Aufgabe 5-1 Nearest neighbor classification

The 2D feature vectors in the figure below belong to two different classes (circles and rectangles). Classify the object at $(6, 6)$ — in the image represented using a triangle — using k nearest neighbor classification. Use Manhattan distance (L_1 norm) as distance function, and use the non-weighted class counts in the k-nearest-neighbor set, i.e. the object is assigned to the majority class within the k nearest neighbors. Perform kNN classification for the following values of k and compare the results with your own “intuitive” result.

(a) $k = 4$

(b) $k = 7$

(c) $k = 10$

Aufgabe 5-2 Decision trees

Predict the risk class of a car driver based on the following attributes:

- Time since getting the driving license ($1 - 2$ years, $2 - 7$ years, > 7 years)
- Gender (male, female)
- Residential area (urban, rural)
For your analysis you have the following manually classified training examples:

<table>
<thead>
<tr>
<th>Person</th>
<th>Time since license</th>
<th>Gender</th>
<th>Area</th>
<th>Risk class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1−2</td>
<td>m</td>
<td>urban</td>
<td>low</td>
</tr>
<tr>
<td>2</td>
<td>2−7</td>
<td>m</td>
<td>rural</td>
<td>high</td>
</tr>
<tr>
<td>3</td>
<td>>7</td>
<td>f</td>
<td>rural</td>
<td>low</td>
</tr>
<tr>
<td>4</td>
<td>1−2</td>
<td>f</td>
<td>rural</td>
<td>high</td>
</tr>
<tr>
<td>5</td>
<td>>7</td>
<td>m</td>
<td>rural</td>
<td>high</td>
</tr>
<tr>
<td>6</td>
<td>1−2</td>
<td>m</td>
<td>rural</td>
<td>high</td>
</tr>
<tr>
<td>7</td>
<td>2−7</td>
<td>f</td>
<td>urban</td>
<td>low</td>
</tr>
<tr>
<td>8</td>
<td>2−7</td>
<td>m</td>
<td>urban</td>
<td>low</td>
</tr>
</tbody>
</table>

(a) Construct a decision tree based on this training data. For splitting, use information gain as measure for impurity. Build a separate branch for each attribute. The decision tree shall stop when all instances in the branch have the same class, you do not need to apply a pruning algorithm.

(b) Apply the decision tree to the following drivers:
 - Person A: 1-2, f, rural
 - Person B: 2-7, m, urban
 - Person C: 1-2, f, urban

Aufgabe 5-3 Information gain

In this exercise, we want to look more closely at the information gain measure.

Let T be a set of n training objects with the attributes A_1, \ldots, A_a and the k classes c_1 to c_k.

Let $\{T^A_i | i \in \{1, \ldots, m_A\}\}$ be the disjoint, complete partitioning of T produced by a split on attribute A (where m_A is the number of disjoint values of A).

(a) Uniform distribution
 Compute $\text{entropy}(T)$, $\text{entropy}(T^A_i)$ for $i \in \{1 \ldots m_A\}$ as well as $\text{information-gain}(T, A)$ given the assumption that the class membership of T is uniformly distributed and independent of the values of A. Interpret your result!

(b) Additional uniform distribution
 We want to analyze how the number of different values influences the information gain. For this, we compare two attributes, attribute A with m_A values and attribute A' with $m_A' = m_A + 1$ values, where the relative frequencies in A' in values 1 to m_A are identical to that of A and in the additional value m_A' there is a uniform distribution of the classes.
 How does $\text{information-gain}(T, A)$ differ from $\text{information-gain}(T, A')$? Interpret your result!

(c) Attributes with many values
 Let A be an attribute with random values, not correlated to the class of the objects. Furthermore, let A have enough values, such than no two instances of the training set share the same value of A. What happens in this situation when building the decision tree? What is problematic with this situation?