
DATABASE
SYSTEMS
GROUP

Knowledge Discovery in Databases I: Data Representation 1

Knowledge Discovery in Databases
SS 2016

Lecture: Prof. Dr. Thomas Seidl

Tutorials: Julian Busch, Evgeniy Faerman,
Florian Richter, Klaus Schmid

Ludwig-Maximilians-Universität München
Institut für Informatik
Lehr- und Forschungseinheit für Datenbanksysteme

Chapter 3: Frequent Itemset Mining

DATABASE
SYSTEMS
GROUP

Chapter 3: Frequent Itemset Mining

1) Introduction

– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules

– Basic notions, rule generation, interestingness measures

4) Further Topics

5) Extensions and Summary

Outline 2

DATABASE
SYSTEMS
GROUP

What is Frequent Itemset Mining?

Frequent Itemset Mining:

Finding frequent patterns, associations, correlations, or causal structures
among sets of items or objects in transaction databases, relational
databases, and other information repositories.

• Given:

– A set of items 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚}

– A database of transactions 𝐷, where a transaction 𝑇 ⊆ 𝐼 is a set of items

• Task 1: find all subsets of items that occur together in many
transactions.

– E.g.: 85% of transactions contain the itemset {milk, bread, butter}

• Task 2: find all rules that correlate the presence of one set of items with
that of another set of items in the transaction database.

– E.g.: 98% of people buying tires and auto accessories also get automotive service
done

• Applications: Basket data analysis, cross-marketing, catalog design,
loss-leader analysis, clustering, classification, recommendation systems,
etc.

Frequent Itemset Mining Introduction 3

DATABASE
SYSTEMS
GROUP

Example: Basket Data Analysis

• Transaction database

D= {{butter, bread, milk, sugar};
{butter, flour, milk, sugar};
{butter, eggs, milk, salt};
{eggs};
{butter, flour, milk, salt, sugar}}

• Question of interest:

– Which items are bought together frequently?

• Applications

– Improved store layout

– Cross marketing

– Focused attached mailings / add-on sales
– * Maintenance Agreement

(What the store should do to boost Maintenance Agreement sales)
– Home Electronics * (What other products should the store stock up?)

Frequent Itemset Mining Introduction 4

items frequency

{butter} 4

{milk} 4

{butter, milk} 4

{sugar} 3

{butter, sugar} 3

{milk, sugar} 3

{butter, milk, sugar} 3

{eggs} 2

…

DATABASE
SYSTEMS
GROUP

Chapter 3: Frequent Itemset Mining

1) Introduction

– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules

– Basic notions, rule generation, interestingness measures

4) Further Topics

– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary

Outline 5

DATABASE
SYSTEMS
GROUP

Mining Frequent Itemsets: Basic
Notions

 Items 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} : a set of literals (denoting items)

• Itemset 𝑋: Set of items 𝑋 ⊆ 𝐼

• Database 𝐷: Set of transactions 𝑇, each transaction is a set of items T ⊆
𝐼

• Transaction 𝑇 contains an itemset 𝑋: 𝑋 ⊆ 𝑇

• The items in transactions and itemsets are sorted lexicographically:

– itemset 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑘), where 𝑥1 𝑥2… 𝑥𝑘
• Length of an itemset: number of elements in the itemset

• k-itemset: itemset of length k

• The support of an itemset X is defined as: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 = 𝑇 ∈ 𝐷|𝑋 ⊆ 𝑇

• Frequent itemset: an itemset X is called frequent for database 𝐷 iff it is
contained in more than 𝑚𝑖𝑛𝑆𝑢𝑝 many transactions: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) ≥
𝑚𝑖𝑛𝑆𝑢𝑝

• Goal 1: Given a database 𝐷and a threshold 𝑚𝑖𝑛𝑆𝑢𝑝 , find all frequent
itemsets X ∈ 𝑃𝑜𝑡(𝐼).

Frequent Itemset Mining Algorithms 6

DATABASE
SYSTEMS
GROUP

Mining Frequent Itemsets: Basic Idea

• Naïve Algorithm

– count the frequency of all possible subsets of 𝐼 in the database

 too expensive since there are 2m such itemsets for |𝐼| = 𝑚 items

• The Apriori principle (anti-monotonicity):

Any non-empty subset of a frequent itemset is frequent, too!
A ⊆ I with support A ≥ minSup ⇒ ∀A′ ⊂ A ∧ A′ ≠ ∅: support A′ ≥ minSup

Any superset of a non-frequent itemset is non-frequent, too!
A ⊆ I with support A < minSup ⇒ ∀A′ ⊃ A: support A′ < minSup

• Method based on the apriori principle

– First count the 1-itemsets, then the 2-itemsets,
then the 3-itemsets, and so on

– When counting (k+1)-itemsets, only consider those
(k+1)-itemsets where all subsets of length k have been
determined as frequent in the previous step

Frequent Itemset Mining Algorithms Apriori Algorithm 7

cardinality of power set

Ø

A B C D

AB AC AD BC BD CD

ABC ABD ACD BCD

ABCD not frequent

DATABASE
SYSTEMS
GROUP

The Apriori Algorithm

variable Ck: candidate itemsets of size k

variable Lk: frequent itemsets of size k

L1 = {frequent items}

for (k = 1; Lk !=; k++) do begin

// JOIN STEP: join Lk with itself to produce Ck+1

// PRUNE STEP: discard (k+1)-itemsets from Ck+1 that

contain non-frequent k-itemsets as subsets

Ck+1 = candidates generated from Lk

for each transaction t in database do

Increment the count of all candidates in Ck+1

that are contained in t

Lk+1 = candidates in Ck+1 with min_support

return k Lk

Frequent Itemset Mining Algorithms Apriori Algorithm 8

produce
candidates

prove
candidates

DATABASE
SYSTEMS
GROUP

Generating Candidates (Join Step)

• Requirements for set of all candidate 𝑘 + 1 -itemsets 𝐶𝑘+1
– Completeness:

Must contain all frequent 𝑘 + 1 -itemsets (superset property 𝐶𝑘+1 𝐿𝑘+1)

– Selectiveness:

Significantly smaller than the set of all 𝑘 + 1 -subsets

– Suppose the items are sorted by any order (e.g., lexicograph.)

• Step 1: Joining (𝐶𝑘+1 = 𝐿𝑘 ⋈ 𝐿𝑘)

– Consider frequent 𝑘-itemsets 𝑝 and 𝑞

– 𝑝 and 𝑞 are joined if they share the same first 𝑘 − 1 items

insert into Ck+1

select p.i1, p.i2, …, p.ik–1, p.ik, q.ik

from Lk : p, Lk : q

where p.i1=q.i1, …, p.ik –1 =q.ik–1, p.ik < q.ik

Frequent Itemset Mining Algorithms Apriori Algorithm 9

p Lk=3 (A, C, F)

(A, C, F, G) Ck+1=4

q Lk=3 (A, C, G)

DATABASE
SYSTEMS
GROUP

Generating Candidates (Prune Step)

• Step 2: Pruning (𝐿𝑘+1 = {X ∈ 𝐶𝑘+1|𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 ≥ 𝑚𝑖𝑛𝑆𝑢𝑝})

– Naïve: Check support of every itemset in 𝐶𝑘+1 inefficient for huge 𝐶𝑘+1
– Instead, apply Apriori principle first: Remove candidate (k+1) -itemsets

which contain a non-frequent k -subset s, i.e., s Lk

forall itemsets c in Ck+1 do
forall k-subsets s of c do

if (s is not in Lk) then delete c from Ck+1

• Example 1

– L3 = {(ACF), (ACG), (AFG), (AFH), (CFG)}

– Candidates after the join step: {(ACFG), (AFGH)}

– In the pruning step: delete (AFGH) because (FGH) L3, i.e., (FGH) is not a
frequent 3-itemset; also (AGH) L3

 C4 = {(ACFG)} check the support to generate L4

Frequent Itemset Mining Algorithms Apriori Algorithm 10

DATABASE
SYSTEMS
GROUP

Apriori Algorithm – Full Example

TID items
100 1 3 4 6
200 2 3 5
300 1 2 3 5
400 1 5 6

Frequent Itemset Mining Algorithms Apriori Algorithm 11

itemset count
{1} 3
{2} 2
{3} 3
{4} 1
{5} 3
{6} 2

database D
scan D

minSup=0.5 C1 itemset count
{1} 3
{2} 2
{3} 3
{5} 3
{6} 2

L1

𝐿1 ⋈ 𝐿1

itemset
{1 2}
{1 3}
{1 5}
{1 6}
{2 3}
{2 5}
{2 6}
{3 5}
{3 6}
{5 6}

C2

prune C1 scan D

C2 C2 itemsetcount
{1 3} 2
{1 5} 2
{1 6} 2
{2 3} 2
{2 5} 2
{3 5} 2

L2
itemset

{1 2}
{1 3}
{1 5}
{1 6}
{2 3}
{2 5}
{2 6}
{3 5}
{3 6}
{5 6}

itemsetcount
{1 2} 1
{1 3} 2
{1 5} 2
{1 6} 2
{2 3} 2
{2 5} 2
{2 6} 0
{3 5} 2
{3 6} 1
{5 6} 1

𝐿2 ⋈ 𝐿2

itemset
{1 3 5}
{1 3 6}
{1 5 6}
{2 3 5}

C3

prune C2

itemset
{1 3 5}
{1 3 6} ✗
{1 5 6} ✗
{2 3 5}

C3

scan D

itemsetcount
{1 3 5} 1
{2 3 5} 2

C3 itemsetcount
{2 3 5} 2

L3

𝐿3 ⋈ 𝐿3
C4 is empty

DATABASE
SYSTEMS
GROUP

How to Count Supports of
Candidates?

• Why is counting supports of candidates a problem?

– The total number of candidates can be very huge

– One transaction may contain many candidates

• Method: Hash-Tree

– Candidate itemsets are stored in a hash-tree

– Leaf nodes of hash-tree contain lists of itemsets and their support (i.e.,
counts)

– Interior nodes contain hash tables

– Subset function finds all the candidates contained in a transaction

Frequent Itemset Mining Algorithms Apriori Algorithm 12

h(K) = K mod 3

e.g. for 3-Itemsets

0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)

DATABASE
SYSTEMS
GROUP

Hash-Tree – Construction

• Searching for an itemset

– Start at the root (level 1)

– At level d: apply the hash function h to the d-th item in the itemset

• Insertion of an itemset

– search for the corresponding leaf node, and insert the itemset into that leaf

– if an overflow occurs:

• Transform the leaf node into an internal node

• Distribute the entries to the new leaf nodes according to the hash
function

Frequent Itemset Mining Algorithms Apriori Algorithm 13

h(K) = K mod 3

for 3-Itemsets

0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)

DATABASE
SYSTEMS
GROUP

Hash-Tree – Counting

• Search all candidate itemsets contained in a transaction T = (t1 t2 ... tn) for a
current itemset length of k

• At the root

– Determine the hash values for each item t1 t2 ... tn-k+1 in T

– Continue the search in the resulting child nodes

• At an internal node at level d (reached after hashing of item 𝑡𝑖)
– Determine the hash values and continue the search for each item 𝑡𝑗 with 𝑖 < 𝑗 ≤ 𝑛 −

𝑘 + 𝑑

• At a leaf node

– Check whether the itemsets in the leaf node are contained in transaction T

Frequent Itemset Mining Algorithms Apriori Algorithm 14

0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)

3

9 7 3,9 7

1,7

9,12

Pruned subtrees

Tested leaf nodes

Transaction (1, 3, 7, 9, 12)

h(K) = K mod 3

in our example n=5 and k=3

DATABASE
SYSTEMS
GROUP

Is Apriori Fast Enough? —
Performance Bottlenecks

• The core of the Apriori algorithm:

– Use frequent (k – 1)-itemsets to generate candidate frequent k-itemsets

– Use database scan and pattern matching to collect counts for the candidate
itemsets

• The bottleneck of Apriori: candidate generation

– Huge candidate sets:

• 104 frequent 1-itemsets will generate 107 candidate 2-itemsets

• To discover a frequent pattern of size 100, e.g., {a1, a2, …, a100}, one
needs to generate 2100 1030 candidates.

– Multiple scans of database:

• Needs n or n+1 scans, n is the length of the longest pattern

 Is it possible to mine the complete set of frequent itemsets without
candidate generation?

Frequent Itemset Mining Algorithms Apriori Algorithm 15

DATABASE
SYSTEMS
GROUP

Mining Frequent Patterns Without
Candidate Generation

• Compress a large database into a compact, Frequent-Pattern tree (FP-
tree) structure

– highly condensed, but complete for frequent pattern mining

– avoid costly database scans

• Develop an efficient, FP-tree-based frequent pattern mining method

– A divide-and-conquer methodology: decompose mining tasks into smaller
ones

– Avoid candidate generation: sub-database test only!

• Idea:

– Compress database into FP-tree, retaining the itemset association
information

– Divide the compressed database into conditional databases, each associated
with one frequent item and mine each such database separately.

Frequent Itemset Mining Algorithms FP-Tree 16

DATABASE
SYSTEMS
GROUP

Construct FP-tree from a Transaction
DB

Steps for compressing the database into a FP-tree:

1. Scan DB once, find frequent 1-itemsets (single items)

2. Order frequent items in frequency descending order

Frequent Itemset Mining Algorithms FP-Tree 17

item frequency

f 4

c 4

a 3
b 3

m 3

p 3

1&2
header table:

TID items bought

100 {f, a, c, d, g, i, m, p}

200 {a, b, c, f, l, m, o}

300 {b, f, h, j, o}

400 {b, c, k, s, p}

500 {a, f, c, e, l, p, m, n}

sort items in the order

of descending support
minSup=0.5

DATABASE
SYSTEMS
GROUP

Construct FP-tree from a Transaction
DB

Steps for compressing the database into a FP-tree:

1. Scan DB once, find frequent 1-itemsets (single items)

2. Order frequent items in frequency descending order

3. Scan DB again, construct FP-tree starting with most frequent item per transaction

Frequent Itemset Mining Algorithms FP-Tree 18

item frequency
f 4
c 4
a 3
b 3
m 3
p 3

header table:

TID items bought (ordered) frequent
items

100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}

200 {a, b, c, f, l, m, o} {f, c, a, b, m}

300 {b, f, h, j, o} {f, b}

400 {b, c, k, s, p} {c, b, p}

500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

for each transaction only
keep its frequent items
sorted in descending
order of their frequencies

1&2
3a

for each transaction build a path in the FP-tree:
- If a path with common prefix exists:

increment frequency of nodes on this path
and append suffix

- Otherwise: create a new branch

DATABASE
SYSTEMS
GROUP

Construct FP-tree from a Transaction
DB

Steps for compressing the database into a FP-tree:

1. Scan DB once, find frequent 1-itemsets (single items)

2. Order frequent items in frequency descending order

3. Scan DB again, construct FP-tree starting with most frequent item per transaction

Frequent Itemset Mining Algorithms FP-Tree 19

item frequency head

f 4

c 4

a 3
b 3

m 3

p 3

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

header table:

TID items bought (ordered) frequent
items

100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}

200 {a, b, c, f, l, m, o} {f, c, a, b, m}

300 {b, f, h, j, o} {f, b}

400 {b, c, k, s, p} {c, b, p}

500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

1&2
3a

3b

header table
references the
occurrences of the
frequent items in the
FP-tree

DATABASE
SYSTEMS
GROUP

Benefits of the FP-tree Structure

• Completeness:

– never breaks a long pattern of any transaction

– preserves complete information for frequent pattern mining

• Compactness

– reduce irrelevant information—infrequent items are gone

– frequency descending ordering: more frequent items are more likely to be
shared

– never be larger than the original database (if not count node-links and
counts)

– Experiments demonstrate compression ratios over 100

Frequent Itemset Mining Algorithms FP-Tree 20

DATABASE
SYSTEMS
GROUP

Mining Frequent Patterns Using
FP-tree

• General idea (divide-and-conquer)

– Recursively grow frequent pattern path using the FP-tree

• Method

– For each item, construct its conditional pattern-base (prefix paths), and then
its conditional FP-tree

– Repeat the process on each newly created conditional FP-tree …

– …until the resulting FP-tree is empty, or it contains only one path (single
path will generate all the combinations of its sub-paths, each of which is a
frequent pattern)

Frequent Itemset Mining Algorithms FP-Tree 21

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree

1) Construct conditional pattern base for each node in the FP-tree

2) Construct conditional FP-tree from each conditional pattern-base

3) Recursively mine conditional FP-trees and grow frequent patterns
obtained so far

– If the conditional FP-tree contains a single path, simply enumerate all the
patterns

Frequent Itemset Mining Algorithms FP-Tree 22

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree:
Conditional Pattern Base

1) Construct conditional pattern base for each node in the FP-tree

– Starting at the frequent header table in the FP-tree

– Traverse FP-tree by following the link of each frequent item (dashed lines)

– Accumulate all of transformed prefix paths of that item to form a conditional
pattern base

• For each item its prefixes are regarded as condition for it being a suffix. These
prefixes form the conditional pattern base. The frequency of the prefixes can be
read in the node of the item.

Frequent Itemset Mining Algorithms FP-Tree 23

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

item frequency head

f 4

c 4

a 3
b 3

m 3

p 3

header table:

item cond. pattern base

f {}

c f:3, {}

a fc:3

b fca:1, f:1, c:1
m fca:2, fcab:1

p fcam:2, cb:1

conditional pattern base:

DATABASE
SYSTEMS
GROUP

Properties of FP-tree for Conditional
Pattern Bases

• Node-link property

– For any frequent item ai, all the possible frequent patterns that contain ai

can be obtained by following ai's node-links, starting from ai's head in the
FP-tree header

• Prefix path property

– To calculate the frequent patterns for a node ai in a path P, only the prefix
sub-path of ai in P needs to be accumulated, and its frequency count should
carry the same count as node ai.

Frequent Itemset Mining Algorithms FP-Tree 24

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree:
Conditional FP-tree

1) Construct conditional pattern base for each node in the FP-tree ✔

2) Construct conditional FP-tree from each conditional pattern-base

– The prefix paths of a suffix represent the conditional basis.
They can be regarded as transactions of a database.

– Those prefix paths whose support ≥ minSup, induce a conditional FP-tree

– For each pattern-base

• Accumulate the count for each item in the base

• Construct the FP-tree for the frequent items of the pattern base

Frequent Itemset Mining Algorithms FP-Tree 25

conditional pattern base: m-conditional FP-tree

{}|m

f:3

c:3

a:3

item frequency

f 3 ..

c 3 ..

a 3 ..
b 1✗

item cond. pattern base

f {}

c f:3

a fc:3

b fca:1, f:1, c:1
m fca:2, fcab:1

p fcam:2, cb:1

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree:
Conditional FP-tree

1) Construct conditional pattern base for each node in the FP-tree ✔

2) Construct conditional FP-tree from each conditional pattern-base

Frequent Itemset Mining Algorithms FP-Tree 26

conditional pattern base:

{}|m

f:3

c:3

a:3

item cond. pattern base

f {}

c f:3

a fc:3

b fca:1, f:1, c:1
m fca:2, fcab:1

p fcam:2, cb:1

{}|f = {} {}|c

f:3

{}|a

f:3

c:3

{}|b = {} {}|p

c:3

DATABASE
SYSTEMS
GROUP

Major Steps to Mine FP-tree

1) Construct conditional pattern base for each node in the FP-tree ✔

2) Construct conditional FP-tree from each conditional pattern-base ✔

3) Recursively mine conditional FP-trees and grow frequent patterns
obtained so far

– If the conditional FP-tree contains a single path, simply enumerate all the
patterns (enumerate all combinations of sub-paths)

Frequent Itemset Mining Algorithms FP-Tree 27

example:
m-conditional FP-tree

{}|m

f:3

c:3

a:3

All frequent patterns
concerning m

m,

fm, cm, am,

fcm, fam, cam,

fcam

just a single path

DATABASE
SYSTEMS
GROUP

FP-tree: Full Example

Frequent Itemset Mining Algorithms FP-Tree 28

item frequency head

f 4

b 3

c 3

{}

b:1

c:1

header table:

TID items bought (ordered) frequent items

100 {b, c, f} {f, b, c}

200 {a, b, c} {b, c}

300 {d, f} {f}

400 {b, c, e, f} {f, b, c}

500 {f, g} {f}

minSup=0.4
f:4

b:2

c:2

database:

item cond. pattern base

f {}

b f:2, {}

c fb:2, b:1

conditional pattern base:

DATABASE
SYSTEMS
GROUP

FP-tree: Full Example

Frequent Itemset Mining Algorithms FP-Tree 29

{}

b:1

c:1

f:4

b:2

c:2

item cond. pattern base

f {}

b f:2

c fb:2, b:1

conditional pattern base 1:

{}|f = {} {}|b

f:2

{}|c

b:1f:2

b:2

item cond. pattern base

b f:2

f {}

conditional pattern base 2:

{}|fc = {} {}|bc

f:2

{{f}}
{{b},{fb}}

{{fc}}
{{bc},{fbc}}

DATABASE
SYSTEMS
GROUP

Principles of Frequent Pattern
Growth

• Pattern growth property

– Let be a frequent itemset in DB, B be 's conditional pattern base, and
be an itemset in B. Then is a frequent itemset in DB iff is frequent
in B.

• “abcdef ” is a frequent pattern, if and only if

– “abcde ” is a frequent pattern, and

– “f ” is frequent in the set of transactions containing “abcde ”

Frequent Itemset Mining Algorithms FP-Tree 30

DATABASE
SYSTEMS
GROUP

0

10

20

30

40

50

60

70

80

90

100

0 0,5 1 1,5 2 2,5 3

Support threshold(%)

R
u

n
 t

im
e(

se
c.

)

D1 FP-grow th runtime

D1 Apriori runtime

Why Is Frequent Pattern Growth
Fast?

• Performance study in [Han, Pei&Yin ’00] shows

– FP-growth is an order of
magnitude faster than Apriori,
and is also faster than
tree-projection

• Reasoning

– No candidate generation, no candidate test

• Apriori algorithm has to proceed breadth-first

– Use compact data structure

– Eliminate repeated database scan

– Basic operation is counting and FP-tree building

Frequent Itemset Mining Algorithms FP-Tree 31

Data set T25I20D10K:
T 25 avg. length of transactions
I 20 avg. length of frequent itemsets
D 10K database size (#transactions)

DATABASE
SYSTEMS
GROUP

Maximal or Closed Frequent Itemsets

• Big challenge: database contains potentially a huge number of frequent
itemsets (especially if minSup is set too low).

– A frequent itemset of length 100 contains 2100-1 many frequent subsets

• Closed frequent itemset:
An itemset X is closed in a data set D if there exists no proper super-
itemset Y such that 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑌) in D.

– The set of closed frequent itemsets contains complete information regarding
its corresponding frequent itemsets.

• Maximal frequent itemset:
An itemset X is maximal in a data set D if there exists no proper super-
itemset Y such that 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑌 ≥ 𝑚𝑖𝑛𝑆𝑢𝑝 in D.

– The set of maximal itemsets does not contain the complete support
information

– More compact representation

Frequent Itemset Mining Algorithms Maximal or Closed Frequent Itemsets 32

DATABASE
SYSTEMS
GROUP

Chapter 3: Frequent Itemset Mining

1) Introduction

– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules

– Basic notions, rule generation, interestingness measures

4) Further Topics

– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary

Outline 33

DATABASE
SYSTEMS
GROUP

Simple Association Rules:
Introduction

• Transaction database:

D= {{butter, bread, milk, sugar};
{butter, flour, milk, sugar};
{butter, eggs, milk, salt};
{eggs};
{butter, flour, milk, salt, sugar}}

• Frequent itemsets:

• Question of interest:

– If milk and sugar are bought, will the customer always buy butter as well?

𝑚𝑖𝑙𝑘, 𝑠𝑢𝑔𝑎𝑟 ⇒ 𝑏𝑢𝑡𝑡𝑒𝑟 ?

– In this case, what would be the probability of buying butter?

Frequent Itemset Mining Simple Association Rules 34

items support

{butter} 4

{milk} 4

{butter, milk} 4

{sugar} 3

{butter, sugar} 3

{milk, sugar} 3

{butter, milk, sugar} 3

DATABASE
SYSTEMS
GROUP

Simple Association Rules: Basic
Notions

 Items 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} : a set of literals (denoting items)

• Itemset 𝑋: Set of items 𝑋 ⊆ 𝐼

• Database 𝐷: Set of transactions 𝑇, each transaction is a set of items T ⊆ 𝐼

• Transaction 𝑇 contains an itemset 𝑋: 𝑋 ⊆ 𝑇

• The items in transactions and itemsets are sorted lexicographically:

– itemset 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑘), where 𝑥1 𝑥2 … 𝑥𝑘

• Length of an itemset: cardinality of the itemset (k-itemset: itemset of length
k)

• The support of an itemset X is defined as: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 = 𝑇 ∈ 𝐷|𝑋 ⊆ 𝑇

• Frequent itemset: an itemset X is called frequent iff 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) ≥ 𝑚𝑖𝑛𝑆𝑢𝑝

• Association rule: An association rule is an implication of the form 𝑋 ⇒ 𝑌
where 𝑋, 𝑌 ⊆ 𝐼 are two itemsets with 𝑋 ∩ 𝑌 = ∅.

• Note: simply enumerating all possible association rules is not reasonable!
 What are the interesting association rules w.r.t. 𝐷?

Frequent Itemset Mining Simple Association Rules 35

DATABASE
SYSTEMS
GROUP

Interestingness of Association Rules

• Interestingness of an association rule:
Quantify the interestingness of an association rule with respect to a
transaction database D:

– Support: frequency (probability) of the entire rule with respect to D

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 ⇒ 𝑌 = 𝑃 𝑋 ∪ 𝑌 =
{𝑇 ∈ 𝐷|𝑋 ∪ 𝑌 ⊆ 𝑇}

𝐷
= 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪ 𝑌)

“probability that a transaction in 𝐷 contains the itemset 𝑋 ∪ 𝑌”

– Confidence: indicates the strength of implication in the rule

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑋 ⇒ 𝑌 = 𝑃 𝑌|𝑋 =
{𝑇 ∈ 𝐷|𝑋 ∪ 𝑌 ⊆ 𝑇}

{𝑇 ∈ 𝐷|𝑋 ⊆ 𝑇}
=
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪ 𝑌)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)
“conditional probability that a transaction in 𝐷 containing the itemset 𝑋 also
contains itemset 𝑌”

– Rule form: “𝐵𝑜𝑑𝑦 ⇒ 𝐻𝑒𝑎𝑑 [𝑠𝑢𝑝𝑝𝑜𝑟𝑡, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒]”

• Association rule examples:

– buys diapers buys beers [0.5%, 60%]

– major in CS ∧ takes DB avg. grade A [1%, 75%]

Frequent Itemset Mining Simple Association Rules 36

buys beer

buys diapers
buys both

DATABASE
SYSTEMS
GROUP

Mining of Association Rules

• Task of mining association rules:
Given a database 𝐷, determine all association rules having a 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ≥
𝑚𝑖𝑛𝑆𝑢𝑝 and a 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ≥ 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 (so-called strong association
rules).

• Key steps of mining association rules:

1) Find frequent itemsets, i.e., itemsets that have at least support = 𝑚𝑖𝑛𝑆𝑢𝑝

2) Use the frequent itemsets to generate association rules

• For each itemset 𝑋 and every nonempty subset Y ⊂ 𝑋 generate rule Y ⇒ (𝑋 −
𝑌) if 𝑚𝑖𝑛𝑆𝑢𝑝 and 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 are fulfilled

• we have 2|𝑋| − 2 many association rule candidates for each itemset 𝑋

• Example
frequent itemsets

rule candidates: A ⇒ 𝐵; 𝐵 ⇒ 𝐴; A ⇒ 𝐶; 𝐶 ⇒ A; 𝐵 ⇒ 𝐶; C ⇒ 𝐵;
𝐴, 𝐵 ⇒ 𝐶; 𝐴, 𝐶 ⇒ 𝐵; 𝐶, 𝐵 ⇒ 𝐴; 𝐴 ⇒ 𝐵, 𝐶; 𝐵 ⇒ 𝐴, 𝐶; 𝐶 ⇒ 𝐴, 𝐵

Frequent Itemset Mining Simple Association Rules 37

1-itemset count 2-itemset count 3-itemset count

{A}

{B}

{C}

3

4

5

{A, B}

{A, C}

{B, C}

3

2

4

{A, B, C} 2

DATABASE
SYSTEMS
GROUP

Generating Rules from Frequent
Itemsets

• For each frequent itemset X

– For each nonempty subset Y of X, form a rule Y ⇒ (𝑋 − 𝑌)

– Delete those rules that do not have minimum confidence
Note: 1) support always exceeds 𝑚𝑖𝑛𝑆𝑢𝑝

2) the support values of the frequent itemsets suffice to calculate the
confidence

• Example: 𝑋 = {𝐴, 𝐵, 𝐶}, 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 = 60%
– conf (A B) = 3/3; ✔

– conf (B A) = 3/4; ✔

– conf (A C) = 2/3; ✔

– conf (C A) = 2/5; ✗

– conf (B C) = 4/4; ✔

– conf (C B) = 4/5; ✔

– conf (A B, C) = 2/3; ✔ conf (B, C A) = ½ ✗

– conf (B A, C) = 2/4; ✗ conf (A, C B) = 1 ✔

– conf (C A, B) = 2/5; ✗ conf (A, B C) = 2/3 ✔

• Exploit anti-monotonicity for generating candidates for strong
association rules!

Frequent Itemset Mining Simple Association Rules 38

itemset count

{A}

{B}

{C}

3

4

5

{A, B}

{A, C}

{B, C}

3

2

4

{A, B, C} 2

DATABASE
SYSTEMS
GROUP

Interestingness Measurements

• Objective measures

– Two popular measurements:

– support and

– confidence

• Subjective measures [Silberschatz & Tuzhilin, KDD95]

– A rule (pattern) is interesting if it is

– unexpected (surprising to the user) and/or

– actionable (the user can do something with it)

Frequent Itemset Mining Simple Association Rules 39

DATABASE
SYSTEMS
GROUP

Criticism to Support and Confidence

Example 1 [Aggarwal & Yu, PODS98]

• Among 5000 students

– 3000 play basketball (=60%)

– 3750 eat cereal (=75%)

– 2000 both play basket ball and eat cereal (=40%)

• Rule play basketball eat cereal [40%, 66.7%] is misleading because
the overall percentage of students eating cereal is 75% which is higher
than 66.7%

• Rule play basketball not eat cereal [20%, 33.3%] is far more
accurate, although with lower support and confidence

• Observation: play basketball and eat cereal are negatively correlated

 Not all strong association rules are interesting and some can be
misleading.
 augment the support and confidence values with interestingness
measures such as the correlation 𝐴 ⇒ 𝐵 [𝑠𝑢𝑝𝑝, 𝑐𝑜𝑛𝑓, 𝑐𝑜𝑟𝑟]

Frequent Itemset Mining Simple Association Rules 40

DATABASE
SYSTEMS
GROUP

Other Interestingness Measures:
Correlation

• Lift is a simple correlation measure between two items A and B:

! The two rules 𝐴 ⇒ 𝐵 and 𝐵 ⇒ 𝐴 have the same correlation coefficient.

• take both P(A) and P(B) in consideration

• 𝑐𝑜𝑟𝑟𝐴,𝐵 > 1 the two items A and B are positively correlated

• 𝑐𝑜𝑟𝑟𝐴,𝐵 = 1 there is no correlation between the two items A and B

• 𝑐𝑜𝑟𝑟𝐴,𝐵 < 1 the two items A and B are negatively correlated

Frequent Itemset Mining Simple Association Rules 41

𝑐𝑜𝑟𝑟𝐴,𝐵 =
𝑃(𝐴 ڂ 𝐵)

𝑃 𝐴 𝑃(𝐵)
=

𝑃 𝐵 𝐴)

𝑃 𝐵
=

𝑐𝑜𝑛𝑓(𝐴⇒𝐵)

𝑠𝑢𝑝𝑝(𝐵)

DATABASE
SYSTEMS
GROUP

Other Interestingness Measures:
Correlation

• Example 2:

• X and Y: positively correlated

• X and Z: negatively related

• support and confidence of X=>Z dominates

• but items X and Z are negatively correlated

• Items X and Y are positively correlated

Frequent Itemset Mining Simple Association Rules 42

X 1 1 1 1 0 0 0 0

Y 1 1 0 0 0 0 0 0

Z 0 1 1 1 1 1 1 1

rule support confidence correlation

𝑋 ⇒ 𝑌 25% 50% 2

𝑋 ⇒ 𝑍 37.5% 75% 0.86

𝑌 ⇒ 𝑍 12.5% 50% 0.57

DATABASE
SYSTEMS
GROUP

Chapter 3: Frequent Itemset Mining

1) Introduction

– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules

– Basic notions, rule generation, interestingness measures

4) Further Topics

– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Extensions and Summary

Outline 43

DATABASE
SYSTEMS
GROUP

Hierarchical Association Rules:
Motivation

• Problem of association rules in plain itemsets

– High minsup: apriori finds only few rules

– Low minsup: apriori finds unmanagably many rules

• Exploit item taxonomies (generalizations, is-a hierarchies) which exist
in many applications

• New task: find all generalized association rules between generalized
items Body and Head of a rule may have items of any level of the
hierarchy

• Generalized association rule: 𝑋 ⇒ 𝑌
with 𝑋, 𝑌 ⊂ 𝐼, 𝑋 ∩ 𝑌 = ∅ and no item in 𝑌 is an ancestor of any item in 𝑋
i.e., 𝑗𝑎𝑐𝑘𝑒𝑡𝑠 ⇒ 𝑐𝑙𝑜𝑡ℎ𝑒𝑠 is essentially true

Frequent Itemset Mining Further Topics Hierarchical Association Rules 44

shoes

sports shoes bootsouterwear

jackets jeans

clothes

shirts

DATABASE
SYSTEMS
GROUP

Hierarchical Association Rules:
Motivating Example

• Examples

Jeans boots

jackets boots

Outerwear boots Support > minsup

• Characteristics

– Support(“outerwear boots”) is not necessarily equal to the sum
support(“jackets boots”) + support(“jeans boots”)
e.g. if a transaction with jackets, jeans and boots exists

– Support for sets of generalizations (e.g., product groups) is higher
than support for sets of individual items
If the support of rule “outerwear boots” exceeds minsup, then the
support of rule “clothes boots” does, too

Frequent Itemset Mining Further Topics Hierarchical Association Rules 45

Support < minSup

DATABASE
SYSTEMS
GROUP

Mining Multi-Level Associations

• A top_down, progressive deepening approach:

– First find high-level strong rules:

• milk bread [20%, 60%].

– Then find their lower-level “weaker” rules:

• 1.5% milk wheat bread [6%, 50%].

• Different min_support threshold across multi-levels lead to different
algorithms:

– adopting the same min_support across multi-levels

– adopting reduced min_support at lower levels

Frequent Itemset Mining Further Topics Hierarchical Association Rules 46

Food

breadmilk

3.5%

SunsetFraser

1.5% whitewheat

Wonder

DATABASE
SYSTEMS
GROUP

Minimum Support for Multiple Levels

• Uniform Support

+ the search procedure is simplified (monotonicity)

+ the user is required to specify only one support threshold

• Reduced Support
(Variable Support)

+ takes the lower frequency of items in lower levels into consideration

Frequent Itemset Mining Further Topics Hierarchical Association Rules 47

minsup = 5 %

minsup = 5 %milk
support = 10 %

3.5%
support = 6 %

1.5%
support = 4 %

milk
support = 10 %

3.5%
support = 6 %

1.5%
support = 4 %

minsup = 3 %

minsup = 5 %

DATABASE
SYSTEMS
GROUP

Multilevel Association Mining using
Reduced Support

• A top_down, progressive deepening approach:

– First find high-level strong rules:

• milk bread [20%, 60%].

– Then find their lower-level “weaker” rules:

• 1.5% milk wheat bread [6%, 50%].

3 approaches using reduced Support:

• Level-by-level independent method:

– Examine each node in the hierarchy, regardless of whether or not its parent
node is found to be frequent

• Level-cross-filtering by single item:

– Examine a node only if its parent node at the preceding level is frequent

• Level-cross- filtering by k-itemset:

– Examine a k-itemset at a given level only if its parent k-itemset at the
preceding level is frequent

Frequent Itemset Mining Further Topics Hierarchical Association Rules 48

Food

breadmilk

3.5%

SunsetFraser

1.5% whitewheat

Wonder

level-wise processing (breadth first)

DATABASE
SYSTEMS
GROUP

Multilevel Associations: Variants

• A top_down, progressive deepening approach:

– First find high-level strong rules:

• milk bread [20%, 60%].

– Then find their lower-level “weaker” rules:

• 1.5% milk wheat bread [6%, 50%].

• Variations at mining multiple-level association rules.

– Level-crossed association rules:

• 1.5 % milk Wonder wheat bread

– Association rules with multiple, alternative hierarchies:

• 1.5 % milk Wonder bread

Frequent Itemset Mining Further Topics Hierarchical Association Rules 49

Food

breadmilk

3.5%

SunsetFraser

1.5% whitewheat

Wonder
level-wise processing (breadth first)

DATABASE
SYSTEMS
GROUP

Multi-level Association: Redundancy
Filtering

• Some rules may be redundant due to “ancestor” relationships between
items.

• Example

– 𝑅1: milk wheat bread [support = 8%, confidence = 70%]

– 𝑅2: 1.5% milk wheat bread [support = 2%, confidence = 72%]

• We say that rule 1 is an ancestor of rule 2.

• Redundancy:
A rule is redundant if its support is close to the “expected” value, based
on the rule’s ancestor.

Frequent Itemset Mining Further Topics Hierarchical Association Rules 50

DATABASE
SYSTEMS
GROUP

Interestingness of Hierarchical
Association Rules: Notions

Let 𝑋, 𝑋′, 𝑌, 𝑌′ ⊆ 𝐼 be itemsets.

• An itemset 𝑋′ is an ancestor of 𝑋 iff there exist ancestors 𝑥1
′ , … , 𝑥𝑘

′ of
𝑥1, … , 𝑥𝑘 ∈ 𝑋 and 𝑥𝑘+1, … , 𝑥𝑛 with 𝑛 = 𝑋 such that

𝑋′ = {𝑥1
′ , … , 𝑥𝑘

′ , 𝑥𝑘+1, … , 𝑥𝑛}.

• Let 𝑋′ and 𝑌′ be ancestors of 𝑋 and 𝑌. Then we call the rules 𝑋′ 𝑌′,
𝑋𝑌′, and 𝑋′𝑌 ancestors of the rule X Y .

• The rule X´ Y´ is a direct ancestor of rule X Y in a set of rules if:

– Rule X´ Y‘ is an ancestor of rule X Y, and

– There is no rule X“ Y“ such that X“ Y“ is an ancestor of
X Y and X´ Y´ is an ancestor of X“ Y“

• A hierarchical association rule X Y is called R-interesting if:

– There are no direct ancestors of X Y or

– The actual support is larger than R times the expected support or

– The actual confidence is larger than R times the expected confidence

Frequent Itemset Mining Further Topics Hierarchical Association Rules 51

DATABASE
SYSTEMS
GROUP

Expected Support and Expected
Confidence

• How to compute the expected support?
Given the rule for X Y and its ancestor rule X´ Y´ the expected
support of X Y is defined as:

𝐸𝑍′ P 𝑍 =
P(𝑧1)

P(𝑧1
′)
× ⋯×

P 𝑧𝑗

P(𝑧𝑗
′)
× P 𝑍′

where 𝑍 = 𝑋 ∪ 𝑌 = {𝑧1, … , 𝑧𝑛}, 𝑍
′ = 𝑋′ ∪ 𝑌′ = {𝑧1

′ , … , 𝑧𝑗
′, 𝑧𝑗+1, … , 𝑧𝑛} and

each 𝑧𝑖
′ ∈ 𝑍′ is an ancestor of 𝑧𝑖 ∈ 𝑍

Frequent Itemset Mining Further Topics Hierarchical Association Rules 52

[SA’95] R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.

DATABASE
SYSTEMS
GROUP

Expected Support and Expected
Confidence

• How to compute the expected confidence?
Given the rule for X Y and its ancestor rule X´ Y´, then the
expected confidence of X Y is defined as:

𝐸𝑋′⇒𝑌′ P 𝑌|𝑋 =
P(𝑦1)

P(𝑦1
′)
× ⋯×

P 𝑦𝑗

P 𝑦𝑗
′
× P 𝑌′|𝑋′

where 𝑌 = {𝑦1, … , 𝑦𝑛} and 𝑌′ = 𝑦1
′ , … , 𝑦𝑗

′, 𝑦𝑗+1, … , 𝑦𝑛 and each 𝑦𝑖
′ ∈ 𝑌′ is

an ancestor of 𝑦𝑖 ∈ 𝑌

Frequent Itemset Mining Further Topics Hierarchical Association Rules 53

[SA’95] R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.

DATABASE
SYSTEMS
GROUP

Interestingness of Hierarchical
Association Rules:Example

• Example

– Let R = 1.6

•

Frequent Itemset Mining Further Topics Hierarchical Association Rules 54

Item Support

clothes 20

outerwear 10

jackets 4

No rule support R-interesting?

1 clothes shoes 10 yes: no ancestors

2 outerwear shoes 9 yes:
Support > R *exp. support (wrt. rule 1) =

(1.6 ⋅ (
10

20
⋅ 10)) = 8

3 jackets shoes 4 Not wrt. support:
Support > R * exp. support (wrt. rule 1) = 3.2
Support < R * exp. support (wrt. rule 2) = 5.75
 still need to check the confidence!

DATABASE
SYSTEMS
GROUP

Chapter 3: Frequent Itemset Mining

1) Introduction

– Transaction databases, market basket data analysis

2) Simple Association Rules

– Basic notions, rule generation, interestingness measures

3) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

4) Further Topics

– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Multidimensional and Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Summary

Outline 55

DATABASE
SYSTEMS
GROUP

Multi-Dimensional Association:
Concepts

• Single-dimensional rules:

– buys milk buys bread

• Multi-dimensional rules: 2 dimensions

– Inter-dimension association rules (no repeated dimensions)

• age between 19-25 status is student buys coke

– hybrid-dimension association rules (repeated dimensions)

• age between 19-25 buys popcorn buys coke

Frequent Itemset Mining Extensions & Summary 56

DATABASE
SYSTEMS
GROUP

Techniques for Mining Multi-
Dimensional Associations

• Search for frequent k-predicate set:

– Example: {age, occupation, buys} is a 3-predicate set.

– Techniques can be categorized by how age is treated.

1. Using static discretization of quantitative attributes

– Quantitative attributes are statically discretized by using predefined concept
hierarchies.

2. Quantitative association rules

– Quantitative attributes are dynamically discretized into “bins”based on the
distribution of the data.

3. Distance-based association rules

– This is a dynamic discretization process that considers the distance between
data points.

Frequent Itemset Mining Extensions & Summary 57

DATABASE
SYSTEMS
GROUP

Quantitative Association Rules

• Up to now: associations of boolean attributes only

• Now: numerical attributes, too

• Example:

– Original database

– Boolean database

Frequent Itemset Mining Further Topics Quantitative Association Rules 58

ID age marital status # cars

1 23 single 0

2 38 married 2

ID age: 20..29 age: 30..39 m-status: single m-status: married . . .

1 1 0 1 0 . . .

2 0 1 0 1 . . .

DATABASE
SYSTEMS
GROUP

Quantitative Association Rules: Ideas

• Static discretization

– Discretization of all attributes before mining the association rules

– E.g. by using a generalization hierarchy for each attribute

– Substitute numerical attribute values by ranges or intervals

• Dynamic discretization

– Discretization of the attributes during association rule mining

– Goal (e.g.): maximization of confidence

– Unification of neighboring association rules to a generalized rule

Frequent Itemset Mining Further Topics Quantitative Association Rules 59

DATABASE
SYSTEMS
GROUP

Partitioning of Numerical Attributes

• Problem: Minimum support

– Too many intervals too small support for each individual interval

– Too few intervals too small confidence of the rules

• Solution

– First, partition the domain into many intervals

– Afterwards, create new intervals by merging adjacent interval

• Numeric attributes are dynamically discretized such that the confidence
or compactness of the rules mined is maximized.

Frequent Itemset Mining Further Topics Quantitative Association Rules 60

DATABASE
SYSTEMS
GROUP

Quantitative Association Rules

• 2-D quantitative association rules: Aquan1 Aquan2 Acat

• Cluster “adjacent” association
rules to form general rules
using a 2-D grid.

• Example:

Frequent Itemset Mining Further Topics Quantitative Association Rules 61

age(X,”30-34”) income(X,”24K - 48K”)
 buys(X,”high resolution TV”)

DATABASE
SYSTEMS
GROUP

Chapter 3: Frequent Itemset Mining

1) Introduction

– Transaction databases, market basket data analysis

2) Mining Frequent Itemsets

– Apriori algorithm, hash trees, FP-tree

3) Simple Association Rules

– Basic notions, rule generation, interestingness measures

4) Further Topics

– Hierarchical Association Rules

• Motivation, notions, algorithms, interestingness

– Quantitative Association Rules

• Motivation, basic idea, partitioning numerical attributes, adaptation of
apriori algorithm, interestingness

5) Summary

Outline 62

DATABASE
SYSTEMS
GROUP

Chapter 3: Summary

• Mining frequent itemsets

– Apriori algorithm, hash trees, FP-tree

• Simple association rules

– support, confidence, rule generation, interestingness measures
(correlation), …

• Further topics

– Hierarchical association rules: algorithms (top-down progressive
deepening), multilevel support thresholds, redundancy and R-
interestingness

– Quantitative association rules: partitioning numerical attributes, adaptation
of apriori algorithm, interestingness

• Extensions: multi-dimensional association rule mining

Frequent Itemset Mining Extensions & Summary 63

