Knowledge Discovery in Databases SS 2012

Übungsblatt 8: Cluster Analysis: EM and OPTICS

Aufgabe 8-1 EM-Algorithm

Given a data set with 100 points consisting of three Gaussian clusters A, B and C and the point p.

The cluster A contains 30% of all objects and is represented using the mean of all his points $\mu_A = (2, 2)$ and the covariance matrix $\Sigma_A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$.

The cluster *B* contains 20% of all objects and is represented using the mean of all his points $\mu_B = (5,3)$ and the covariance matrix $\Sigma_B = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}$.

The cluster C contains 50% of all objects and is represented using the mean of all his points $\mu_C = (1, 4)$ and the covariance matrix $\Sigma_C = \begin{pmatrix} 16 & 0 \\ 0 & 4 \end{pmatrix}$.

The point p is given by the coordinates (2.5, 3.0).

Compute the three probabilities of p belonging to the clusters A, B and C.

The following sketch is not exact, and only gives a rough idea of the cluster locations:

Aufgabe 8-2Multivariate Density and Mahalanobis Distance

The density of the multivariate normal distribution (with Σ , μ) is computed using the formula

$$prob(p,\mu,\Sigma) := \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \cdot e^{-\frac{1}{2}\left((p-\mu)^T \Sigma^{-1}(p-\mu)\right)}$$

Find and discuss the relationship of the formula to the Mahalanobis distance (using Σ) of p to μ .

$$d_{Mahalanobis}(x, y, \Sigma) := \sqrt{(x - y)^T \Sigma^{-1}(x - y)}$$

Aufgabe 8-3 OPTICS

As distance function, use Manhattan distance $L_1(a, b) := |a_1 - b_1| + |a_2 - b_2|$. Construct an OPTICS reachability plot (see pseudo-code below) for each of the following parameter settings:

- $\varepsilon = 5$ and minPts = 2
- $\varepsilon = 5$ and minPts = 4
- $\varepsilon = 2$ and minPts = 4
- $\varepsilon = \infty$ and minPts = 4

Pseudocode OPTICS

 $seedlist = \emptyset \quad // \text{ implemented as a heap}$ for i = 0 to n-1 do $if(seedlist = \emptyset) \text{ then } seedlist = \{(random_not_handled_point, \infty)\}$ $(x, x.reach) = get_and_remove_point_with_min_reach(seedlist)$ x.pos = i x.handled = TRUE neighbors = rangeQuery(x, E) x.core = nnDist(x, neighbors, MinPts) $if(x.core < \infty)$ for each $y \in neighbors$ with not(y.handled) $if(y \notin seedlist)$ seedlist = seedlist $\cup \{(y, reach-dist(y,x))\}$ else $curr_reach = lookup(seedlist, y)$ $update(y, min(curr_reach, reach-dist(y,x)))$)
endfor

endfor