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* Previous KDD I lectures on LMU (Johannes ARfalg, Christian Bohm, Karsten
Borgwardt, Martin Ester, Eshref Januzaj, Karin Kailing, Peer Kroger, Jorg Sander,
Matthias Schubert, Arthur Zimek)

e Tan P.-N., Steinbach M., Kumar V., Introduction to Data Mining, Addison-
Wesley, 2006

e Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and
Techniques, 3rd ed., Morgan Kaufmann, 2011.

e Christoph Lippert | Data Mining in Bioinfortics | Clustering — tutorial,
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A categorization of major clustering methods

Density-based methods cont’
Grid-based methods
Model-based methods

An overview of clustering
Things you should know

Homework/tutorial
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e Partitioning approaches:

— Construct various partitions and then evaluate them by some

criterion, e.g., minimizing the sum of square errors

— Typical methods: k-means, k-medoids, CLARANS

e Hierarchical approaches: |

— Create a hierarchical decomposition of the set of data (or

objects) using some criterion

— Typical methods: Diana, Agnes, BIRCH, ROCK, CHAMELEON 1 2 3 a4 s
e Density-based approaches: e
— Based on connectivity and density functions ,,.1 : ,,1-;-"""’;1
— Typical methods: DBSCAN, OPTICS, DenClue _;;::’___ gl
“Crappanet
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e Grid-based approaches:

— based on a multiple-level granularity structure

— Typical methods: STING, WaveCluster, CLIQUE

e Model-based approaches:

— A model is hypothesized for each of the clusters and tries to find the best fit of that model to

each other

— Typical methods: EM, SOM, COBWEB

* Frequent pattern-based approaches:

— Based on the analysis of frequent patterns

— Typical methods: pCluster

e User-guided or constraint-based approaches:

— Clustering by considering user-specified or application-specific constraints

— Typical methods: COD (obstacles), constrained clustering

Knowledge Discovery in Databases I: Clustering lll
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* Introduction

e A categorization of major clustering methods

e Density-based methods cont’

e Grid-based methods
 Model-based methods
 An overview of clustering
e Things you should know

e Homework/tutorial

Knowledge Discovery in Databases I: Clustering lll
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e Clusters are regions of high density surrounded by regions of low density
(noise)
e Clustering based on density (local cluster criterion), such as density-connected
points
e Major features:
— Discover clusters of arbitrary shape
— Handle noise
— One scan
— Need density parameters as termination condition
e Several interesting studies:
— DBSCAN: Ester, et al. (KDD’96)
— OPTICS: Ankerst, et al (SIGMOD’99).
— DENCLUE: Hinneburg & D. Keim (KDD’98)

— CLIQUE: Agrawal, et al. (SIGMOD’98) (more grid-based)

Knowledge Discovery in Databases I: Clustering lll
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DBSCAN (Ester et al, KDD’96)
(previous lecture)

p directly density—
e reachable fromq
- . - SI ‘
. ., raachable fromq e ;..
. : S . ° g not directly density- q not density—
. L
-

Two parameters:

— Eps (or €): Maximum radius of the neighbourhood

LMU

— MinPts: Minimum number of points in an Eps-neighbourhood of that point

Eps-neighborhood of a pointpin D
Neps(P): {q belongs to D | dist(p,q) <= Eps}

Core points Border points Noise

ﬂ;

D

<)
"l\

%

reachable from p eacheble fromp o
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p and q density—

| connected to
each other by o
A

A cluster is a maximal set of
density-connected points
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e OPTICS: Ordering Points To Identify the Clustering Structure
— Extension of DBSCAN

* Itdoes not produce a clustering of a dataset explicitly, instead it produces a
special ordering of the database w.r.t. its density-based clustering structure

e This cluster-ordering contains information that is equivalent to the density-
based clusterings corresponding to a broad range of parameter settings

o (J
’ o .::...

e Good for both automatic and interactive L%l o
cluster analysis, including finding intrinsic o %o,
clustering structure

e Can be represented graphically

Cluster-ordering of the objects
Knowledge Discovery in Databases I: Clustering lll
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parameters

data space

e Use a hierarchical clustering?

— Difficult to interpret the dendrogram for large datasets

e Use DBSCAN with different parameters?

— Infinite number of possible parameters

Knowledge Discovery in Databases I: Clustering lll

LMU

In many cases the intrinsic cluster structure cannot be characterized by global density

Different local densities may be needed to reveal clusters in different regions of the

Global densities would result in:

e A,B,C clusters
or
* C, C,, C;clusters

10
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e Observation: for a constant minPts value, density-based clusters w.r.t. to a
lower value for € are completely contained in density-based clusters with a

higher value for €
MinPts = 3

Cis acluster w.r.t. g,
C,, G, are clusters w.r.t. €, <g,;

e C contains C,, C,

* |dea: extend DBSCAN so as several distance parameters are processed at the

same time
This way, density-based clusters w.r.t. different densities are constructed

simultaneously

Knowledge Discovery in Databases I: Clustering Ill
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e Core distance of an object p

Let N_(p) be the e-neighborhood of p in D and let MinPtsdistance(p) be the
distance from p to its MinPts’ neighbor.

UNDEFINED, if |N_(p)|< MinPts

coredistance _,,. =
eines (P) {MinPtsdistance( P), otherwise

— Is simply the smallest distance €’ between p and an object g in its e-neighborhood
such that p would be a core point w.r.t. " if g was contained in N_(p). Otherwise is
undefined.

MinPts=4

Knowledge Discovery in Databases I: Clustering Ill
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e Reachability distance of an object p w.r.t. an object o
Let N_(o) be the e-neighborhood of o in D.

UNDEFINED if | N_(0) |< MinPts

reachabilitydistance, ... (P,0) = _ _ _
| max{coredistance(o),dist(o, p)}, otherwise

— Is the smallest distance so as p is directly density-reachable from o, if o is core.

O It cant be smaller than coredistance(o) because otherwise o will not be core

— it depends on the core object o w.r.t. which it is calculated.

MinPts=4

Knowledge Discovery in Databases I: Clustering lll
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OrderedFile.open();

IF

OPTICS (SetOfObjects, &, MinPts, OrderedFile)

FOR i FROM 1 TO SetOfObjects.size DO
Object := SetOfObjects.get(i);

THEN

ExpandClusterOrder(SetOfObjects, Object, €,
MinPts. OrderedFile)

OrderedFile.close();

END; // OPTICS

Knowledge Discovery in Databases I: Clustering lll
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ExpandClusterOrder(SetOfObjects, Object, €, MinPts,
OrderedFile);

neighbors ;= SetOfObjects.neighbors(Object, €);

Object.Processed .= TRUE;

Object.reachability_distance := UNDEFINED;

Object.setCoreDistance(neighbors, £, MinPts);

OrderedFile.write(Object);

IF Object.core_distance <> UNDEFINED T
OrderSeeds.update(neighbors, Objec:t)
WHILE NOT OrderSeeds.empty() D

currentObject .= OrderSeeds. next(}/

neighbors:=SetOfObjects.neighbors(currentObject, €);

currentObject.Processed := TRUE;

currentObject.setCoreDistance(neighbors, €, MinPts);

OrderedFile.write(currentObject);

IF currentObject.core_distance<>UNDEFINED THEN
OrderSeeds.update(neighbors, currentObject);

The objects contained in OrderSeeds
are sorted by their reachability-
L distance to the closest core object,
Object, from which they have been
directly density-reachable.

the object having the smallest
— reachability-distance in the seed-list
is selected, currentObject

OrderSeeds::update(neighbors, CenterObject);
c_dist .= CenterObject.core_distance;
FORALL Object FROM neighbors DO

IF NOT Object.Processed THEN

END:; // ExpandClusterOrder

Output: OPTICS outputs the points in a particular ordering.
Each point is accompanied with its coredistance and its
smallest reachability distance.

Knowledge Discovery in Databases I: Clustering lll

Object.reachability_distance := new_r_dist;
insert(Object, new_r_dist);
ELSE // Object already in OrderSeeds

Object.reachability_distance := new_r_dist;
decrease(Object, new_r_dist);
END; // OrderSeeds::update

new_r_dist:=max(c_dist,CenterObject.dist(Object));
IF Object.reachability_distance=UNDEFINED THEN

IF new_r_dist<Object.reachability_djstance THEN

15



e Example Database (2-dimensional, 16 points)
e c=44, MinPts=3

reach
A

44

seed list:




w

DATABASE Exa m p I e 2

SYSTEMS
GROUP

e Example Database (2-dimensional, 16 points)
e c=44, MinPts=3

reach

[0 9]

44

MU

seed list: (B,40) (I, 40)

Knowledge Discovery in Databases I: Clustering Ill
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e Example Database (2-dimensional, 16 points)
e c=44, MinPts=3

reach
o0
44 ‘
A B

Knowledge Discovery in Databases I: Clustering lll 18

seed list: (I, 40) (C, 40)
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e Example Database (2-dimensional, 16 points)
e c=44, MinPts=3

reach

A B |

MU

seed list: (J, 20) (K, 20) (L, 31) (C, 40) (M, 40) (R, 43)

Knowledge Discovery in Databases I: Clustering lll
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e Example Database (2-dimensional, 16 points)
e c=44, MinPts=3

reach
o0
44 ‘
A B I J

MU

seed list: (L, 19) (K, 20) (R, 21) (M, 30) (P, 31) (C, 40)

Knowledge Discovery in Databases I: Clustering lll
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e Example Database (2-dimensional, 16 points)
e c=44, MinPts=3

reach
o0
44‘
A B I J L

MU

seed list: (M, 18) (K, 18) (R, 20) (P, 21) (N, 35) (C, 40)

Knowledge Discovery in Databases I: Clustering lll
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e Example Database (2-dimensional, 16 points)
e c=44, MinPts=3

reach

'
44‘

ABIl J LM

seed list: (K, 18) (N, 19) (R, 20) (P, 21) (C, 40)

Knowledge Discovery in Databases I: Clustering lll 22
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e Example Database (2-dimensional, 16 points)
e c=44, MinPts=3

reach

'
44‘

ABIl J L MK

MU

seed list: (N, 19) (R, 20) (P, 21) (C, 40)
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e Example Database (2-dimensional, 16 points)
e c=44, MinPts=3

reach

o0
44‘

ABIl J L MKN

seed list: (R, 20) (P, 21) (C, 40)

Knowledge Discovery in Databases I: Clustering Ill 24
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e Example Database (2-dimensional, 16 points)
e c=44, MinPts=3

reach

o0
44‘

ABIl J L MKNR

seed list: (P, 21) (C, 40)
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Example 11

e Example Database (2-dimensional, 16 points)

e c=44, MinPts=3

0@ @
20

reach

o0
44‘

ABIl JLMKNINRP

s B . =y
F= § o el | oW
R,
s
AL L
= |
- |
3

seed list: (C, 40)

Knowledge Discovery in Databases I: Clustering lll
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e Example Database (2-dimensional, 16 points)
e c=44, MinPts=3

reach

o0
44‘

ABIl J LMKNRPC

seed list: (D, 22) (F, 22) (E, 30) (G, 35)

Knowledge Discovery in Databases I: Clustering lll 27
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e Example Database (2-dimensional, 16 points)
e c=44, MinPts=3

reach

o0
44‘

ABIl J LMKNRPCD

seed list: (F, 22) (E, 22) (G, 32)

Knowledge Discovery in Databases I: Clustering lll 28
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e Example Database (2-dimensional, 16 points)

Example 14

e c=44, MinPts=3

r"\-'-' A - -
- 4 | & e T
§= =SB Y

1 & iy

| =
Y b S b

L L =
il

'
44‘

ABIl J LMKNRPCDF

seed list: (G, 17) (E, 22)

Knowledge Discovery in Databases I: Clustering lll
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e Example Database (2-dimensional, 16 points)

Example 15

e c=44, MinPts=3

FANna R
- 4 | & e T
§= =SB Y

1 & iy

| =
Y b S b

1 L =
il

o0
44‘

ABI J LMKNRPCDTFSG

seed list: (E, 15) (H, 43)

Knowledge Discovery in Databases I: Clustering lll
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e Example Database (2-dimensional, 16 points)
e c=44, MinPts=3

reach

o0
44‘

ABI J L MKNRPCDTFGE

seed list: (H, 43)

Knowledge Discovery in Databases I: Clustering lll 31
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Example 17

e Example Database (2-dimensional, 16 points)

e c=44, MinPts=3

reach

'
44‘ I

ABIl J LMKNRPCDTFGEH

seed list: -

Knowledge Discovery in Databases I: Clustering lll
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e Example Database (2-dimensional,

e =44, MinPts=3

16 points)

reach

44-

Hﬂﬂﬂﬂﬂﬂlﬂlll

ABI J LMKNRPCDTFGEH
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e A 2D plot of objects ordering (x-axis) and reachability distance (y-axis)

LMU

e Clusters correspond to valleys in the plot since their cluster members have a low reachability

distance to their nearest neighbor.
—The deeper the valley the denser the cluster

Reachability
distance

/

undefined |

E_

Knowledge Discovery in




: another example

Reachability plot

L
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£
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35

Cluster ordering of the objects
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05 L

Dim. 2

04 L
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0.15
0.1
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Knowledge Discovery in Databases I: Clustering lll

Reachability
distance



‘ o [ ] [ ] [ ] [ ]
& | Reachability plot: an example with hierarchical
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Cluster ordering of the objects
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e Draw a horizontal line to obtain a clustering.

(a) Data set

Depending on the data distribution,
the lower the line is the more
clusters would emerge

Knowledge Discovery in Databases I: Clustering lll

LMU

(a) Data set

(b) Reachability Plot
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RIS EE
:.‘.:‘-. :;:‘:g.:-..c :.- =‘: .-
Verls i
.o ;,'.'."'&:f . .,
- - .2 ® . : .
MinPts =10, € =10 MinPts=10,€=5 MinPts=2,e=10

1 2

2 3

optimal parameters smaller €

* Cluster ordering is robust to the parameter values € and MinPts

— Good results when parameter values are “large enough”
—the smaller €, the more objects may have undefined reachability distance
—the smaller MinPts, the more jagged the plot looks

* Also, cluster ordering is independent from the dimension of the dataset

Knowledge Discovery in Databases I: Clustering lll

smaller MinPts
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* Introduction
e A categorization of major clustering methods

e Density-based methods cont’

e Grid-based methods

e Model-based methods
 An overview of clustering
e Things you should know

e Homework/tutorial

Knowledge Discovery in Databases I: Clustering lll
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e A grid structure is used to capture the density of the dataset.
— Acluster is a set of connected dense cells

— STING (a STatistical INformation Grid approach) by Wang, Yang and Muntz
(VLDB’97)

— WaveCluster by Sheikholeslami, Chatterjee, and Zhang (VLDB’98)
— CLIQUE: Agrawal, et al. (SIGMOD’98)

e for high-dimensional data

e Appealing features

— No assumption on the number of clusters

— Discovering clusters of arbitrary shapes
— Ability to handle outliers

Knowledge Discovery in Databases I: Clustering Ill 40
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 The spatial area is divided into rectangular cells
e There are several levels of cells corresponding to different levels

of resolution
| / Ist layer

P

Knowledge Discovery in Databases I: Clustering Ill
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e Each cell at a high level is partitioned into a number of smaller
cells in the next lower level

e Statistical info of each cell is pre-computed and stored
beforehand for query answering

 Parameters of higher level cells can be easily calculated from
parameters of lower level cells
e Count, mean, standard deviation, min, max
e Type of distribution—normal, uniform, etc

Knowledge Discovery in Databases I: Clustering Ill
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e Atop-down approach

e Start from a pre-selected layer—typically with a small number of
cells

* Remove the irrelevant cells from further consideration

 When finish examining the current layer, proceed to the next
lower level

e Repeat this process until the bottom layer is reached

Knowledge Discovery in Databases I: Clustering Ill
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 Advantages:
— Query-independent, easy to parallelize, incremental update
— O(K), where K is the number of grid cells at the lowest level

 Disadvantages:

— All the cluster boundaries are either horizontal or vertical, and no diagonal
boundary is detected

Knowledge Discovery in Databases I: Clustering lll 44
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* Introduction
e A categorization of major clustering methods
e Density-based methods cont’

e Grid-based methods

e Model-based methods

 An overview of clustering
e Things you should know

e Homework/tutorial

Knowledge Discovery in Databases I: Clustering lll
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 Assumption: data have been generated by a statistical process

e @Goal: find the statistical model that best fits the data

e Each cluster can be seen as one distribution
— e.g., Gaussian distribution

* Objects are assumed to be independent samples from their cluster distribution

e A particular kind of statistical model: Gaussian mixture models

 Procedure: decide on the model and find the parameters of that model from
the data

Knowledge Discovery in Databases I: Clustering lll 46



w

ammse]  @auUssian Mixture Models

SYSTEMS
GROUP

LMU

Objects are points x = (x4, ..., X4) in a Euclidean vector space

Data are independent and identically distributed samples from a
mixture of k distributions

Each cluster is a multivariate Gaussian distribution

Each cluster is represented by
— Mean (centroid) p.
— dx d covariance matrix Z_ for the points in cluster c

Probability density function of a Gaussian distribution

1 N
1 _E'(X_:Uc )T 2o 1'(X_/Uc)

PXIO = o e

Knowledge Discovery in Databases I: Clustering Ill
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Univariate normal distribution

0.5 -
0.4 A
0.3 1

=

02

0.1 A

Multivariate normal distribution

0.0
A

MU

No covariance Negative Positive
covariance covariance

Knowledge Discovery in Databases I: Clustering lll

Bivariate normal distribution
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* Probability of a cluster c

e Probability of observing an object x.
Z P(c;)P(x;|c;)

— where P(x;|c) is given by the probability density function of the Gaussian
distribution

Knowledge Discovery in Databases I: Clustering lll
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Gaussian Mixture Models
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e |f the objects are generated in an independent manner, the
probability of the whole set of objects X, | X|=N, is just the
product of the probabilities of each x; in X:

L = HP ;)
v
HZP P(xz;|cr)

1=1 =1

e Using statistical methods, we can estimate the parameters of

these distributions from the data, and thus describe the clusters.

Knowledge Discovery in Databases I: Clustering lll
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e How can we partition the data?
— Choose the most likely cluster assignment of each object

argmax P(ci|z;) = aTgmax P(c))P(x;|cr)

e How to estimate the efficient statistics of each cluster?

— Use Expectation — Maximization (EM) algorithm
— Original algorithm by [Dempster, Laird and Rubin, 1977]

— A general method for method for finding the maximume-likelihood estimate
of a data distribution, when the data is partially missing or hidden.

— In our case, data are fully observed
— The cluster assignments of an object x;, though can be seen as hidden variables

Knowledge Discovery in Databases I: Clustering lll
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e I|nitialize cluster assignments

e Two alternating steps:
— E-step
re-estimate the expected-values of the hidden data (cluster assignments)
under the current estimate of the model

— M-step
re-estimate the model parameters such that the likelihood according to the
current estimate of the complete data is maximized

 Until convergence

Knowledge Discovery in Databases I: Clustering lll
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e E-step: re-estimate the expected-values of the hidden data
(cluster assignments) under the current estimate of the model

P i) = P(e)P(xilea)

Knowledge Discovery in Databases I: Clustering lll
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* M-step: re-estimate the model parameters such that the
likelihood according to the current estimate of the complete data
is maximized

— Cluster densities: q N
Pea) = 5 3P el
i=1
N oW
— Cluster means: N zntw _ Z 1 CIZ"PM u( z,)

S P

7;)

— Cluster covariances:

Z}*!;ew _ Zf\; ( . ﬂneu)(ll _ /Jnew) P'n,e.-w((_:l‘i?i)
| >y P (e x;)

Knowledge Discovery in Databases I: Clustering lll
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e EMis similar to the k-Means algorithm (previous lecture)

e k-Means for Euclidean data is a special case of EM for spherical
Gaussian distributions with equal covariance matrices, but
different means

e E-step (EM) = assign each object to a cluster step (k-Means)

— In EM each object is assigned to a cluster with a probability

e M-step (EM) = compute cluster centroids step (k-Means)

e In EM, the computation of the mean also considers the fact that each
object belong to a distribution with a certain probability

Knowledge Discovery in Databases I: Clustering Ill
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— EM can be slow
— Not practical for models with a large number of components

— Problematic when clusters contain only a few points or if the
points are nearly co-linear

— The choice of the exact model to use
— Difficulties with noise and outliers

+ More general than k-Means and fuzzy c-Means because they can
use distributions of various types

+ Thus, it can find clusters of different sizes and elliptical shapes
+ Itis easy to characterize the produced clusters

Knowledge Discovery in Databases I: Clustering Ill
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* Introduction

e A categorization of major clustering methods
e Density-based methods cont’

e Grid-based methods

e Model-based methods

 An overview of clustering

e Things you should know

e Homework/tutorial

Knowledge Discovery in Databases I: Clustering lll
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A cluster is a set of data objects that are similar to one another within the same
cluster and dissimilar to the objects in other clusters

Cluster analysis: Find similarities between data according to the characteristics
found in the data and group similar data objects into clusters

Key points in clustering
— Similarity/ distance function
— Learning algorithm
An unsupervised learning task
— No clues on the number of clusters, nor in the characteristics of these clusters

Important DM task: as a stand-alone tool or as a preprocessing step

A large amount of algorithms
— Partitioning methods
— Hierarchical methods
— Density-based methods
— Model-based methods

Knowledge I.)'i's:covery in Databases I: Clustering lll 58
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Partitioning methods

Construct a partition of a database D of n objects into a set of k clusters
— Each object belongs to exactly one cluster (hard clustering)
— The number of clusters k is given in advance

The partition should optimize the chosen partitioning criterion

— e.g., minimize the intra-cluster variance, i.e., the sum of the squared distances from
each data point to its cluster center.

k-Means: choose a set of k points {c,, ¢,,...,c,} in the d-dimensional space to
form clusters {C,, C,,...,C,} such that the following quantity is minimized

Cost(C) = Zk: > (x—c)’

i:]. XECI &

k-Means (centroid) — k-Medoids (medoid)
Other methods that scale to large datasets, e.g. CLARA, CLARANS

Knowledge Discovery in Databases I: Clustering Ill 59
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Hierarchical methods

e Create a hierarchical decomposition of the dataset. Not a single clustering but a

set of nested clusters organized as a hierarchical tree (dendrogram)

e 2 ways: Agglomerative (bottom up) — Divisive (top down)

e How to merge (split) and when to stop?

* Inter-cluster similarity: | ‘ I__‘

— single link,

— complete link,
— group average,
— centroid,

— Ward’s method,
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Density-based clustering

e Clusters are regions of high density surrounded by regions of low
density (noise)

e Density is measured locally in Eps-neighborhood
e DBSCAN

— minPts, Eps parameters

ot
L1}

— Core points, border points, noise points
— Direct reachability, reachability, connectivity, cluster

* OPTICS

— Cluster ordering
— Core distance, reachability distance
— Reachability plot
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Grid-based clustering
— A grid structure is used to capture the dataset distribution
— Work in the grid, after mapping the points to the grid

Model-based clustering

LMU

— Data have been generated by a statistical process, the goal is to find the

statistical model that best fits the data
— EM algorithm
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* Introduction

e A categorization of major clustering methods
e Density-based methods cont’

e Grid-based methods

e Model-based methods

 An overview of clustering

e Things you should know

e Homework/tutorial

Knowledge Discovery in Databases I: Clustering lll



e Density-based methods cont’

— OPTICS

O core-distance, reachability distance

O Reachability plot
e Grid-based methods

— STING

e Model-based methods

- EM
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Tutorial: Tutorial this Thursday on clustering

Homework:
— Try OPTICS in Weka, Elki

e Canyou interpret the reachability plot?

e What if you change some parameter, €, MinPts?
Suggested reading:

— Tan P.-N., Steinbach M., Kumar V., Introduction to Data Mining, Addison-Wesley,
2006 (Chapter 9).

— HanJ., Kamber M., Pei J. Data Mining: Concepts and Techniques 3rd ed., Morgan
Kaufmann, 2011 (Chapter 10)

Knowledge Discovery in Databases I: Clustering lll



	Lecture notes�Knowledge Discovery in Databases�Summer Semester 2012
	Sources
	Outline
	Major clustering methods I
	Major clustering methods II
	Outline
	Density-based clustering
	DBSCAN (Ester et al, KDD’96)�(previous lecture)
	OPTICS (Ankerst et al, SIGMOD’99)
	Motivation
	OPTICS: idea
	OPTICS basic notions I
	OPTICS basic notions II
	OPTICS pseudocode I
	OPTICS pseudocode II
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10
	Example 11
	Example 12
	Example 12
	Example 14
	Example 15
	Example 16
	Example 17
	Example 18
	Slide Number 34
	Reachability plot: another example
	Reachability plot: an example with hierarchical clusters
	Slide Number 37
	Parameters effect
	Outline
	Grid-based methods
	STING I
	STING II
	STING III
	STING: overview
	Outline
	Model-based clustering
	Gaussian Mixture Models
	Multivariate normal distribution
	Gaussian Mixture Models
	Gaussian Mixture Models
	Gaussian Mixture Models clustering
	EM algorithm I
	EM algorithm II
	EM algorithm III
	EM and k-Means
	EM (Gaussian Mixture Models) overview
	Outline
	Clustering
	Clustering methods I
	Clustering methods II
	Clustering methods III
	Clustering methods IV
	Outline
	Things you should know
	Homework/ Tutorial

