

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples

Induced metric

Data Mining Tutorial Session 3: Distance functions homework

Erich Schubert, Eirini Ntoutsi

Ludwig-Maximilians-Universität München

2012-05-24 - KDD class tutorial

Distance functions

- Data Mining Tutorial
- E. Schubert, E. Ntoutsi

Examples

Induced metric

- Reflexive: $x = y \Rightarrow d(x, y) = 0$ "Distance to self is 0"
- Symmetric: $d(x, y) = a \Leftrightarrow d(y, x) = a$ "Order of arguments is irrelevant"
- Strict: d(x, y) = 0 ⇒ x = y "Only identical elements have distance 0"
- ► Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y)
 "Directly x to y is at least as short as a detour over z"

You will need to know these properties!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

LMU	An important reminder
Data Mining Tutorial	
E. Schubert, E. Ntoutsi	
Examples Induced metric	You cannot prove by example.
	but you can disprove by example!

◆□▶ ◆□▶ ◆三▶ ◆□▶ ▲□ ▶

LMU	An important reminder								
Data Mining Tutorial E. Schubert, E. Ntoutsi									
Examples Induced metric	You cannot prove by example.								
	but you can disprove by example!								
	Please show that it holds for all situations or give a								

counterexample. Do not give a positive example.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Distances Homework – squared Euclidean

Data Mining Tutorial

E. Schubert, E. Ntoutsi

$$d(x, y) = \sum_{i=1}^{n} (x_i - y_i)^2$$

Examples

Induced metric

Reflexive, symmetric, strict: obvious. Triangle inequality?

How about o = (0, 0), p = (1, 0), q = (2, 0)?

d(o,q) = 4 d(o,p) + d(p,q) = 1 + 1 = 2

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Distances Homework – squared Euclidean

Data Mining Tutorial

E. Schubert, E. Ntoutsi

$$d(x, y) = \sum_{i=1}^{n} (x_i - y_i)^2$$

Examples

Induced metric

Reflexive, symmetric, strict: obvious. Triangle inequality?

How about o = (0, 0), p = (1, 0), q = (2, 0)?

 $d(o,q)=4 \quad \not\leq \quad d(o,p)+d(p,q)=1+1=2$

"Squared Euclidean distance" – not metrical. (1 dimensional counter example: 0, 1, 2)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▶ ● ○ ○ ○ ○

But not strict: dimension *n* is ignored.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Data Mining Tutorial E. Schubert, E. Ntoutsi Examples

Distances Homework – Hamming distance

$$d(x, y) = \sum_{i=1}^{n} \begin{cases} 1 & \text{iff} \quad x_i \neq y_i \\ 0 & \text{iff} \quad x_i = y_i \end{cases}$$

Discordance on binary vectors.

"Number of ones after an XOR of the two vectors". Important metric from information theory. Reflexivity, strictness, symmetry are obvious.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples

Induced metric

Proof of triangle inequality by case distinction on the individual positions (dimensions):

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples

Induced metric

Proof of triangle inequality by case distinction on the individual positions (dimensions):

A)
$$x_i = y_i \wedge y_i = z_i$$
:

$$d(x_i, y_i) + d(y_i, z_i) \geq d(x_i, z_i)$$

$$d(x_i, x_i) + d(y_i, x_i) \geq d(x_i, x_i)$$

$$0 + 0 \geq 0$$

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples

Induced metric

Proof of triangle inequality by case distinction on the individual positions (dimensions):

B)
$$x_i = y_i \land x_i \neq z_i$$
:

$$d(x_i, y_i) + d(y_i, z_i) \geq d(x_i, z_i)$$

$$d(x_i, x_i) + d(x_i, z_i) \geq d(x_i, z_i)$$

$$0 + 1 \geq 1$$

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples

Induced metric

Proof of triangle inequality by case distinction on the individual positions (dimensions):

C)
$$x_i = z_i \land x_i \neq y_i$$
:

$$d(x_i, y_i) + d(y_i, z_i) \ge d(x_i, z_i)$$

$$d(x_i, y_i) + d(y_i, x_i) \ge d(x_i, x_i)$$

$$1 + 1 \ge 0$$

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples

Induced metric

Proof of triangle inequality by case distinction on the individual positions (dimensions):

D)
$$x_i \neq y_i \land y_i = z_i$$
:

$$d(x_i, y_i) + d(y_i, z_i) \ge d(x_i, z_i)$$

$$d(x_i, y_i) + d(y_i, y_i) \ge d(x_i, y_i)$$

$$1 + 0 \ge 1$$

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples

Induced metric

Proof of triangle inequality by case distinction on the individual positions (dimensions):

E) $x_i \neq y_i \land y_i \neq z_i \land x_i \neq z_i$:

$$d(x_i, y_i) + d(y_i, z_i) \ge d(x_i, z_i)$$
$$1 + 1 \ge 1$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples

Induced metric

Proof of triangle inequality by case distinction on the individual positions (dimensions): Which implies:

$$d(x,y) + d(y,z) = \sum_{i}^{n} d(x_{i}, y_{i}) + \sum_{i}^{n} d(y_{i}, z_{i})$$
$$= \sum_{i}^{n} (d(x_{i}, y_{i}) + d(y_{i}, z_{i}))$$
$$\geq \sum_{i}^{n} d(x_{i}, z_{i}) = d(x, z)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(We have just shown the step line 2 to 3!)

Distances Homework – Other examples

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples

Induced metric

Other interesting distance functions (on sets $X, Y \subseteq \mathbb{R}^n$), for existing distance measures $d : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_0^+$:

- single-link $(X, Y) = \min_{x \in X, y \in Y} d(x, y)$
- average-link $(X, Y) = \frac{1}{|X| \cdot |Y|} \cdot \sum_{x \in X, y \in Y} d(x, y)$
- complete-link $(X, Y) = \max_{x \in X, y \in Y} d(x, y)$

They will be discussed in detail in the clustering chapter!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Distances Homework – Other examples

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples

Induced metric

There are hundreds of distance functions.

- ► For time series: DTW, EDR, ERP, LCSS, ...
- ► For text: Cosine and normalizations
- For sets based on intersection, union, ...
- For clusters (single-link etc.)
- For histograms: histogram intersection, "Earth movers distance", quadratic forms with color similarity
- With normalization: Canberra, ...
- Quadratic forms / bilinear forms: d(x, y) := x^TMy for some positive (usually symmetric) definite matrix M.

Can be seen as a part of "preprocessing": choosing the appropriate distance function!

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples Induced metric Given a pseudo-metric *d* on the set *A*: $d : A \times A \rightarrow \mathbb{R}_0^+$.

Define the equivalence relation \sim such that $x \sim y \Leftrightarrow d(x, y) = 0$.

Let A^{\sim} be the set of equivalence classes of A wrt. \sim .

$$d^{\sim}: A^{\sim} \times A^{\sim} \to \mathbb{R}^+_0$$

with $d^{\sim}(x^{\sim}, y^{\sim}) := d(x, y)$

▲ロト ▲ 理 ト ▲ 国 ト → 国 → の Q (~

Properties?

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples Induced metric Given a pseudo-metric *d* on the set *A*: $d : A \times A \rightarrow \mathbb{R}_0^+$.

Define the equivalence relation \sim such that $x \sim y \Leftrightarrow d(x, y) = 0$.

Let A^{\sim} be the set of equivalence classes of A wrt. \sim .

$$d^{\sim}: A^{\sim} \times A^{\sim} \to \mathbb{R}^+_0$$

with $d^{\sim}(x^{\sim}, y^{\sim}) := d(x, y)$

▲ロト ▲ 理 ト ▲ 国 ト → 国 → の Q (~

Properties? Well defined?

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples

Induced metric

Verify for any $z \in x^{\sim}$ and $w \in y^{\sim}$ that d(z, w) = d(x, y).

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples

Induced metric

Verify for any $z \in x^{\sim}$ and $w \in y^{\sim}$ that d(z, w) = d(x, y).

Since $z \in x^{\sim}$ and $w \in y^{\sim}$ we have

$$z^{\sim} = x^{\sim}$$
 and $d(z, x) = 0$
 $w^{\sim} = y^{\sim}$ and $d(w, y) = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples

Induced metric

Verify for any $z \in x^{\sim}$ and $w \in y^{\sim}$ that d(z, w) = d(x, y).

Since $z \in x^{\sim}$ and $w \in y^{\sim}$ we have

$$z^{\sim} = x^{\sim}$$
 and $d(z, x) = 0$
 $w^{\sim} = y^{\sim}$ and $d(w, y) = 0$

Use the triangle inequality twice:

$$d(z, w) \le d(z, x) + d(x, y) + d(y, w) \le d(x, y)$$

$$d(x, y) \le d(x, z) + d(z, w) + d(w, y) \le d(z, w)$$

Any element from the equivalence class gives the same distance for d^{\sim} . \Rightarrow well defined on A^{\sim} .

Data Mining Tutorial

E. Schubert, E. Ntoutsi Need to show: $d^{\sim}(a^{\sim}, b^{\sim}) = 0 \Leftrightarrow a^{\sim} = b^{\sim}$

Examples

Induced metric

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples Induced metric Need to show: $d^{\sim}(a^{\sim}, b^{\sim}) = 0 \Leftrightarrow a^{\sim} = b^{\sim}$ $d^{\sim}(a^{\sim}, b^{\sim}) = 0$ $\Rightarrow d(a, b) = 0$ $\Rightarrow a \sim b$ $\Rightarrow a^{\sim} = b^{\sim}$

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples Induced metric Need to show: $d^{\sim}(a^{\sim}, b^{\sim}) = 0 \Leftrightarrow a^{\sim} = b^{\sim}$ $d^{\sim}(a^{\sim}, b^{\sim}) = 0$ $\Rightarrow d(a, b) = 0$ $\Rightarrow a \sim b$ $\Rightarrow a^{\sim} = b^{\sim}$

Symmetry, triangle inequality inherited from *d*!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples

Induced metric

$$\operatorname{euclid}_{xy}((r_1, x_1, y_1), (r_2, x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Record number	x	y	Record number	x	у
1	0	1	4	1	1
2	1	1	5	2	2
3	0	1	6	3	3

Data Mining Tutorial

E. Schubert, E. Ntoutsi

Examples

Induced metric

$$euclid_{xy}((r_1, x_1, y_1), (r_2, x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Record number	x	y	Record number	x	у
1	0	1	4	1	1
2	1	1	5	2	2
3	0	1	6	3	3

Euclidean distance on $X \times Y$. Metric in $\mathbb{R}^2 \sim X \times Y$, but only a Pseudo-metric on Record number $\times X \times Y$. "Duplicate" records have a distance of 0.