Data Mining Tutorial

Session 2: Tools, Loading and Visualizing

Erich Schubert, Eirini Ntoutsi
Ludwig-Maximilians-Universitat Miinchen

2012-05-10 — KDD class tutorial

g od

Iris data

We will use a simple data set, available from
http://aima.cs.berkeley.edu/data/iris.csv

Four measurements:

sepal length, sepal width, petal length, petal width
Three species:

Iris Setosa, Iris Versicolour and Iris Virginica.

This is a classic example data set for classification, as it is
linearly separable.

http://aima.cs.berkeley.edu/data/iris.csv

Open-source Java application, available at: WEKA
http://www.cs.waikato.ac.nz/ml/weka/ N it

Popular for classification and prediction.

Weka

Debian and Ubuntu: package weka.
Installed in the CIP pool.

Run with weka or manually: java —-jar weka.jar.
You may need to increase the memory, e.g. weka -m 2g

Uses a lot of memory, and sometime is rather slow.

u]
o)

1
n
it
N)
»
i)

http://www.cs.waikato.ac.nz/ml/weka/

Weka

Open the * Explorer
dialog” to set “noHeaderRowPresent”
see something like this:

"o

Open file”

= G o
Preprocess Select attributes | Visuallze |

[Plot Matrix 5.1 0.2
a0 b
o]
oaioF
1.4 Eegsn

Update

Jitter: Select Attributes
|colour: setosa (Nom) I+ subsample %: [[Loo |
Class Col
-t color virain
‘ oK

=P

. Check “Invoke options
. Go to “visualize” to

DA

Weka

Weka has a wide choice of filters, including normalization

“unsupervised.attribute.Normalize” normalizes to [0... 1]
“unsupervised.attribute.Standardize” standardizes to have
mean p = 0 and variance o? = 1.

“Attribute” filters work on single attributes.

“Instance” filters work on instances (e.g. shuffle)

DA

ELKI

LMU

Data Mining

Tutorial Our own open source Java framework: Environment for
. Do Developing
E. Schubert, .
: Et;ugit http : //elkl . dbS Lifi. lmu . de/ KDD-AppIications
Focus on clustering and outlier Supported by Index-Structures
Iris d. . . .
e detection along with index structures
Tools .
weko for acceleration.
SciPy . .
enue Debian and Ubuntu: package elki.

Summary

Installed in the CIP pool.
Run with elki or manually: java —-jar elki.jar.

MiniGUI is mostly a command line builder (work in
progress).

Algorithms are fast, but visualization (currently) rather slow
because of SVG library (which is nice for print output).

http://elki.dbs.ifi.lmu.de/

ELKI

Set the parameter “-dbc.in” to the input file and as
“-algorithm” choose “NullAlgorithm”. Run it to get this:

T — — —
||I|W ; | l | e
CbNRb), b A kb g, e
B Qvirginica
i;: :
j; |

u]
o)
1
n
it

DA

ELKI

ELKI filters can be set via ~dbc.filter.
normalization.AttributeWiseMinMaxNormalization
normalizes each attribute to [0...1]

normalization.AttributeWiseVarianceNormalization
standardizes each attribute to mean p = 0, variance or=1.

Many filters will perform conversions on the data that you
might need, for example turn label columns into class
columns.

DA

SciPy, NumPy and MatPlotLib

LMU

Data Minin
Totorial - Stack of Python libraries consisting of NumPy

£ oS hubert (lowlevel math), MatPlotLib (visualization)
and SciPy (highlevel math, statistics)
http://scipy.org/

Iris data

Tools
Weka

e Not just data mining, any kind of “science”.

SciPy

o Quite fast for matrix operations due to use of BLAS,
otherwise slow because interpreted.

Easy to write python code, various extensions.

Debian and Ubuntu: packages python-scipy and
python—-matplotlib. Installed in the CIP pool.

Run with python or ipython interactively (not a GUI).

http://scipy.org/

A quick Python script:

import numpy as np, pylab as p

Load CSV with mixed data types

iris = np.genfromtxt ("data/iris.csv",
delimiter=",", dtype=None)

Get fields f0, f1 and f4:

X, y = iris["f0"], iris["f1"]

species = iris["f4"]

Plot each species (for colors)
for s in np.unique (species):
cond = (species == s) # Filter
p.plot(x[cond], yl[cond], label=s,
linestyle="none", marker="o")

p.legend (numpoints=1)
p.show ()

Yes, that is the complete program. Try it interactively!

DA

The NumPy way of doing things:
Normalization to [0. .. 1]:

y = (y — y.min()) / (y.max() — y.min())

Standardize: ddof=1: use sample standard deviation.
x = (x - x.mean()) / x.std(ddof=1)

SciPy:

Standardize (also known as z-score):
y = scipy.stats.zscore (y)

Fast when you can write them as matrix operations.

DA

GNU R
LMU

el Open-source mathematics and statistics

£ Schubert, software, with hundrets of extension packages.
o http://r-project.org/

Tools

. Launch: R, then type 1ibrary (Remdr) for a GUI.
. There should be a menu entry at the CIP pool!

Summary

Very fast on math operations such as matrix multiplication
due to the use of BLAS libraries. Essentially, it is an

programming language on its own. Many modules written
however are written in C for performance.

Huge collection of libraries, including a lot of data mining.

http://r-project.org/

iris <- read.csv("data/iris.csv",
cols <- c("red","green3","blue") [unclass (iris$V5)]

plot (iris[1:4], bg=cols,

05 10 15 20 25

o
i

o

header=FALSE)

45 85 65 758

-

123 4567

The GNU R way of doing things:
Normalization to [0. .. 1]:
y = (y —y.min()) / (y.max() - y.min())

Standardization:
iris$vl <-(irisS$Vl-mean (iriss$vl)) / sd(irissSvl)

Explicit, but a one-liner.

Benefit of a full scripting language: can express these
things inline, instead of reyling on a specialized class
(Weka, ELKI) to do the same.

u]
o)
1
n
it

DA

Many factors play a role:

» Has it the functions you need
Weka: classification, ELKI: clustering and outliers,
NumPy/R: fast math

» Do you know the language

Weka/ELKI: Java, SciPy: Python, R: R
» Prototyping or for polished code

Python/R: prototyping, Weka/ELKI: refined code
» Personal preference

| sketch in Python, implement thoroughly in ELKI

DA

	Iris data
	Tools
	Weka
	ELKI
	SciPy
	GNU R
	Summary

