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Sources

• Previous KDD I lectures on LMU (Johannes Aßfalg, Christian Böhm, Karsten
Borgwardt, Martin Ester, Eshref Januzaj, Karin Kailing, Peer Kröger, Jörg Sander, 
Matthias Schubert, Arthur Zimek)

• Tan P.-N., Steinbach M., Kumar V., Introduction to Data Mining,  Addison-
Wesley, 2006

• Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and 
Techniques, 3rd ed., Morgan Kaufmann, 2011. 
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Outline

• Introduction

• A categorization of major clustering methods

• Hierarchical methods

• Density based methods

• Grid based methods (next lecture)

• Model-based methods (next lecture)

• Things you should know

• Homework/tutorial
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Major clustering methods I

• Partitioning approaches: 

– Construct various partitions and then evaluate them by some 

criterion, e.g., minimizing the sum of square errors

– Typical methods: k-means, k-medoids, CLARANS

• Hierarchical approaches: 

– Create a hierarchical decomposition of the set of data (or 

objects) using some criterion

– Typical methods: Diana, Agnes, BIRCH, ROCK, CHAMELEON

• Density-based approaches: 

– Based on connectivity and density functions

– Typical methods: DBSCAN, OPTICS, DenClue
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Major clustering methods II

• Grid-based approaches: 

– based on a multiple-level granularity structure

– Typical methods: STING, WaveCluster, CLIQUE

• Model-based approaches: 

– A model is hypothesized for each of the clusters and tries to find the best fit of that model to 

each other

– Typical methods: EM, SOM, COBWEB

• Frequent pattern-based approaches:

– Based on the analysis of frequent patterns

– Typical methods: pCluster

• User-guided or constraint-based approaches: 

– Clustering by considering user-specified or application-specific constraints

– Typical methods: COD (obstacles), constrained clustering
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Outline

• Introduction

• A categorization of major clustering methods

• Hierarchical methods

• Density based methods

• Grid based methods (next lecture)

• Model-based methods (next lecture)

• Things you should know

• Homework/tutorial

Knowledge Discovery in Databases I: Clustering II 6



DATABASE
SYSTEMS
GROUP

Hierarchical methods idea

• Produces a set of nested clusters organized as a hierarchical tree

• Can be visualized as a dendrogram
– A tree like diagram that records the sequences of merges or splits

– The height at which two clusters are merged in the dendrogram reflects 
their distance
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Strengths of Hierarchical Clustering

• Do not have to assume any particular number of clusters
– Any desired number of clusters can be obtained by ‘cutting’ the 

dendrogram at the proper level

• They may correspond to meaningful taxonomies
– Example in biological sciences (e.g., animal kingdom, phylogeny 

reconstruction, …)
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Hierarchical vs Partitioning
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Hierarchical clustering methods

• Two main types of hierarchical clustering

– Agglomerative:  
• Start with the points as individual clusters

• At each step, merge the closest pair of clusters until 
only one cluster (or k clusters) left

• e.g., AGNES

– Divisive:  
• Start with one, all-inclusive cluster 

• At each step, split a cluster until each cluster contains 
a point (or there are k clusters)

• e.g., DIANA

• Traditional hierarchical algorithms use a similarity or 
distance matrix

– Merge or split one cluster at a time
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Agglomerative clustering algorithm

• More popular hierarchical clustering technique

• Basic algorithm is straightforward

1. Compute the proximity matrix
2. Let each data point be a cluster
3. Repeat
4. Merge the two closest clusters
5. Update the proximity matrix
6. Until only a single cluster remains

• Key points:
– the computation of the proximity of two clusters

• Different approaches to defining the distance between clusters distinguish the 
different algorithms (single link, complete link, …..)

– the update of the proximity matrix due to cluster merges
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Starting situation 

• Start with clusters of individual points and a proximity matrix
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Intermediate situation I

• After some merging steps, we have some clusters 
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Intermediate situation II

• We want to merge the two closest clusters (C2 and C5)  and update 
the proximity matrix. 
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After merging

• The question is “How do we update the proximity matrix?” Or, in other words, 
what is the similarity between two  clusters?
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Measures of inter-cluster similarity I

A variety of different measures:
• Single link (or MIN)
• Complete link (or MAX)
• Group average
• Distance between centroids
• Distance between medoids
• Other methods driven by an objective function

• Ward’s Method uses squared error
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Measures of inter-cluster similarity II

• Single link (or MIN):  smallest distance between an element in one cluster and an 

element in the other, i.e.,  
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Measures of inter-cluster similarity III

• Complete link (or MAX): largest distance between an element in one cluster and an 

element in the other, i.e.,  
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Measures of inter-cluster similarity IV

• Group average: avg distance between an element in one cluster and an element in 

the other, i.e.,  
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Measures of inter-cluster similarity V

• Centroid: distance between the centroids of two clusters, i.e.,  
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Example
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Single link distance (MIN): discussion

• Similarity of two clusters is based on the two most similar (closest) points in the 
different clusters

– Determined by one pair of points, i.e., by one link in the proximity graph.
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Single link distance (MIN): strengths
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Single link distance (MIN): limitations
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Complete link distance (MAX): discussion

• Similarity of two clusters is based on the two least similar (most distant) points 
in the different clusters

– Determined by one pair of points, i.e., by one link in the proximity graph.
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Complete link distance (MAX): strengths
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Complete link distance (MAX): limitations
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Group average: discussion

• Proximity of two clusters is the average of pairwise proximity between points in 
the two clusters.

– Determined by all pairs of points in the two clusters
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Group average: strengths and limitations

• Compromise between Single and Complete Link

• Strengths
– Less susceptible to noise and outliers

• Limitations
– Biased towards spherical clusters
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Ward’s method

• Ward’s method or Ward's minimum variance method
• The proximity between two clusters is measured in terms of the increase in SSE that 

results from merging the two clusters
• At each step, merge the pair of clusters that leads to minimum increase in total inter-cluster variance after 

merging. 

• Similarly to k-Means, tries to minimize the sum of square distances of points from their cluster centroids

• Similar to group average if distance between points is distance squared

• Less susceptible to noise and outliers

• Biased towards spherical clusters
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Comparison of the different methods
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Hierarchical methods: complexity

• O(N2) space since it uses the proximity matrix.  
– N is the number of points.

• O(N3) time in many cases
– There are N steps and at each step the size, N2, proximity matrix must be updated 

and searched

– Complexity can be reduced to O(N2 log(N) ) time for some approaches
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How to get a clustering from a dendrogram

• A dendrogram is a tree of clusters.  

• A clustering of the data objects is obtained by cutting the dendrogram at the 
desired level, then each connected component forms a cluster. 
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Hierarchical clustering: overview

• No knowledge on the number of clusters

• Produces a hierarchy of clusters, not a flat clustering

• A single clustering can be obtained from the dendrogram

• Merging decisions are final
– Once a decision is made to combine two clusters, it cannot be undone

• Lack of a global objective function
– Decisions are local, at each step

• Different schemes have problems with one or more of the following:
– Sensitivity to noise and outliers

– Breaking large clusters

– Difficulty handling different sized clusters and convex shapes

• Inefficiency, especially for large datasets
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Bisecting k-Means

• Hybrid methods: k-Means and hierarchical clustering

• Idea: first split the set of points into two clusters, select one of these clusters 
for further splitting, and so on, until k clusters.

• Pseudocode:

• Example:
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Outline

• Introduction

• A categorization of major clustering methods

• Hierarchical methods

• Density based methods

• Grid based methods (next lecture)

• Model-based methods (next lecture)

• Things you should know

• Homework/tutorial
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Density based clustering

• Clusters are regions of high density surrounded by regions of low density 
(noise)

• Clustering based on density (local cluster criterion), such as density-connected 
points

• Major features:
– Discover clusters of arbitrary shape
– Handle noise
– One scan
– Need density parameters as termination condition

• Several interesting studies:
– DBSCAN: Ester, et al. (KDD’96)

– OPTICS: Ankerst, et al (SIGMOD’99).

– DENCLUE: Hinneburg & D. Keim (KDD’98)

– CLIQUE: Agrawal, et al. (SIGMOD’98) (more grid-based)
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The notion of density

• Density:
– Density is measured locally in the Eps-neighborhood (or ε-neighborhood) of each 

point 

– Density = number of points within a specified radius Eps (point itself included)

• Density depends on the specified radius
– In an extreme small radius, all points will have a density of 1 (only themselves)

– In an extreme large radius, all points will have a density of N (the size of the 
dataset)
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DBSCAN basic concepts

• Consider a dataset D of objects to be clustered

• Two parameters:

– Eps (or ε): Maximum radius of the neighbourhood

– MinPts: Minimum number of points in an Eps-neighbourhood of that point

• Eps-neighborhood of a point p in D

– NEps(p): {q belongs to D | dist(p,q) <= Eps}
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Core points vs border points vs noise points

• Let D be a dataset. Given a radius parameter Eps and a density 
parameter MinPts we can distinguish between:

– Core points
A point is a core point if it has more than a specified number 
of points (MinPts) within a specified radius Eps, i.e.,:

|NEps(p)={q | dist(p,q) <= Eps }| ≥ MinPts

- These are points that are at the interior of a cluster

– Border points

A border point has fewer than MinPts within Eps, but it is in the 
neighborhood of a core point

– Noise points

not a core point nor a border point.
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Example
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Core, Border and Noise points
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Direct reachability

• Directly density-reachable: A point p is directly density-reachable 
from a point q w.r.t. Eps, MinPts if 

– p belongs to NEps(q)

– q is a core point, i.e.,: |NEps (q)| >= MinPts
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Reachability

• Density-reachable: 

– A point p is density-reachable from a point q w.r.t. Eps, MinPts if there is a 
chain of points p1, …, pn, p1 = q, pn = p such that pi+1 is directly density-
reachable from pi

Knowledge Discovery in Databases I: Clustering II 44



DATABASE
SYSTEMS
GROUP

Connectivity

• Density-connected

– A point p is density-connected to a point q w.r.t. Eps, MinPts if there is a point 
o such that both, p and q are density-reachable from o w.r.t. Eps and MinPts
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Cluster

• A cluster is a maximal set of density-connected points
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DBSCAN algorithm

• Arbitrary select a point p

• Retrieve all points density-reachable from p w.r.t. Eps and MinPts.

• If p is a core point, a cluster is formed.

• If p is a border point, no points are density-reachable from p and 

DBSCAN visits the next point of the database.

• Continue the process until all of the points have been processed.
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DBSCAN pseudocode I

DBSCAN(Dataset DB, Real Eps, Integer MinPts)
// initially all objects are unclassified,

// o.ClId = unclassified for all o ∈ DB

ClusterId := nextId(NOISE);

for i from 1 to |DB| do

Object := DB.get(i); 

if Object.ClId = unclassified then

if ExpandCluster(DB, Object, ClusterId, Eps, MinPts) 

then ClusterId:=nextId(ClusterId);
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DBSCAN pseudocode II

ExpandCluster(DB, StartObject, ClusterId, Eps, MinPts): Boolean
seeds:= RQ(StartObjekt, Eps);
if |seeds| < MinPts then // StartObject is not a core object

StartObject.ClId := NOISE;
return false;

else // else: StartObject is a core object
forall o ∈ seeds do o.ClId := ClusterId;
remove StartObject from seeds;
while seeds ≠ Empty do

select an object o from the set of seeds;
Neighborhood := RQ(o, Eps);
if |Neighborhood| ≥ MinPts then // o is a core object

for i from 1 to |Neighborhood| do
p := Neighborhood.get(i);
if p.ClId in {UNCLASSIFIED, NOISE} then

if p.ClId = UNCLASSIFIED then
add p to the seeds;

p.ClId := ClusterId;
end if;

end for;
end if;
remove o from the seeds;

end while;  
end if
return true;
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Complexity

• For a dataset D consisting of n points, the time complexity of 
DBSCAN is O(n x time to find points in the Eps-neighborhood)

• Worst case O(n2)

• In low-dimensional spaces O(nlogn); 
– efficient data structures (e.g., kd-trees) allow for efficient retrieval of all 

points within a given distance of a specified point
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When DBSCAN works well?

• Resistant to noise

• Can handle clusters of different shapes and sizes
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When DBSCAN does not work well?

• Varying densities

• High-dimensional data
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DBSCAN: determining Eps and MinPts

• Idea is that for points in a cluster, their kth nearest neighbors are at roughly 
the same distance

• Noise points have the kth nearest neighbor at farther distance
• So, plot sorted distance of every point to its kth nearest neighbor
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OPTICS

We will discuss OPTICS next time ….
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Outline

• Introduction

• A categorization of major clustering methods

• Hierarchical methods

• Density based methods

• Grid based methods (next lecture)

• Model-based methods (next lecture)

• Things you should know

• Homework/tutorial
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Things you should know

• Hierarchical methods

– Agglomerative, divisive

– Cluster comparison measures

• Bisecting k-Means

• Density based methods

– DBSCAN
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Homework/ Tutorial

Tutorial: Tutorial this Thursday on clustering

Homework:
– Try hierarchical clustering in Weka, Elki

– Implement your own hierarchical clusterer
• Try the different cluster similarity measures

– Try density based clustering in Elki, Weka

– Implement your own DBSCAN 
• Experiment with different Eps, MinPts parameters

Suggested reading:
– Tan P.-N., Steinbach M., Kumar V., Introduction to Data Mining,  Addison-Wesley, 

2006 (Chapter 8). 

– Han J., Kamber M., Pei J. Data Mining: Concepts and Techniques 3rd ed., Morgan 
Kaufmann, 2011 (Chapter 10)
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