, too!
 \(A \subseteq I \) with \(\text{support}(A) < \text{minSup} \) \(\Rightarrow \forall A' \supset A : \text{support}(A') < \text{minSup} \)

• Method based on the apriori principle
 – First count the 1-itemsets, then the 2-itemsets, then the 3-itemsets, and so on
 – When counting \((k+1)\)-itemsets, only consider those \((k+1)\)-itemsets where all subsets of length \(k \) have been determined as frequent in the previous step
The Apriori Algorithm

variable C_k: candidate itemsets of size k
variable L_k: frequent itemsets of size k

$L_1 = \{\text{frequent items}\}$

for $(k = 1; L_k \neq \emptyset; k++)$ do begin
// JOIN STEP: join L_k with itself to produce C_{k+1}
// PRUNE STEP: discard $(k+1)$-itemsets from C_{k+1} that contain non-frequent k-itemsets as subsets
$C_{k+1} = \text{candidates generated from } L_k$

for each transaction t in database do
 Increment the count of all candidates in C_{k+1} that are contained in t

$L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support}$

return $\bigcup_k L_k$
Generating Candidates (Join Step)

- Requirements for set of all candidate \((k + 1)\)-itemsets \(C_{k+1}\)
 - \textit{Completeness:}
 Must contain all frequent \((k + 1)\)-itemsets (superset property \(C_{k+1} \supseteq L_{k+1}\))
 - \textit{Selectiveness:}
 Significantly smaller than the set of all \((k + 1)\)-subsets
 - Suppose the items are sorted by any order (e.g., lexicograph.)

- Step 1: Joining \((C_{k+1} = L_k \bowtie L_k)\)
 - Consider frequent \(k\)-itemsets \(p\) and \(q\)
 - \(p\) and \(q\) are joined if they share the same first \(k - 1\) items

\[
\text{insert into } C_{k+1} \\
\text{select } p.i_1, p.i_2, \ldots, p.i_{k-1}, p.i_k, q.i_k \\
\text{from } L_k : p, L_k : q \\
\text{where } p.i_1 = q.i_1, \ldots, p.i_{k-1} = q.i_{k-1}, p.i_k < q.i_k
\]
Generating Candidates (Prune Step)

- Step 2: Pruning \(L_{k+1} = \{ X \in C_{k+1} | \text{support}(X) \geq \minSup \} \)
 - Naïve: Check support of every itemset in \(C_{k+1} \) \(\leftarrow \) inefficient for huge \(C_{k+1} \)
 - Instead, apply Apriori principle first: Remove candidate \((k+1)\)-itemsets which contain a non-frequent \(k\)-subset \(s\), i.e., \(s \notin L_k\)

\[
\text{forall itemsets } c \text{ in } C_{k+1} \text{ do} \\
\quad \text{forall } k\text{-subsets } s \text{ of } c \text{ do} \\
\quad \quad \text{if } (s \text{ is not in } L_k) \text{ then delete } c \text{ from } C_{k+1}
\]

- Example 1
 - \(L_3 = \{(ACF), (ACG), (AFG), (AFH), (CFG)\} \)
 - Candidates after the join step: \(\{(ACFG), (AFGH)\} \)
 - In the pruning step: delete \((AFGH) \) because \((FGH) \notin L_3 \), i.e., \((FGH) \) is not a frequent \(3\)-itemset; also \((AGH) \notin L_3 \)
 - \(C_4 = \{(ACFG)\} \rightarrow \) check the support to generate \(L_4 \)
Frequent Itemset Mining → Algorithms → Apriori Algorithm

Apriori Algorithm – Full Example

<table>
<thead>
<tr>
<th>TID</th>
<th>items</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1 3 4 6</td>
</tr>
<tr>
<td>200</td>
<td>2 3 5</td>
</tr>
<tr>
<td>300</td>
<td>1 2 3 5</td>
</tr>
<tr>
<td>400</td>
<td>1 5 6</td>
</tr>
</tbody>
</table>

minSup = 0.5

database D

<table>
<thead>
<tr>
<th>itemset</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>3</td>
</tr>
<tr>
<td>{2}</td>
<td>2</td>
</tr>
<tr>
<td>{3}</td>
<td>3</td>
</tr>
<tr>
<td>{4}</td>
<td>1</td>
</tr>
<tr>
<td>{5}</td>
<td>3</td>
</tr>
<tr>
<td>{6}</td>
<td>2</td>
</tr>
</tbody>
</table>

C₁

- **scan D**
- **prune C₁**

<table>
<thead>
<tr>
<th>itemset</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>3</td>
</tr>
<tr>
<td>{2}</td>
<td>2</td>
</tr>
<tr>
<td>{3}</td>
<td>3</td>
</tr>
<tr>
<td>{4}</td>
<td>1</td>
</tr>
<tr>
<td>{5}</td>
<td>3</td>
</tr>
<tr>
<td>{6}</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>itemset</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>3</td>
</tr>
<tr>
<td>{2}</td>
<td>2</td>
</tr>
<tr>
<td>{3}</td>
<td>3</td>
</tr>
<tr>
<td>{5}</td>
<td>3</td>
</tr>
<tr>
<td>{6}</td>
<td>2</td>
</tr>
</tbody>
</table>

L₁

- **L₁ ⊖ L₁**

<table>
<thead>
<tr>
<th>itemset</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>3</td>
</tr>
<tr>
<td>{2}</td>
<td>2</td>
</tr>
<tr>
<td>{3}</td>
<td>3</td>
</tr>
<tr>
<td>{5}</td>
<td>3</td>
</tr>
<tr>
<td>{6}</td>
<td>2</td>
</tr>
</tbody>
</table>

C₂

- **scan D**
- **prune C₃**

<table>
<thead>
<tr>
<th>itemset</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1 2}</td>
<td></td>
</tr>
<tr>
<td>{1 3}</td>
<td></td>
</tr>
<tr>
<td>{1 5}</td>
<td></td>
</tr>
<tr>
<td>{1 6}</td>
<td></td>
</tr>
<tr>
<td>{2 3}</td>
<td></td>
</tr>
<tr>
<td>{2 5}</td>
<td></td>
</tr>
<tr>
<td>{2 6}</td>
<td></td>
</tr>
<tr>
<td>{3 5}</td>
<td></td>
</tr>
<tr>
<td>{3 6}</td>
<td></td>
</tr>
<tr>
<td>{5 6}</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>itemset</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1 2}</td>
<td></td>
</tr>
<tr>
<td>{1 3}</td>
<td></td>
</tr>
<tr>
<td>{1 5}</td>
<td></td>
</tr>
<tr>
<td>{1 6}</td>
<td></td>
</tr>
<tr>
<td>{2 3}</td>
<td></td>
</tr>
<tr>
<td>{2 5}</td>
<td></td>
</tr>
<tr>
<td>{2 6}</td>
<td></td>
</tr>
<tr>
<td>{3 5}</td>
<td></td>
</tr>
<tr>
<td>{3 6}</td>
<td></td>
</tr>
<tr>
<td>{5 6}</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>itemset</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1 2}</td>
<td>1</td>
</tr>
<tr>
<td>{1 3}</td>
<td>2</td>
</tr>
<tr>
<td>{1 5}</td>
<td>2</td>
</tr>
<tr>
<td>{1 6}</td>
<td>2</td>
</tr>
<tr>
<td>{2 3}</td>
<td>2</td>
</tr>
<tr>
<td>{2 5}</td>
<td>2</td>
</tr>
<tr>
<td>{2 6}</td>
<td>0</td>
</tr>
<tr>
<td>{3 5}</td>
<td>2</td>
</tr>
<tr>
<td>{3 6}</td>
<td>1</td>
</tr>
<tr>
<td>{5 6}</td>
<td>1</td>
</tr>
</tbody>
</table>

C₃

- **scan D**

<table>
<thead>
<tr>
<th>itemset</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1 3 5}</td>
<td></td>
</tr>
<tr>
<td>{1 3 6}</td>
<td></td>
</tr>
<tr>
<td>{1 5 6}</td>
<td></td>
</tr>
<tr>
<td>{2 3 5}</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>itemset</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1 3 5}</td>
<td>1</td>
</tr>
<tr>
<td>{1 3 6}</td>
<td>2</td>
</tr>
<tr>
<td>{1 5 6}</td>
<td>2</td>
</tr>
<tr>
<td>{2 3 5}</td>
<td>2</td>
</tr>
</tbody>
</table>

L₃

- **L₃ ⊖ L₃**

<table>
<thead>
<tr>
<th>itemset</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1 3 5}</td>
<td>1</td>
</tr>
<tr>
<td>{2 3 5}</td>
<td>2</td>
</tr>
</tbody>
</table>

C₄

- C₄ is empty
How to Count Supports of Candidates?

- Why is counting supports of candidates a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates

- Method: Hash-Tree
 - Candidate itemsets are stored in a hash-tree
 - Leaf nodes of hash-tree contain lists of itemsets and their support (i.e., counts)
 - Interior nodes contain hash tables
 - Subset function finds all the candidates contained in a transaction

\[h(K) = K \mod 3 \]

- e.g. for 3-Itemsets

\[
\begin{align*}
(3 6 7) &\quad (3 5 7) &\quad (7 9 12) &\quad (1 4 11) &\quad (7 8 9) &\quad (2 3 8) &\quad (2 5 6) \\
(3 4 15) &\quad (3 7 11) &\quad (1 6 11) &\quad (1 7 9) &\quad (1 11 12) &\quad (5 6 7) &\quad (5 8 11)
\end{align*}
\]
Hash-Tree – Construction

- Searching for an itemset
 - Start at the root (level 1)
 - At level \(d \): apply the hash function \(h \) to the \(d \)-th item in the itemset

- Insertion of an itemset
 - search for the corresponding leaf node, and insert the itemset into that leaf
 - if an overflow occurs:
 - Transform the leaf node into an internal node
 - Distribute the entries to the new leaf nodes according to the hash function

\[h(K) = K \mod 3 \]

for 3-Itemsets
Hash-Tree – Counting

- Search all candidate itemsets contained in a transaction \(T = (t_1 \, t_2 \ldots \, t_n) \) for a current itemset length of \(k \)
- At the root
 - Determine the hash values for each item \(t_1 \, t_2 \ldots \, t_{n-k+1} \) in \(T \)
 - Continue the search in the resulting child nodes
- At an internal node at level \(d \) (reached after hashing of item \(t_i \))
 - Determine the hash values and continue the search for each item \(t_j \) with \(i < j \leq n - k + d \)
- At a leaf node
 - Check whether the itemsets in the leaf node are contained in transaction \(T \)

in our example \(n=5 \) and \(k=3 \)

\[h(K) = K \mod 3 \]

Transaction \((1, 3, 7, 9, 12)\)
Is Apriori Fast Enough? —
Performance Bottlenecks

• The core of the Apriori algorithm:
 – Use frequent \((k-1)\)-itemsets to generate candidate frequent \(k\)-itemsets
 – Use database scan and pattern matching to collect counts for the candidate itemsets

• The bottleneck of Apriori: candidate generation
 – Huge candidate sets:
 • \(10^4\) frequent 1-itemsets will generate \(10^7\) candidate 2-itemsets
 • To discover a frequent pattern of size 100, e.g., \(\{a_1, a_2, \ldots, a_{100}\}\), one needs to generate \(2^{100} \approx 10^{30}\) candidates.
 – Multiple scans of database:
 • Needs \(n\) or \(n+1\) scans, \(n\) is the length of the longest pattern

→ Is it possible to mine the complete set of frequent itemsets without candidate generation?
Mining Frequent Patterns Without Candidate Generation

• Compress a large database into a compact, Frequent-Pattern tree (FP-tree) structure
 – highly condensed, but complete for frequent pattern mining
 – avoid costly database scans

• Develop an efficient, FP-tree-based frequent pattern mining method
 – A divide-and-conquer methodology: decompose mining tasks into smaller ones
 – Avoid candidate generation: sub-database test only!

• Idea:
 – Compress database into FP-tree, retaining the itemset association information
 – Divide the compressed database into conditional databases, each associated with one frequent item and mine each such database separately.
Construct FP-tree from a Transaction DB

Steps for compressing the database into a FP-tree:
1. Scan DB once, find frequent 1-itemsets (single items)
2. Order frequent items in frequency descending order

<table>
<thead>
<tr>
<th>TID</th>
<th>items bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>{f, a, c, d, g, i, m, p}</td>
</tr>
<tr>
<td>200</td>
<td>{a, b, c, f, l, m, o}</td>
</tr>
<tr>
<td>300</td>
<td>{b, f, h, j, o}</td>
</tr>
<tr>
<td>400</td>
<td>{b, c, k, s, p}</td>
</tr>
<tr>
<td>500</td>
<td>{a, f, c, e, l, p, m, n}</td>
</tr>
</tbody>
</table>

header table:

<table>
<thead>
<tr>
<th>item</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>4</td>
</tr>
<tr>
<td>a</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>m</td>
<td>3</td>
</tr>
<tr>
<td>p</td>
<td>3</td>
</tr>
</tbody>
</table>

minSup=0.5

sort items in the order of descending support
Construct FP-tree from a Transaction DB

Steps for compressing the database into a FP-tree:

1. Scan DB once, find frequent 1-itemsets (single items)
2. Order frequent items in frequency descending order
3. Scan DB again, construct FP-tree starting with most frequent item per transaction

<table>
<thead>
<tr>
<th>TID</th>
<th>items bought</th>
<th>(ordered) frequent items</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>{f, a, c, d, g, i, m, p}</td>
<td>{f, c, a, m, p}</td>
</tr>
<tr>
<td>200</td>
<td>{a, b, c, f, l, m, o}</td>
<td>{f, c, a, b, m}</td>
</tr>
<tr>
<td>300</td>
<td>{b, f, h, j, o}</td>
<td>{f, b}</td>
</tr>
<tr>
<td>400</td>
<td>{b, c, k, s, p}</td>
<td>{c, b, p}</td>
</tr>
<tr>
<td>500</td>
<td>{a, f, c, e, l, p, m, n}</td>
<td>{f, c, a, m, p}</td>
</tr>
</tbody>
</table>

header table:

<table>
<thead>
<tr>
<th>item</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>4</td>
</tr>
<tr>
<td>a</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>m</td>
<td>3</td>
</tr>
<tr>
<td>p</td>
<td>3</td>
</tr>
</tbody>
</table>

for each transaction only keep its frequent items sorted in descending order of their frequencies

1&2

for each transaction build a path in the FP-tree:
- If a path with common prefix exists:
 increment frequency of nodes on this path and append suffix
- Otherwise: create a new branch

3a
Construct FP-tree from a Transaction DB

Steps for compressing the database into a FP-tree:
1. Scan DB once, find frequent 1-itemsets (single items)
2. Order frequent items in frequency descending order
3. Scan DB again, construct FP-tree starting with most frequent item per transaction

header table:
<table>
<thead>
<tr>
<th>item</th>
<th>frequency</th>
<th>head</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

header table references occurrences of the frequent items in the FP-tree
Benefits of the FP-tree Structure

• Completeness:
 – never breaks a long pattern of any transaction
 – preserves complete information for frequent pattern mining
• Compactness
 – reduce irrelevant information—infrequent items are gone
 – frequency descending ordering: more frequent items are more likely to be shared
 – never be larger than the original database (if not count node-links and counts)
 – Experiments demonstrate compression ratios over 100
Mining Frequent Patterns Using FP-tree

• General idea (divide-and-conquer)
 – Recursively grow frequent pattern path using the FP-tree
• Method
 – For each item, construct its conditional pattern-base (prefix paths), and then its conditional FP-tree
 – Repeat the process on each newly created conditional FP-tree …
 – …until the resulting FP-tree is empty, or it contains only one path (single path will generate all the combinations of its sub-paths, each of which is a frequent pattern)
Major Steps to Mine FP-tree

1) Construct conditional pattern base for each node in the FP-tree
2) Construct conditional FP-tree from each conditional pattern-base
3) Recursively mine conditional FP-trees and grow frequent patterns obtained so far
 - If the conditional FP-tree contains a single path, simply enumerate all the patterns
Major Steps to Mine FP-tree: Conditional Pattern Base

1) Construct conditional pattern base for each node in the FP-tree
 - Starting at the frequent header table in the FP-tree
 - Traverse FP-tree by following the link of each frequent item (dashed lines)
 - Accumulate all of transformed prefix paths of that item to form a conditional pattern base
 • For each item its prefixes are regarded as condition for it being a suffix. These prefixes form the conditional pattern base. The frequency of the prefixes can be read in the node of the item.

header table:

<table>
<thead>
<tr>
<th>item</th>
<th>frequency</th>
<th>head</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

conditional pattern base:

<table>
<thead>
<tr>
<th>item</th>
<th>cond. pattern base</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>{}</td>
</tr>
<tr>
<td>c</td>
<td>f:3, {}</td>
</tr>
<tr>
<td>a</td>
<td>fc:3</td>
</tr>
<tr>
<td>m</td>
<td>fca:2, fcab:1</td>
</tr>
<tr>
<td>b</td>
<td>fca:1, f:1, c:1</td>
</tr>
<tr>
<td>p</td>
<td>fcam:2, cb:1</td>
</tr>
</tbody>
</table>

Frequent Itemset Mining ➔ Algorithms ➔ FP-Tree
Properties of FP-tree for Conditional Pattern Bases

• Node-link property
 – For any frequent item a_i, all the possible frequent patterns that contain a_i can be obtained by following a_i's node-links, starting from a_i's head in the FP-tree header

• Prefix path property
 – To calculate the frequent patterns for a node a_i in a path P, only the prefix sub-path of a_i in P needs to be accumulated, and its frequency count should carry the same count as node a_i.
Major Steps to Mine FP-tree: Conditional FP-tree

1) Construct conditional pattern base for each node in the FP-tree

2) Construct conditional FP-tree from each conditional pattern-base

 - The prefix paths of a suffix represent the conditional basis. They can be regarded as transactions of a database.
 - Those prefix paths whose support $\geq \minSup$, induce a conditional FP-tree
 - For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

conditional pattern base:

<table>
<thead>
<tr>
<th>item</th>
<th>cond. pattern base</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>${}$</td>
</tr>
<tr>
<td>c</td>
<td>$f:3$</td>
</tr>
<tr>
<td>a</td>
<td>$fc:3$</td>
</tr>
<tr>
<td>b</td>
<td>$fca:1$, $f:1$, $c:1$</td>
</tr>
<tr>
<td>m</td>
<td>$fca:2$, $fcab:1$</td>
</tr>
<tr>
<td>p</td>
<td>$fcam:2$, $cb:1$</td>
</tr>
</tbody>
</table>

m-conditional FP-tree

<table>
<thead>
<tr>
<th>item</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>3</td>
</tr>
<tr>
<td>a</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>1X</td>
</tr>
</tbody>
</table>

Frequent Itemset Mining \rightarrow Algorithms \rightarrow FP-Tree
Major Steps to Mine FP-tree: Conditional FP-tree

1) Construct conditional pattern base for each node in the FP-tree
2) Construct conditional FP-tree from each conditional pattern-base

```
conditional pattern base:

<table>
<thead>
<tr>
<th>item</th>
<th>cond. pattern base</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>{}</td>
</tr>
<tr>
<td>c</td>
<td>f:3</td>
</tr>
<tr>
<td>a</td>
<td>fc:3</td>
</tr>
<tr>
<td>b</td>
<td>fca:1, f:1, c:1</td>
</tr>
<tr>
<td>m</td>
<td>fca:2, fcab:1</td>
</tr>
<tr>
<td>p</td>
<td>fcam:2, cb:1</td>
</tr>
</tbody>
</table>
```

```
{} | f = {}
    |           |
        |           |
    f:3 |           |
    c:3 |           |

{} | c
    |               |
        |               |
    f:3 |               |
    c:3 |               |

{} | a
    |               |
        |               |
    f:3 |               |
    c:3 |               |

{} | b = {}
    |           |
        |           |
    f:3 |           |
    c:3 |           |
    a:3 |           |

{} | m
    |           |
        |           |
    f:3 |           |
    c:3 |           |

{} | p
    |           |
        |           |
    c:3 |           |
```
Major Steps to Mine FP-tree

1) Construct conditional pattern base for each node in the FP-tree
2) Construct conditional FP-tree from each conditional pattern-base
3) Recursively mine conditional FP-trees and grow frequent patterns obtained so far
 - If the conditional FP-tree contains a single path, simply enumerate all the patterns (enumerate all combinations of sub-paths)

Example:

```
  m-conditional FP-tree
  {} | m
    |   |
    | f:3 |
    |   |
    | c:3 |
    |   |
    | a:3
```

All frequent patterns concerning m

- m, fm, cm, am, fcm, fam, cam, fcam
FP-tree: Full Example

database:

<table>
<thead>
<tr>
<th>TID</th>
<th>items bought</th>
<th>(ordered) frequent items</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>{b, c, f}</td>
<td>{f, b, c}</td>
</tr>
<tr>
<td>200</td>
<td>{a, b, c}</td>
<td>{b, c}</td>
</tr>
<tr>
<td>300</td>
<td>{d, f}</td>
<td>{f}</td>
</tr>
<tr>
<td>400</td>
<td>{b, c, e, f}</td>
<td>{f, b, c}</td>
</tr>
<tr>
<td>500</td>
<td>{f, g}</td>
<td>{f}</td>
</tr>
</tbody>
</table>

header table:

<table>
<thead>
<tr>
<th>item</th>
<th>frequency</th>
<th>head</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

minSup=0.4

conditional pattern base:

<table>
<thead>
<tr>
<th>item</th>
<th>cond. pattern base</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>{}</td>
</tr>
<tr>
<td>b</td>
<td>f:2, {}</td>
</tr>
<tr>
<td>c</td>
<td>fb:2, b:1</td>
</tr>
</tbody>
</table>
FP-tree: Full Example

Conditional Pattern Base 1:

<table>
<thead>
<tr>
<th>Item</th>
<th>Cond. Pattern Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>{}</td>
</tr>
<tr>
<td>b</td>
<td>f:2</td>
</tr>
<tr>
<td>c</td>
<td>fb:2, b:1</td>
</tr>
</tbody>
</table>

Conditional Pattern Base 2:

<table>
<thead>
<tr>
<th>Item</th>
<th>Cond. Pattern Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>f:2</td>
</tr>
<tr>
<td>f</td>
<td>{}</td>
</tr>
</tbody>
</table>

Frequent Itemset Mining → Algorithms → FP-Tree
Principles of Frequent Pattern Growth

• Pattern growth property
 – Let α be a frequent itemset in DB, B be α's conditional pattern base, and β be an itemset in B. Then $\alpha \cup \beta$ is a frequent itemset in DB iff β is frequent in B.

• “abcdef” is a frequent pattern, if and only if
 – “abcde” is a frequent pattern, and
 – “f” is frequent in the set of transactions containing “abcde”
Why Is Frequent Pattern Growth Fast?

- Performance study in [Han, Pei&Yin ’00] shows
 - FP-growth is an order of magnitude faster than Apriori, and is also faster than tree-projection

- Reasoning
 - No candidate generation, no candidate test
 - Apriori algorithm has to proceed breadth-first
 - Use compact data structure
 - Eliminate repeated database scan
 - Basic operation is counting and FP-tree building

Data set T25I20D10K:
- T 25 avg. length of transactions
- I 20 avg. length of frequent itemsets
- D 10K database size (#transactions)
Maximal or Closed Frequent Itemsets

• Big challenge: database contains potentially a huge number of frequent itemsets (especially if minSup is set too low).
 – A frequent itemset of length 100 contains $2^{100} - 1$ many frequent subsets

• *Closed frequent itemset:*
 An itemset X is *closed* in a data set D if there exists no proper super-itemset Y such that $\text{support}(X) = \text{support}(Y)$ in D.
 – The set of closed frequent itemsets contains complete information regarding its corresponding frequent itemsets.

• *Maximal frequent itemset:*
 An itemset X is *maximal* in a data set D if there exists no proper super-itemset Y such that $\text{support}(Y) \geq \text{minSup}$ in D.
 – The set of maximal itemsets does not contain the complete support information
 – More compact representation
Chapter 3: Frequent Itemset Mining

1) Introduction
 – Transaction databases, market basket data analysis

2) Mining Frequent Itemsets
 – Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules
 – Basic notions, rule generation, interestingness measures

4) Further Topics
 – Hierarchical Association Rules
 • Motivation, notions, algorithms, interestingness
 – Quantitative Association Rules
 • Motivation, basic idea, partitioning numerical attributes, adaptation of apriori algorithm, interestingness

5) Extensions and Summary
Simple Association Rules: Introduction

- **Transaction database:**

 \[D = \{\{\text{butter, bread, milk, sugar}\}; \]

 \{\{\text{butter, flour, milk, sugar}\}; \]

 \{\{\text{butter, eggs, milk, salt}\}; \]

 \{\{\text{eggs}\}; \]

 \{\{\text{butter, flour, milk, salt, sugar}\}\} \]

- **Frequent itemsets:**

<table>
<thead>
<tr>
<th>items</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{\text{butter}}</td>
<td>4</td>
</tr>
<tr>
<td>{\text{milk}}</td>
<td>4</td>
</tr>
<tr>
<td>{\text{butter, milk}}</td>
<td>4</td>
</tr>
<tr>
<td>{\text{sugar}}</td>
<td>3</td>
</tr>
<tr>
<td>{\text{butter, sugar}}</td>
<td>3</td>
</tr>
<tr>
<td>{\text{milk, sugar}}</td>
<td>3</td>
</tr>
<tr>
<td>{\text{butter, milk, sugar}}</td>
<td>3</td>
</tr>
</tbody>
</table>

- **Question of interest:**

 - If milk and sugar are bought, will the customer always buy butter as well?
 \[\text{milk, sugar} \Rightarrow \text{butter} \] ?

 - In this case, what would be the probability of buying butter?
Simple Association Rules: Basic Notions

- **Items** $I = \{i_1, i_2, \ldots, i_m\}$: a set of literals (denoting items)
- **Itemset** X: Set of items $X \subseteq I$
- **Database** D: Set of transactions T, each transaction is a set of items $T \subseteq I$
- Transaction T contains an itemset X: $X \subseteq T$
- The items in transactions and itemsets are sorted lexicographically:
 - itemset $X = (x_1, x_2, \ldots, x_k)$, where $x_1 \leq x_2 \leq \ldots \leq x_k$
- **Length** of an itemset: cardinality of the itemset (k-itemset: itemset of length k)
- The support of an itemset X is defined as: $\text{support}(X) = |\{T \in D | X \subseteq T\}|$
- **Frequent itemset**: an itemset X is called frequent iff $\text{support}(X) \geq \text{minSup}$
- **Association rule**: An association rule is an implication of the form $X \Rightarrow Y$ where $X, Y \subseteq I$ are two itemsets with $X \cap Y = \emptyset$.
- Note: simply enumerating all possible association rules is not reasonable! → What are the interesting association rules w.r.t. D?
Interestingness of Association Rules

- **Interestingness of an association rule:** Quantify the interestingness of an association rule with respect to a transaction database D:
 - Support: frequency (probability) of the entire rule with respect to D

 \[\text{support}(X \Rightarrow Y) = P(X \cup Y) = \frac{|\{T \in D | X \cup Y \subseteq T\}|}{|D|} = \text{support}(X \cup Y) \]

 “probability that a transaction in D contains the itemset \(X \cup Y \)”
 - Confidence: indicates the strength of implication in the rule

 \[\text{confidence}(X \Rightarrow Y) = P(Y | X) = \frac{|\{T \in D | X \cup Y \subseteq T\}|}{|\{T \in D | X \subseteq T\}|} = \frac{\text{support}(X \cup Y)}{\text{support}(X)} \]

 “conditional probability that a transaction in D containing the itemset \(X \) also contains itemset \(Y \)”
 - Rule form: “Body \(\Rightarrow \) Head [support, confidence]”

- **Association rule examples:**
 - buys diapers \(\Rightarrow \) buys beers [0.5%, 60%]
 - major in CS \(\land \) takes DB \(\Rightarrow \) avg. grade A [1%, 75%]
Task of mining association rules:
Given a database \(D \), determine all association rules having a support \(\geq minSup \) and a confidence \(\geq minConf \) (so-called strong association rules).

Key steps of mining association rules:
1) Find frequent itemsets, i.e., itemsets that have at least support = \(minSup \)
2) Use the frequent itemsets to generate association rules
 - For each itemset \(X \) and every nonempty subset \(Y \subset X \) generate rule \(Y \Rightarrow (X - Y) \) if \(minSup \) and \(minConf \) are fulfilled
 - we have \(2^{|X|} - 2 \) many association rule candidates for each itemset \(X \)

Example
frequent itemsets

<table>
<thead>
<tr>
<th>1-itemset</th>
<th>count</th>
<th>2-itemset</th>
<th>count</th>
<th>3-itemset</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>({A})</td>
<td>3</td>
<td>({A, B})</td>
<td>3</td>
<td>({A, B, C})</td>
<td>2</td>
</tr>
<tr>
<td>({B})</td>
<td>4</td>
<td>({A, C})</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({C})</td>
<td>5</td>
<td>({B, C})</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

rule candidates: \(A \Rightarrow B; B \Rightarrow A; A \Rightarrow C; C \Rightarrow A; B \Rightarrow C; C \Rightarrow B; \)
\(A, B \Rightarrow C; A, C \Rightarrow B; C, B \Rightarrow A; A \Rightarrow B, C; B \Rightarrow A, C; C \Rightarrow A, B \)
Generating Rules from Frequent Itemsets

- For each frequent itemset \(X \)
 - For each nonempty subset \(Y \) of \(X \), form a rule \(Y \Rightarrow (X - Y) \)
 - Delete those rules that do not have minimum confidence

 Note: 1) support always exceeds \(\text{minSup} \)
 2) the support values of the frequent itemsets suffice to calculate the confidence

- Example: \(X = \{A, B, C\} \), \(\text{minConf} = 60\% \)
 - \(\text{conf} (A \Rightarrow B) = 3/3; \checkmark \)
 - \(\text{conf} (B \Rightarrow A) = 3/4; \checkmark \)
 - \(\text{conf} (A \Rightarrow C) = 2/3; \checkmark \)
 - \(\text{conf} (C \Rightarrow A) = 2/5; \times \)
 - \(\text{conf} (B \Rightarrow C) = 4/4; \checkmark \)
 - \(\text{conf} (C \Rightarrow B) = 4/5; \checkmark \)
 - \(\text{conf} (A \Rightarrow B, C) = 2/3; \checkmark \)
 - \(\text{conf} (B, C \Rightarrow A) = 1/2 \times \)
 - \(\text{conf} (B \Rightarrow A, C) = 2/4; \times \)
 - \(\text{conf} (A, C \Rightarrow B) = 1 \checkmark \)
 - \(\text{conf} (C \Rightarrow A, B) = 2/5; \times \)
 - \(\text{conf} (A, B \Rightarrow C) = 2/3 \checkmark \)

- Exploit anti-monotonicity for generating candidates for strong association rules!
Interestingness Measurements

• **Objective** measures
 – Two popular measurements:
 – support and
 – confidence

• **Subjective** measures [Silberschatz & Tuzhilin, KDD95]
 – A rule (pattern) is interesting if it is
 – unexpected (surprising to the user) and/or
 – actionable (the user can do something with it)
Example 1 [Aggarwal & Yu, PODS98]

- Among 5000 students
 - 3000 play basketball (=60%)
 - 3750 eat cereal (=75%)
 - 2000 both play basketball and eat cereal (=40%)
- Rule \(\text{play basketball} \Rightarrow \text{eat cereal} \) [40%, 66.7%] is misleading because the overall percentage of students eating cereal is 75% which is higher than 66.7%
- Rule \(\text{play basketball} \Rightarrow \text{not eat cereal} \) [20%, 33.3%] is far more accurate, although with lower support and confidence
- Observation: \(\text{play basketball} \) and \(\text{eat cereal} \) are negatively correlated

- Not all strong association rules are interesting and some can be misleading.
 -augment the support and confidence values with interestingness measures such as the correlation \(A \Rightarrow B \) \([\text{supp}, \text{conf}, \text{corr}]\)
Other Interestingness Measures: Correlation

- **Lift** is a simple correlation measure between two items A and B:

$$corr_{A,B} = \frac{P(A \cup B)}{P(A)P(B)} = \frac{P(B|A)}{P(B)} = \frac{\text{conf}(A \Rightarrow B)}{\text{supp}(B)}$$

The two rules $A \Rightarrow B$ and $B \Rightarrow A$ have the same correlation coefficient.

- take both $P(A)$ and $P(B)$ in consideration

- $corr_{A,B} > 1$ the two items A and B are positively correlated
- $corr_{A,B} = 1$ there is no correlation between the two items A and B
- $corr_{A,B} < 1$ the two items A and B are negatively correlated
Other Interestingness Measures: Correlation

- Example 2:

 \[
 \begin{array}{cccccccc}
 X & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
 Y & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 Z & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 \end{array}
 \]

- X and Y: positively correlated
- X and Z: negatively related
- support and confidence of X=>Z dominates
- but items X and Z are negatively correlated
- Items X and Y are positively correlated

<table>
<thead>
<tr>
<th>rule</th>
<th>support</th>
<th>confidence</th>
<th>correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>X ⇒ Y</td>
<td>25%</td>
<td>50%</td>
<td>2</td>
</tr>
<tr>
<td>X ⇒ Z</td>
<td>37.5%</td>
<td>75%</td>
<td>0.86</td>
</tr>
<tr>
<td>Y ⇒ Z</td>
<td>12.5%</td>
<td>50%</td>
<td>0.57</td>
</tr>
</tbody>
</table>
Chapter 3: Frequent Itemset Mining

1) Introduction
 - Transaction databases, market basket data analysis

2) Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules
 - Basic notions, rule generation, interestingness measures

4) Further Topics
 - Hierarchical Association Rules
 • Motivation, notions, algorithms, interestingness
 - Quantitative Association Rules
 • Motivation, basic idea, partitioning numerical attributes, adaptation of apriori algorithm, interestingness

5) Extensions and Summary
Hierarchical Association Rules: Motivation

- Problem of association rules in plain itemsets
 - *High minsup*: apriori finds only few rules
 - *Low minsup*: apriori finds unmanageably many rules
- Exploit item taxonomies (generalizations, *is-a* hierarchies) which exist in many applications

![Hierarchy Diagram]

- New task: find all generalized association rules between generalized items → Body and Head of a rule may have items of any level of the hierarchy
- **Generalized association rule**: \(X \Rightarrow Y \)
 with \(X, Y \subseteq I, X \cap Y = \emptyset \) and no item in \(Y \) is an ancestor of any item in \(X \)
 i.e., *jackets* ⇒ *clothes* is essentially true

Frequent Itemset Mining → Further Topics → Hierarchical Association Rules
Hierarchical Association Rules: Motivating Example

- Examples

 Jeans \Rightarrow boots
 jackets \Rightarrow boots $\big\{\text{Support} < \text{minSup}\}$
 Outerwear \Rightarrow boots $\text{Support} > \text{minSup}$

- Characteristics

 - Support(“outerwear \Rightarrow boots”) is not necessarily equal to the sum support(“jackets \Rightarrow boots”) + support(“jeans \Rightarrow boots”)
 e.g. if a transaction with jackets, jeans and boots exists

 - Support for sets of generalizations (e.g., product groups) is higher than support for sets of individual items
 If the support of rule “outerwear \Rightarrow boots” exceeds minsup, then the support of rule “clothes \Rightarrow boots” does, too
Mining Multi-Level Associations

- A top-down, progressive deepening approach:
 - First find high-level strong rules:
 - milk \(\Rightarrow \) bread [20%, 60%].
 - Then find their lower-level “weaker” rules:
 - 1.5% milk \(\Rightarrow \) wheat bread [6%, 50%].

- Different min_support threshold across multi-levels lead to different algorithms:
 - adopting the same min_support across multi-levels
 - adopting reduced min_support at lower levels
Minimum Support for Multiple Levels

• Uniform Support
 - milk
 - support = 10%
 - 3.5%
 - support = 6%
 - 1.5%
 - support = 4%
 + the search procedure is simplified (monotonicity)
 + the user is required to specify only one support threshold

• Reduced Support (Variable Support)
 - milk
 - support = 10%
 - 3.5%
 - support = 6%
 - 1.5%
 - support = 4%
 + takes the lower frequency of items in lower levels into consideration
Multilevel Association Mining using Reduced Support

- A *top-down, progressive deepening* approach:
 - First find high-level strong rules:
 - *milk ⇒ bread* [20%, 60%].
 - Then find their lower-level “weaker” rules:
 - 1.5% *milk ⇒ wheat bread* [6%, 50%].

 level-wise processing (breadth first)

3 approaches using reduced Support:

- **Level-by-level independent method:**
 - Examine each node in the hierarchy, regardless of whether or not its parent node is found to be frequent

- **Level-cross-filtering by single item:**
 - Examine a node only if its parent node at the preceding level is frequent

- **Level-cross-filtering by k-itemset:**
 - Examine a k-itemset at a given level only if its parent k-itemset at the preceding level is frequent
Multilevel Associations: Variants

• A *top-down, progressive deepening* approach:
 - First find high-level strong rules:
 • *milk* ⇒ *bread* [20%, 60%].
 - Then find their lower-level “weaker” rules:
 • 1.5% *milk* ⇒ *wheat bread* [6%, 50%].

`level-wise processing (breadth first)`

• Variations at mining multiple-level association rules.
 - Level-crossed association rules:
 • 1.5 % *milk* ⇒ *Wonder wheat bread*
 - Association rules with multiple, alternative hierarchies:
 • 1.5 % *milk* ⇒ *Wonder bread*
Some rules may be redundant due to “ancestor” relationships between items.

Example

- R_1: milk \Rightarrow wheat bread [support = 8%, confidence = 70%]
- R_2: 1.5% milk \Rightarrow wheat bread [support = 2%, confidence = 72%]

We say that rule 1 is an ancestor of rule 2.

Redundancy:
A rule is redundant if its support is close to the “expected” value, based on the rule’s ancestor.
Interestingness of Hierarchical Association Rules: Notions

Let $X, X', Y, Y' \subseteq I$ be itemsets.

- An itemset X' is an ancestor of X iff there exist ancestors x'_1, \ldots, x'_k of $x_1, \ldots, x_k \in X$ and x_{k+1}, \ldots, x_n with $n = |X|$ such that
 \[X' = \{x'_1, \ldots, x'_k, x_{k+1}, \ldots, x_n\}. \]

- Let X' and Y' be ancestors of X and Y. Then we call the rules $X' \Rightarrow Y'$, $X \Rightarrow Y'$, and $X' \Rightarrow Y$ ancestors of the rule $X \Rightarrow Y$.

- The rule $X' \Rightarrow Y'$ is a direct ancestor of rule $X \Rightarrow Y$ in a set of rules if:
 - Rule $X' \Rightarrow Y'$ is an ancestor of rule $X \Rightarrow Y$, and
 - There is no rule $X'' \Rightarrow Y''$ such that $X'' \Rightarrow Y''$ is an ancestor of $X \Rightarrow Y$ and $X' \Rightarrow Y'$ is an ancestor of $X'' \Rightarrow Y''$.

- A hierarchical association rule $X \Rightarrow Y$ is called R-interesting if:
 - There are no direct ancestors of $X \Rightarrow Y$ or
 - The actual support is larger than R times the expected support or
 - The actual confidence is larger than R times the expected confidence.
Expected Support and Expected Confidence

• How to compute the expected support? Given the rule for $X \Rightarrow Y$ and its ancestor rule $X' \Rightarrow Y'$ the expected support of $X \Rightarrow Y$ is defined as:

$$E_{Z'}[P(Z)] = \frac{P(z_1)}{P(z'_1)} \times \cdots \times \frac{P(z_j)}{P(z'_j)} \times P(Z')$$

where $Z = X \cup Y = \{z_1, ..., z_n\}$, $Z' = X' \cup Y' = \{z'_1, ..., z'_j, z_{j+1}, ..., z_n\}$ and each $z'_i \in Z'$ is an ancestor of $z_i \in Z$

• How to compute the expected confidence?
 Given the rule for $X \implies Y$ and its ancestor rule $X' \implies Y'$, then the expected confidence of $X \implies Y$ is defined as:

$$E_{X \Rightarrow Y}[P(Y|X)] = \frac{P(y_1)}{P(y'_1)} \times \cdots \times \frac{P(y_j)}{P(y'_j)} \times P(Y'|X')$$

where $Y = \{y_1, \ldots, y_n\}$ and $Y' = \{y'_1, \ldots, y'_j, y_{j+1}, \ldots, y_n\}$ and each $y'_i \in Y'$ is an ancestor of $y_i \in Y$

Interestingness of Hierarchical Association Rules: Example

- **Example**
 - Let $R = 1.6$

<table>
<thead>
<tr>
<th>Item</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>clothes</td>
<td>20</td>
</tr>
<tr>
<td>outerwear</td>
<td>10</td>
</tr>
<tr>
<td>jackets</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>rule</th>
<th>support</th>
<th>R-interesting?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>clothes \Rightarrow shoes</td>
<td>10</td>
<td>yes: no ancestors</td>
</tr>
<tr>
<td>2</td>
<td>outerwear \Rightarrow shoes</td>
<td>9</td>
<td>yes: Support $> R \cdot \text{exp. support (wrt. rule 1)} = 8$</td>
</tr>
</tbody>
</table>
| 3 | jackets \Rightarrow shoes | 4 | Not wrt. support:
Support $> R \cdot \text{exp. support (wrt. rule 1)} = 3.2$
Support $< R \cdot \text{exp. support (wrt. rule 2)} = 5.75$
\Rightarrow still need to check the confidence! |

- Frequent Itemset Mining ➔ Further Topics ➔ Hierarchical Association Rules
Chapter 3: Frequent Itemset Mining

1) Introduction
 – Transaction databases, market basket data analysis

2) Simple Association Rules
 – Basic notions, rule generation, interestingness measures

3) Mining Frequent Itemsets
 – Apriori algorithm, hash trees, FP-tree

4) Further Topics
 – Hierarchical Association Rules
 • Motivation, notions, algorithms, interestingness
 – Multidimensional and Quantitative Association Rules
 • Motivation, basic idea, partitioning numerical attributes, adaptation of apriori algorithm, interestingness

5) Summary
Multi-Dimensional Association: Concepts

- Single-dimensional rules:
 - buys milk \(\Rightarrow \) buys bread

- Multi-dimensional rules: \(\geq 2 \) dimensions
 - Inter-dimension association rules (*no repeated dimensions*)
 - age between 19-25 \(\land \) status is student \(\Rightarrow \) buys coke
 - hybrid-dimension association rules (*repeated dimensions*)
 - age between 19-25 \(\land \) buys popcorn \(\Rightarrow \) buys coke
Techniques for Mining Multi-Dimensional Associations

- Search for frequent k-predicate set:
 - Example: $\{\text{age}, \text{occupation}, \text{buys}\}$ is a 3-predicate set.
 - Techniques can be categorized by how age is treated.

1. Using static discretization of quantitative attributes
 - Quantitative attributes are statically discretized by using predefined concept hierarchies.

2. Quantitative association rules
 - Quantitative attributes are dynamically discretized into “bins” based on the distribution of the data.

3. Distance-based association rules
 - This is a dynamic discretization process that considers the distance between data points.
Quantitative Association Rules

• Up to now: associations of *boolean* attributes only
• Now: *numerical* attributes, too
• Example:
 – Original database

<table>
<thead>
<tr>
<th>ID</th>
<th>age</th>
<th>marital status</th>
<th># cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>single</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>38</td>
<td>married</td>
<td>2</td>
</tr>
</tbody>
</table>

 – Boolean database

<table>
<thead>
<tr>
<th>ID</th>
<th>age: 20..29</th>
<th>age: 30..39</th>
<th>m-status: single</th>
<th>m-status: married</th>
<th>. . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>. . .</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>. . .</td>
</tr>
</tbody>
</table>
Quantitative Association Rules: Ideas

• Static discretization
 – Discretization of all attributes *before* mining the association rules
 – E.g. by using a generalization hierarchy for each attribute
 – Substitute numerical attribute values by ranges or intervals

• Dynamic discretization
 – Discretization of the attributes *during* association rule mining
 – Goal (e.g.): maximization of confidence
 – Unification of neighboring association rules to a generalized rule
Partitioning of Numerical Attributes

- Problem: Minimum support
 - Too many intervals → too small support for each individual interval
 - Too few intervals → too small confidence of the rules

- Solution
 - First, partition the domain into many intervals
 - Afterwards, create new intervals by merging adjacent interval

- Numeric attributes are *dynamically* discretized such that the confidence or compactness of the rules mined is maximized.
Quantitative Association Rules

- 2-D quantitative association rules: \(A_{\text{quan1}} \land A_{\text{quan2}} \Rightarrow A_{\text{cat}} \)
- Cluster “adjacent” association rules to form general rules using a 2-D grid.

Example:

\[
\text{age}(X,\text{"30-34"}) \land \text{income}(X,\text{"24K - 48K"}) \Rightarrow \text{buys}(X,\text{"high resolution TV"})
\]
Chapter 3: Frequent Itemset Mining

1) Introduction
 - Transaction databases, market basket data analysis

2) Mining Frequent Itemsets
 - Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules
 - Basic notions, rule generation, interestingness measures

4) Further Topics
 - Hierarchical Association Rules
 • Motivation, notions, algorithms, interestingness
 - Quantitative Association Rules
 • Motivation, basic idea, partitioning numerical attributes, adaptation of apriori algorithm, interestingness

5) Summary
Chapter 3: Summary

- Mining frequent itemsets
 - Apriori algorithm, hash trees, FP-tree
- Simple association rules
 - support, confidence, rule generation, interestingness measures (correlation), ...
- Further topics
 - Hierarchical association rules: algorithms (top-down progressive deepening), multilevel support thresholds, redundancy and R-interestingness
 - Quantitative association rules: partitioning numerical attributes, adaptation of apriori algorithm, interestingness
- Extensions: multi-dimensional association rule mining