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Übungsblatt 5: NN Classification and Decision Trees

Aufgabe 5-1 Nearest neighbor classification

The 2D feature vectors in the figure below belong to two different classes (circles and rectangles). Classify
the object at (6, 6) — in the image represented using a triangle — using k nearest neighbor classification. Use
Manhattan distance (L1 norm) as distance function, and use the non-weighted class counts in the k-nearest-
neighbor set, i.e. the object is assigned to the majority class within the k nearest neighbors. Perform kNN
classification for the following values of k and compare the results with your own “intuitive” result.

(a) k = 4

(b) k = 7

(c) k = 10
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Aufgabe 5-2 Decision trees

Predict the risk class of a car driver based on the following attributes:

• Time since getting the driving license (1− 2 years, 2− 7 years, > 7 years)

• Gender (male, female)

• Residential area (urban, rural)

1



For your analysis you have the following manually classified training examples:

Person Time since license Gender Area Risk class
1 1− 2 m urban low
2 2− 7 m rural high
3 > 7 f rural low
4 1− 2 f rural high
5 > 7 m rural high
6 1− 2 m rural high
7 2− 7 f urban low
8 2− 7 m urban low

(a) Construct a decision tree based on this training data. For splitting, use information gain as measure for
impurity. Build a separate branch for each attribute. The decision tree shall stop when all instances in the
branch have the same class, you do not need to apply a pruning algorithm.

(b) Apply the decision tree to the following drivers:
Person A: 1-2, f, rural
Person B: 2-7, m , urban
Person C: 1-2, f, urban

Aufgabe 5-3 Information gain

In this exercise, we want to look more closely at the information gain measure.

Let T be a set of n training objects with the attributes A1, . . . , Aa and the k classes c1 to ck.

Let {TA
i | i ∈ {1, . . . ,mA}} be the disjoint, complete partitioning of T produced by a split on attribute A

(where mA is the number of disjoint values of A).

(a) Uniform distribution
Compute entropy(T ), entropy(TA

i ) for i ∈ {1 . . .mA} as well as information-gain(T,A) given the as-
sumption that the class membership of T is uniformly distributed and independent of the values of A.
Interpret your result!

(b) Additional uniform distribution
We want to analyze how the number of different values influences the information gain. For this, we
compare two attributes, attribute A with mA values and attribute A′ with mA′ = mA + 1 values, where
the relative frequencies in A′ in values 1 to mA are identical to that of A and in the additional value mA′

there is a uniform distribution of the classes.
How does information-gain(T,A) differ from information-gain(T,A′)? Interpret your result!

(c) Attributes with many values
Let A be an attribute with random values, not correlated to the class of the objects. Furthermore, let
A have enough values, such than no two instances of the training set share the same value of A. What
happens in this situation when building the decision tree? What is problematic with this situation?
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