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Distance functions

I Reflexive: x = y ⇒ d(x, y) = 0
“Distance to self is 0”

I Symmetric: d(x, y) = a ⇔ d(y, x) = a
“Order of arguments is irrelevant”

I Strict: d(x, y) = 0 ⇒ x = y
“Only identical elements have distance 0”

I Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y)
“Directly x to y is at least as short as a detour over z”

You will need to know these properties!
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An important reminder

You cannot prove by example.

... but you can disprove by example!

Please, show that it holds for all situations, or give a
counterexample. Do not give a positive example.
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Distances Homework – difference sum

d(x, y) =
n∑

i=1

(xi − yi)

d((0), (−1)) = −1 – must not be negative!
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Distances Homework – squared Euclidean

d(x, y) =
n∑

i=1

(xi − yi)
2

Reflexive, symmetric, strict: obvious. Triangle inequality?

How about o = (0, 0), p = (1, 0), q = (2, 0)?

d(o, q) = 4

6≤

d(o, p) + d(p, q) = 1 + 1 = 2

“Squared Euclidean distance” – not metrical.
(1 dimensional counter example: 0, 1, 2)
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Distances Homework – squared Euclidean
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2

Reflexive, symmetric, strict: obvious. Triangle inequality?

How about o = (0, 0), p = (1, 0), q = (2, 0)?

d(o, q) = 4 6≤ d(o, p) + d(p, q) = 1 + 1 = 2

“Squared Euclidean distance” – not metrical.
(1 dimensional counter example: 0, 1, 2)
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Distances Homework – projected Euclidean

d(x, y) =

√√√√n−1∑
i=1

(xi − yi)2

Reflexive, symmetric: obvious. Triangle inequality requires
some work.

But not strict: dimension n is ignored.
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Distances Homework – projected Euclidean
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Reflexive, symmetric: obvious. Triangle inequality requires
some work.
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Distances Homework – concordance

d(x, y) =
n∑

i=1

{
1 iff xi = yi

0 iff xi 6= yi

d is not reflexive – the other properties are irrelevant to us.
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Distances Homework – Hamming distance

d(x, y) =
n∑

i=1

{
1 iff xi 6= yi

0 iff xi = yi

Discordance on binary vectors.
“Number of ones after an XOR of the two vectors”.
Important metric from information theory.
Reflexivity, strictness, symmetry are obvious.
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Distances Homework – Hamming distance

Proof of triangle inequality by case distinction on the
individual positions (dimensions):
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Distances Homework – Hamming distance

Proof of triangle inequality by case distinction on the
individual positions (dimensions):
A) xi = yi ∧ yi = zi:

d(xi, yi) + d(yi, zi) ≥ d(xi, zi)

d(xi, xi) + d(yi, xi) ≥ d(xi, xi)

0 + 0 ≥ 0
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Distances Homework – Hamming distance

Proof of triangle inequality by case distinction on the
individual positions (dimensions):
B) xi = yi ∧ xi 6= zi:

d(xi, yi) + d(yi, zi) ≥ d(xi, zi)

d(xi, xi) + d(xi, zi) ≥ d(xi, zi)

0 + 1 ≥ 1
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Distances Homework – Hamming distance

Proof of triangle inequality by case distinction on the
individual positions (dimensions):
C) xi = zi ∧ xi 6= yi:

d(xi, yi) + d(yi, zi) ≥ d(xi, zi)

d(xi, yi) + d(yi, xi) ≥ d(xi, xi)

1 + 1 ≥ 0
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Distances Homework – Hamming distance

Proof of triangle inequality by case distinction on the
individual positions (dimensions):
D) xi 6= yi ∧ yi = zi:

d(xi, yi) + d(yi, zi) ≥ d(xi, zi)

d(xi, yi) + d(yi, yi) ≥ d(xi, yi)

1 + 0 ≥ 1
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Distances Homework – Hamming distance

Proof of triangle inequality by case distinction on the
individual positions (dimensions):
E) xi 6= yi ∧ yi 6= zi ∧ xi 6= zi:

d(xi, yi) + d(yi, zi) ≥ d(xi, zi)

1 + 1 ≥ 1
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Distances Homework – Hamming distance

Proof of triangle inequality by case distinction on the
individual positions (dimensions):
Which implies:

d(x, y) + d(y, z) =

n∑
i

d(xi, yi) +

n∑
i

d(yi, zi)

=

n∑
i

(d(xi, yi) + d(yi, zi))

≥
n∑
i

d(xi, zi) = d(x, z)

(We have just shown the step line 2 to 3!)
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Distances Homework – Other examples

Other interesting distance functions (on sets X,Y ⊆ Rn),
for existing distance measures d : Rn × Rn → R+

0 :

I single-link(X,Y) = minx∈X,y∈Y d(x, y)
I average-link(X,Y) = 1

|X|·|Y| ·
∑

x∈X,y∈Y d(x, y)

I complete-link(X,Y) = maxx∈X,y∈Y d(x, y)

They will be discussed in detail in the clustering chapter!
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Distances Homework – Other examples

There are hundreds of distance functions.
I For time series: DTW, EDR, ERP, LCSS, . . .
I For text: Cosine and normalizations
I For sets – based on intersection, union, . . .
I For clusters (single-link etc.)
I For histograms: histogram intersection, “Earth movers

distance”, quadratic forms with color similarity
I With normalization: Canberra, . . .
I Quadratic forms / bilinear forms: d(x, y) := xTMy for

some positive (usually symmetric) definite matrix M.

Can be seen as a part of “preprocessing”:
choosing the appropriate distance function!
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Induced metric

Given a pseudo-metric d on the set A: d : A× A→ R+
0 .

Define the equivalence relation ∼ such that
x ∼ y⇔ d(x, y) = 0.

Let A∼ be the set of equivalence classes of A wrt. ∼.

d∼ : A∼ × A∼ → R+
0

with d∼(x∼, y∼) := d(x, y)

Properties?

Well defined?
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0 .

Define the equivalence relation ∼ such that
x ∼ y⇔ d(x, y) = 0.
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Induced metric

Verify for any z ∈ x∼ and w ∈ y∼ that d(z,w) = d(x, y).

Since z ∈ x∼ and w ∈ y∼ we have

z∼ = x∼ and d(z, x) = 0
w∼ = y∼ and d(w, y) = 0

Use the triangle inequality twice:

d(z,w) ≤ d(z, x) + d(x, y) + d(y,w) ≤ d(x, y)

d(x, y) ≤ d(x, z) + d(z,w) + d(w, y) ≤ d(z,w)

Any element from the equivalence class gives the same
distance for d∼. ⇒ well defined on A∼.
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Induced metric

Need to show:
d∼(a∼, b∼) = 0⇔ a∼ = b∼

d∼(a∼, b∼) = 0
⇒ d(a, b) = 0
⇒ a ∼ b
⇒ a∼ = b∼

Symmetry, triangle inequality inherited from d!
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Induced metric

euclidxy((r1, x1, y1), (r2, x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2

Record number x y
1 0 1
2 1 1
3 0 1

Record number x y
4 1 1
5 2 2
6 3 3

Euclidean distance on X × Y. Metric in R2 ∼ X × Y,
but only a Pseudo-metric on Record number× X × Y.
“Duplicate” records have a distance of 0.
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