



# Knowledge Discovery in Databases im Sommersemester 2013

# Kapitel 8: Assoziationsregeln

Vorlesung: Dr. Arthur Zimek Übungen: Erich Schubert

Skript © 2013 Johannes Aßfalg, Christian Böhm, Karsten Borgwardt, Martin Ester, Eshref Januzaj, Karin Kailing, Peer Kröger, Eirini Ntoutsi, Jörg Sander, Matthias Schubert, Arthur Zimek

http://www.dbs.ifi.lmu.de/cms/Knowledge\_Discovery\_in\_Databases\_I\_(KDD\_I)



## 8. Assoziationsregeln



## Inhalt dieses Kapitels

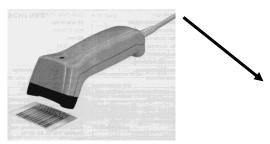
- 8.1 Einleitung
- 8.2 Grundlagen
- 8.3 Itemset Mining
- 8.4 Association Rule Mining



## 8.1 Einleitung



#### Motivation



{Butter, Brot, Milch, Zucker}

{Butter, Mehl, Milch, Zucker}

{Butter, Eier, Milch, Salz}

{Eier}

{Butter, Mehl, Milch, Salz, Zucker}

#### Warenkorbanalyse





Transaktionsdatenbank



- Anwendungen
  - Verbesserung des Laden-Layouts

  - Cross Marketing
  - gezielte Attached Mailings/Add-on Sales

The parable of the beer and diapers:

http://www.theregister.co.uk/2006/08/15/beer\_diapers/

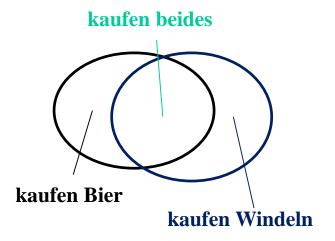


## **Einleitung**



## Assoziationsregeln

# Regeln der Form "Rumpf → Kopf [support, confidence]"



#### Beispiele

```
kauft(X,'Windeln') \rightarrow kauft(X,'Bier') [0.5\%, 60\%]
hauptfach(X,'Informatik') \land kurs(X,'KDD') \rightarrow abschluß(X,'1,0') [1\%, 75\%]
```

98% aller Kunden, die Reifen und Autozubehör kaufen, bringen ihr Auto auch zum Service



## 8.2 Grundlagen



- Items  $I = \{i_1, ..., i_m\}$  eine Menge von Literalen z.B. Waren/Artikel bei einem Einkauf
- Itemset X: Menge von Items  $X \subseteq I$ z.B. ein kompletter Einkauf
- Datenbank DB: Menge von Transaktionen T mit  $T = (tid, X_T)$ z.B. Menge aller Einkäufe (=Transaktionen) in einem bestimmten Zeitraum
- Transaktion T enthält Itemset X:  $X \subseteq T$
- Items in Transaktionen oder Itemsets sind lexikographisch sortiert: Itemset  $X = (x_1, x_2, ..., x_k)$ , wobei  $x_1 \le x_2 \le ... \le x_k$
- Länge des Itemsets: Anzahl der Elemente in einem Itemset
- k-Itemset: ein Itemset der Länge k
   {Butter, Brot, Milch, Zucker} ist ein 4-Itemset
   {Mehl, Wurst} ist ein 2-Itemset





• Cover eines Itemset X: Menge der Transaktionen T, die X enthalten:

$$cover(X) = \{tid \mid (tid, X_T) \in DB, X \subseteq X_T\}$$

• Support des Itemset X in DB: Anteil der Transaktionen in DB, die X

enthalten: support(X) = |cover(X)|

Bemerkung:  $support(\emptyset) = |DB|$ 

Häufigkeit eines Itemsets X in DB:

Wahrscheinlichkeit, daß X in einer Transaktion  $T \in DB$  auftritt: frequency(X) = P(X) = support(X) / |DB|

• Häufig auftretendes (frequent) Itemset X in DB:

 $support(X) \ge s$ 

 $(0 \le s \le |DB|)$ 

s ist ein absoluter support-Grenzwert

Alternativ:  $frequency(X) \ge s_{rel}$ 

wobei  $s = \lceil s_{rel} \cdot IDBI \rceil$ 





#### **Problem 1 (Itemset Mining)**

#### Gegeben:

- eine Menge von Items I
- eine Transaktionsdatenbank DB über I
- ein absoluter support-Grenzwert s

Finde alle frequent itemsets in *DB*, d.h.  $\{X \subseteq I \mid support(X) \ge s\}$ 

| TransaktionsID | Items |
|----------------|-------|
| 2000           | A,B,C |
| 1000           | A,C   |
| 4000           | A,D   |
| 5000           | B,E,F |

Support der 1-Itemsets:

(A): 75%, (B), (C): 50%, (D), (E), (F): 25%,

Support der 2-Itemsets:

(A, C): 50%,

(A, B), (A, D), (B, C), (B, E), (B, F), (E, F): 25%





• Assoziationsregel: Implikation der Form  $X \Rightarrow Y$ ,

wobei gilt:  $X \subseteq I$ ,  $Y \subseteq I$  und  $X \cap Y = \emptyset$ , X heißt RumpfY heißt Kopf

- Support einer Assoziationsregel  $A = X \Rightarrow Y$  in DB: Support von  $X \cup Y$  in DB support(A) = support( $X \cup Y$ )
- Häufigkeit einer Assoziationsregel A in DB: frequency(A) = support(A) / |DB|
- Konfidenz einer Assoziationsregel  $A \equiv X \Rightarrow Y$  in DB: Anteil der Transaktionen, die die Menge Y enthalten, in der Teilmenge aller Transaktionen aus DB, welche die Menge X enthalten

$$confidence(A) = \frac{support(X \cup Y)}{support(X)}$$





#### **Problem 2 (Association Rule Mining)**

#### Gegeben:

- eine Menge von Items I
- eine Transaktionsdatenbank DB über I
- Ein absoluter support-Grenzwert s und confidenz-Grenzwert c

Finde alle Assoziationsregeln  $A \equiv X \Rightarrow Y$  in DB, die mind. einen Support von s und mind. eine Konfidenz von c haben, d.h.

$$\{A \equiv X \Rightarrow Y \mid support(A) \geq s, confidence(A) \geq c\}$$

| TransaktionsID | Items |
|----------------|-------|
| 2000           | A,B,C |
| 1000           | A,C   |
| 4000           | A,D   |
| 5000           | B,E,F |

#### Assoziationsregeln:

$$A \Rightarrow C$$
 (Support = 50%, Konfidenz = 66.6%)

$$C \Rightarrow A \text{ (Support = 50\%, Konfidenz = 100\%)}$$





#### Problem 1 ist Teilproblem von Problem 2:

- Itemset X häufig bzgl. s
- Y Teilmenge von X
- $-Y \Rightarrow (X Y)$  hat minimalen Support bzgl. s

#### 2-stufiges Verfahren um Assoziationsregeln zu bestimmen:

1. Bestimmung der frequent Itemsets:

"naiver" Algorithmus:

zähle die Häufigkeit aller k-elementigen Teilmengen von I ineffizient, da  $\binom{|I|}{k}$  solcher Teilmengen

Gesamt-Kosten:  $O(2^{|I|})$ 

- => Apriori-Algorithmus und Varianten, Tiefensuch-Algorithmen
- 2. Generierung der Assoziationsregeln mit minimaler Konfidenz bzgl. c: generiere  $Y \Rightarrow (X Y)$  aus frequent Itemset X



## **Running Example**



| tid | $X_{T}$             |  |
|-----|---------------------|--|
| 1   | {Bier, Chips, Wein} |  |
| 2   | {Bier, Chips}       |  |
| 3   | {Pizza, Wein}       |  |
| 4   | {Chips, Pizza}      |  |

#### Transaktionsdatenbank

| $I = \{ Bier, $ | Chips, | Pizza, | Wein} |  |
|-----------------|--------|--------|-------|--|
|-----------------|--------|--------|-------|--|

| Itemset             | Cover     | Sup. | Freq. |
|---------------------|-----------|------|-------|
| {}                  | {1,2,3,4} | 4    | 100 % |
| {Bier}              | {1,2}     | 2    | 50 %  |
| {Chips}             | {1,2,4}   | 3    | 75 %  |
| {Pizza}             | {3,4}     | 2    | 50 %  |
| {Wein}              | {1,3}     | 2    | 50 %  |
| {Bier, Chips}       | {1,2}     | 2    | 50 %  |
| {Bier, Wein}        | {1}       | 1    | 25 %  |
| {Chips, Pizza}      | {4}       | 1    | 25 %  |
| {Chips, Wein}       | {1}       | 1    | 25 %  |
| {Pizza, Wein}       | {3}       | 1    | 25 %  |
| {Bier, Chips, Wein} | {1}       | 1    | 25 %  |

| Regel                        | Sup. | Freq. | Conf. |
|------------------------------|------|-------|-------|
| ${Bier} \Rightarrow {Chips}$ | 2    | 50 %  | 100 % |
| {Bier} ⇒ {Wein}              | 1    | 25 %  | 50 %  |
| {Chips} ⇒ {Bier}             | 2    | 50 %  | 66 %  |
| {Pizza} ⇒ {Chips}            | 1    | 25 %  | 50 %  |
| {Pizza} ⇒ {Wein}             | 1    | 25 %  | 50 %  |
| {Wein} ⇒ {Bier}              | 1    | 25 %  | 50 %  |
| {Wein} ⇒ {Chips}             | 1    | 25 %  | 50 %  |
| {Wein} ⇒ {Pizza}             | 1    | 25 %  | 50 %  |
| {Bier, Chips} ⇒ {Wein}       | 1    | 25 %  | 50 %  |
| {Bier, Wein} ⇒ {Chips}       | 1    | 25 %  | 100 % |
| {Chips, Wein} ⇒ {Bier}       | 1    | 25 %  | 100 % |
| {Bier} ⇒ {Chips, Wein}       | 1    | 25 %  | 50 %  |
| {Wein} ⇒ {Bier, Chips}       | 1    | 25 %  | 50 %  |

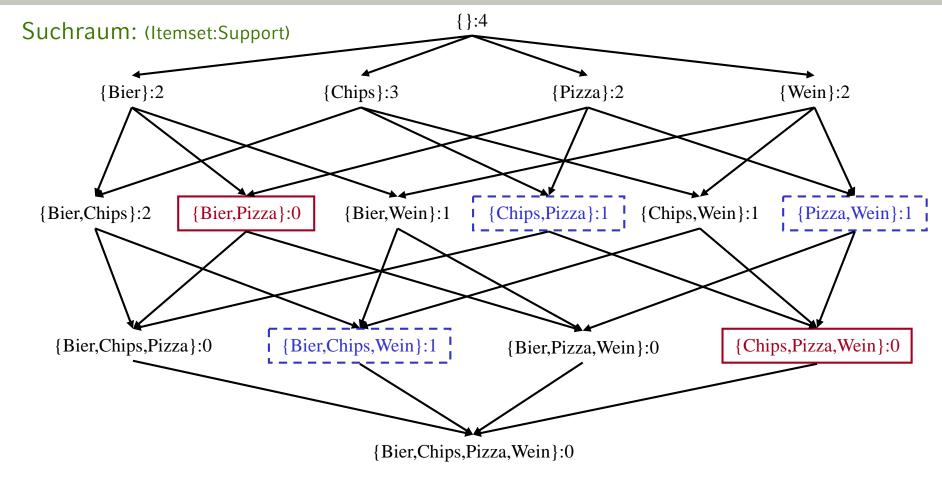




- "naiver" Algorithmus: zähle die Häufigkeit aller k-Itemsets von I teste insgesamt  $\sum_{k=1}^{m} {m \choose k} = 2^m 1$  Itemsets, d.h.  $O(2^m)$  mit m = |I|
- Kandidaten Itemset X:
   Algorithmus evaluiert, ob X frequent ist
   Kandidatenmenge sollte so klein wie möglich sein
- Rand (Border) Itemset X: alle Teilmengen  $Y \subset X$  sind frequent, alle Obermengen  $Z \supset X$  sind nicht frequent
  - *positiver Rand*: *X* is selbst frequent
  - negativer Rand: X ist selbst nicht frequent







Positive Rand-Itemsets

Minimaler Support s = 1

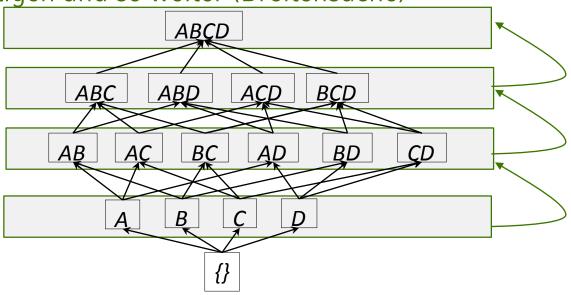
Negative Rand-Itemsets





## Apriori Algorithmus [Agrawal & Srikant 1994]

• zuerst die einelementigen Frequent Itemsets bestimmen, dann die zweielementigen und so weiter (Breitensuche)



- Finden von *k*+1-elementigen Frequent Itemsets:
- nur solche k+1-elementigen Itemsets betrachten, für die alle k-elementigen Teilmengen häufig auftreten
- Bestimmung des Supports durch Zählen auf der Datenbank (ein Scan)





```
C_k: die zu zählenden Kandidaten-Itemsets der Länge k
L_k: Menge aller häufig vorkommenden Itemsets der Länge k
Apriori(I, DB, minsup)
L_1 := \{ \text{frequent 1-Itemsets aus } I \};
k := 2i
while L_{k-1} \neq \emptyset do
    C_{\nu} := AprioriKandidatenGenerierung(L_{k-1});
     for each Transaktion T \in DB do
         CT := Subset(C_k, T); // alle Kandidaten aus <math>C_k, die
                            // in der Transaktion T enthalten sind;
         for each Kandidat c \in CT do c.count++i
    L_k := \{c \in C_k \mid c.count \geq minsup\};
    k++i
return \bigcup_k L_k;
```





#### Kandidatengenerierung

#### Anforderungen an Kandidaten-Itemsets $C_k$

- Obermenge von  $L_k$
- wesentlich kleiner als die Menge aller k-elementigen Teilmengen von I

#### Schritt 1: Join

- k-1-elementige Frequent Itemsets p und q
- *p* und *q* werden miteinander verbunden, wenn sie in den ersten *k*–2 Items übereinstimmen

$$p \in L_{k-1}$$
 (Bier, Chips, Pizza)
$$(\text{Bier, Chips, Pizza, Wein}) \in C_k$$
 $q \in L_{k-1}$  (Bier, Chips, Wein)





#### Kandidatengenerierung

#### Schritt 2: Pruning

entferne alle Kandidaten-k-Itemsets, die eine k-1-elementige Teilmenge enthalten, die nicht zu  $L_{k-1}$  gehört

#### Beispiel:

$$L_3 = \{(1\ 2\ 3),\ (1\ 2\ 4),\ (1\ 3\ 4),\ (1\ 3\ 5),\ (2\ 3\ 4)\}$$

nach dem Join-Schritt: Kandidaten =  $\{(1 \ 2 \ 3 \ 4), (1 \ 3 \ 4 \ 5)\}$ 

im Pruning-Schritt:

lösche (1345)

$$C_4 = \{(1\ 2\ 3\ 4)\}$$



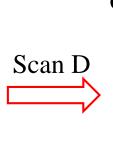


generierung Kandidaten-

#### minsup = 2

| TID | Items |  |
|-----|-------|--|
| 100 | 1 3 4 |  |
| 200 | 235   |  |
| 300 | 1235  |  |
| 400 | 2 5   |  |

## Beispiel

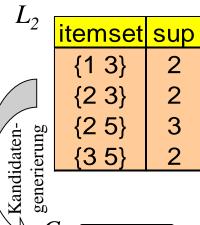


| sup. |
|------|
| 2    |
| 3    |
| 3    |
| 1    |
| 3    |
|      |



 $L_1$ 

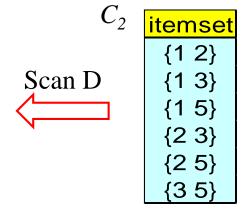
| itemset | sup. |
|---------|------|
| {1}     | 2    |
| {2}     | 3    |
| {3}     | 3    |
| {5}     | 3    |

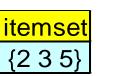




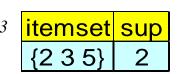


| 2 | itemset | sup |
|---|---------|-----|
|   | {1 2}   | 1   |
|   | {1 3}   | 2   |
|   | {1 5}   | 1   |
|   | {2 3}   | 2   |
|   | {2 5}   | 3   |
|   | {3 5}   | 2   |











| itemset | sup. |
|---------|------|
| {2 3 5} | 2    |





## Eigenschaften:

- Benötigt für alle Itemsets der Länge k einen Datenbank-Scan  $\Rightarrow O(l \cdot |D|)$
- Menge der generierten Kandidaten, die nicht frequent sind entspricht dem negativen Rand
- Wenn nicht alle Kandidaten Itemsets in den Hauptspeicher passen, werden Kandidaten blockweise auf min. Support überprüft



## 8.4 Association Rule Mining



#### Methode

- häufig vorkommendes Itemset X
- für jede Teilmenge Y von X die Regel  $A = Y \Rightarrow (X Y)$  bilden
- Regeln streichen, die nicht wenigstens die minimale Konfidenz haben
- Berechnung der Konfidenz einer Regel  $Y \Rightarrow (X Y)$

$$confidence(Y \Rightarrow (X - Y)) = \frac{support(X)}{support(Y)}$$

Speicherung der Frequent Itemsets mit ihrem Support in einer Hashtabelle



keine Datenbankzugriffe



## **Association Rule Mining**



- Monotonie der Konfidenz bei Assoziationsregeln:
  - seien  $X, Y, Z \subseteq I$  Itemsets mit  $X \cap Y = \emptyset$ Es gilt:  $confidence(X \setminus Z \Rightarrow Y \cup Z) \leq confidence(X \Rightarrow Y)$
- Bottom-up Bestimmung der Assoziationsregeln ähnlich Apriori-Algorithmus möglich
- Beachte: für jedes Itemset X mit support(X) > 0 gilt
  - $confidence(X \Rightarrow \emptyset) = 100\%$
  - $confidence(\emptyset \Rightarrow X) = fequency(X)$ 
    - d.h. wenn  $frequency(X) \ge c$ dann haben alle Regeln  $Y \Rightarrow (X - Y)$  minimale Konfidenz d.h.  $confidence(Y \Rightarrow (X - Y)) \ge c$



## **Association Rule Mining**



#### Interessantheit von Assoziationsregeln

#### Beispiel

- Daten über das Verhalten von Schülern in einer Schule mit 5000 Schülern
- Itemsets mit Support:

60% der Schüler spielen Fußball, 75% der Schüler essen Schokoriegel 40% der Schüler spielen Fußball *und* essen Schokoriegel

Assoziationsregeln:

"Spielt Fußball"  $\Rightarrow$  "Isst Schokoriegel", Konfidenz = 67% TRUE  $\Rightarrow$  "Isst Schokoriegel", Konfidenz = 75%



Fußball spielen und Schokoriegel essen sind negativ korreliert



## **Association Rule Mining**



## Aufgabenstellung

- Herausfiltern von irreführenden Assoziationsregeln
- Bedingung für eine Regel  $A \Rightarrow B$

$$\frac{P(A \cap B)}{P(A)} > P(B) - d$$

für eine geeignete Konstante d > 0

Maß für die "Interessantheit" einer Regel

$$\frac{P(A \cap B)}{P(A)} - P(B)$$

 Je größer der Wert für eine Regel ist, desto interessanter ist der durch die Regel ausgedrückte Zusammenhang zwischen A und B.



## Was haben Sie gelernt?



- Frequent Itemset Mining findet häufig auftretende Teilmengen in Transaktionsdatenbanken
- Assoziationsregeln unterteilen diese Teilmengen in Regeln (Kopf und Rumpf)
- Hauptaufwand entsteht beim Finden der frequent itemsets
- Monotonie, APRIORI-Algorithmus
- Cover, Support, Confidence, Interessantheit…
- Itemset Mining ist der bekannteste Vertreter des allgemeineren Data Mining Tasks, Frequent Pattern Mining
- Ausblick:
  - Es existieren noch weitere Vertreter für kompliziertere Objektdarstellungen (frequent Substrings, frequent Subgraph..., Anwendung im Subspace Clustering)
  - zahlreiche algorithmische Varianten (Partitionierung, Sampling, Tiefensuche, komprimierte Repräsentationen, Suchbäume...)



#### **Ausblick**



- Wintersemester: KDD II speziellere Themen
  - hoch-dimensionale Daten (z.B. Subspace-Clustering)
  - komplexe Daten (z.B. mengenwertige Objekte, multipel repräsentierte Objekte)
  - paralleles und verteiltes Data Mining
  - privacy-preserving Data Mining
  - Ensemble Techniken
- Sommersemester:
  - KDD I
  - Maschinelles Lernen und Data Mining (Prof. Tresp)
- Seminare zu bestimmten Themen
- Bachelor-, Master-, Diplom-, Staatsexamensarbeiten



#### **Klausur**



- Termin: 16.7.2013, 8:00 (s.t., unbedingt pünktlich kommen!). Klausurende vorauss. 9:30 Uhr
- Raum: B 201 im Hauptgebäude
- Anmeldung über UniWorX erforderlich
- Klausurstoff: Gesamte Vorlesung und Übungen
- Hilfsmittel: nicht-programmierbarer Taschenrechner