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Sources

• Previous KDD I lectures on LMU (Johannes Aßfalg, Christian Böhm, Karsten
Borgwardt, Martin Ester, Eshref Januzaj, Karin Kailing, Peer Kröger, Jörg Sander, 
Matthias Schubert, Arthur Zimek)

• Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and 
Techniques, 3rd ed., Morgan Kaufmann, 2011. 

• Tan P.-N., Steinbach M., Kumar V., Introduction to Data Mining,  Addison-
Wesley, 2006

• Boosting tutorial by Robert Schapire, Machine Learning Summer School (MLSS), 
Chicago 2005 (http://videolectures.net/mlss05us_schapire_b/)

• Support Vector and Kernel  Machines,  Nello Cristianini, http://www.support-
vector.net/icml-tutorial.pdf
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Outline

• Introduction

• Support Vector Machines

• Ensembles of classifiers

• An overview of classification

• Things you should know

• Homework/tutorial
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Support Vector Machines (SVM)

• A popular classification method

• Its roots are in statistical learning theory

• Promising results in many applications, e.g., handwritten text 
classification, text categorization

• The decision boundary is represented using a subset of the 
training examples, support vectors
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Basic idea

Lets start with  a simple 2 class problem

• Goal: find a hyperplane (decision boundary) that will separate the data based 
on their class

– In 2D this is just a straight line
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Finding a hyperplane I
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B1

One possible solution
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Finding a hyperplane II
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B2

Another possible solution
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Finding a hyperplane III
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B2

Other possible solutions
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Choosing a hyperplane I

• Which hyperplane is better?
• How do you define better?
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Choosing a hyperplane II
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b21
b22

margin

Find hyperplane that maximizes the margin => B1 is better than B2
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classifier B1

Margin of 
classifier B2



DATABASE
SYSTEMS
GROUP

Linear SVM I

• A linear SVM searches for a hyperplane that maximizes the margin 
(maximal margin classifier)

• Consider a simple 2 class problem. Let D=(xi) and yi={-1,1}

• We can represent a linear classifier by:
• w is a weight vector and b a scalar (bias)
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Linear SVM II

• The margin of B1 is given by the distance between the two 
hyperplanes b11, b12.

• Let x1, x2 be two points in b11, b12 respectively.

• We want to maximize this margin
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Linear SVM III

• We want to maximize

– This is equivalent to minimizing the following objective function: 

– but, subject to the following constraints
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Linear SVM IV

• This is a constrained quadratic optimization problem
– The constraints are rewritten using a Lagrangian formulation

• The solution (trained SVM) consists of
– The support vectors
– The parameters w, b of the decision boundary

• How can I classify a new instance?

– λi: Lagrange multipliers
– xi: is the support vector
– yi: is the class of xi
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Linear SVM: nonseparable cases

What if the problem is not linearly separable?
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• B1 should be preferred over B2
– it has a wider margin  less 
susceptible to overfitting

• but, the so far SVM 
formulation is error free

– > Soft margin approach
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Soft margin approach I

• Learn a decision boundary that is tolerable to small training errors

• Allows SVM to construct a decision boundary even in cases where the classes 
are not linearly separable

• Idea: trade-off between the width of the margin and the misclassification 
errors committed by the linear decision boundary
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Soft margin approach II

• Relaxing by introducing slack variables ξi, ξi ≥0

– The slack variable ξi measures the degree 
of missclassification of instance xi

– Intuitively, data points on the incorrect side 
of the margin boundary have a penalty that  
increases with the distance from it.
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Soft margin approach III

Updated definition

• Need to minimize:

• Subject to the following constraints: 

• Can be solved used quadratic programming
– This way we can learn the parameters w, b of the decision boundary
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Nonlinear SVM

What if the decision boundary is not linear?
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Idea I

• Trick: transform the data from its original space x into a new space 
Φ(x) so that a linear decision boundary can be used to separate 
the instances in the transformed space

• In  Φ(x), we can apply the same methodology as before to find a 
linear decision boundary
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Idea II

• Intuitively, we extend the hypothesis space

• e.g., 
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Example I
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Example II

Elliptical boundary in the input space becomes linear in the 

transformed space
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Nonlinear SVM definition

Updated definition

• Need to minimize:

• Subject to the following constraints: 

• Can be solved used quadratic programming
– This way we can learn the parameters w, b of the decision boundary

• Classifying a new instance z (through the transformed space)
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Kernel trick

The kernel trick is a method for computing similarity between two 

instances in the transformed feature space using the original 

attribute set.
• e.g., consider the mapping: 

• The dot product between 2 input vectors u, v in the transformed space is:

• So, we can express the dot product in Φ(x) in terms of a similarity function in 
the original feature space

Knowledge Discovery in Databases I: Classification 25

( )1,2,2,,),(: 21
2
2

2
121 xxxxxx →Φ

( ) ( )1,2,2,,*1,2,2,,)()( 21
2
2

2
121

2
2

2
1 vvvvuuuuvu =ΦΦ

2
2211

2
2

2
2

2
1

2
1

)1(

122

+=

++++=

uv
vuvuvuvu

2)1()()(),( +=ΦΦ= uvvuvuKkernel 
function

A function that returns the dot product 
between the images of two vectors



DATABASE
SYSTEMS
GROUP

Kernels

The main requirement for a kernel function in nonlinear SVM:

There must exist a transformation such that the kernel function 

computed for two vectors is equivalent to the dot product between 

these vectors in the transformed space.

Mercer’s Theorem: 

A kernel function K can be expressed as: 

K(u,v)=Φ(u)Φ(v)

if and only if, for any function g(x) such that                is finite, then

These functions are called positive definite kernel functions
Knowledge Discovery in Databases I: Classification 26
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Kernel functions

Popular kernel functions:

• Linear

• Polynomial

• Gaussian kernel

• Radial basis function kernel

Choosing the right kernel depends on the problem at hand
– a linear kernel allows us to model hyperplanes / a polynomial kernel allows us to model 

feature conjunctions / radial basis functions allows us to model hyperspheres

– Parameter settings is also important!
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Kernel Machines

Radial Basis Kernel

Polynomial kernel (degree 2)
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SVM: overview

+ High accuracy classifiers

+ Relatively weak tendency to overfitting

+ Efficient classification of new objects 

+ Compact models

– Costly implementation

– sometimes long training times

– found models difficult to interpret
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Outline

• Introduction

• Support Vector Machines

• Ensembles of classifiers

• An overview of classification

• Things you should know

• Homework/tutorial
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Ensemble of classifiers

• Idea:
– Instead of a single model, use a combination of models to increase 

accuracy

– Combine a series of T learned models, M1, M2, …, MT, with the aim of 
creating an improved model M*

– To predict the class of previously unseen records, aggregate the predictions 
of the ensemble
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How to generate ensembles of classifiers I

• By manipulating the training set
– Multiple training sets are created by resampling the original training data

– A classifier is built from each training set using some learning algorithm

– e.g., bagging, boosting

• By manipulating the input features
– A subset of features is chosen to form each training set (randomly or by 

domain experts)

– A base classifier is built from each training set using some learning 
algorithm

– e.g., random forests
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How to generate ensembles of classifiers II

• By manipulating the class labels
– Transform into a binary classification problem by randomly partitioning the 

class labels in two disjoint subsets A0, A1. Training examples who belong to 
A0 are assigned to class 0, the rest to class 1. 

– The relabeled examples are used to train a base classifier.

– Repeat the class-relabeling and model-building steps multiple times to 
derive the ensemble

– During testing, if the test instance is predicted as class 0 (1), all classes in A0
(A1) will receive a vote

• By manipulating the learning algorithm
– Many learning algorithms can be manipulated such that applying the same 

algorithm in the same data might result in different models

– e.g., insert randomness in the tree-growing process

o e.g., instead of choosing the best splitting attribute choose randomly
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Bagging/ Bootstrap aggregation
(Breiman, 1996)

• Analogy: Diagnosis based on multiple doctors’ majority vote

• Training: Given a training set D of d tuples
– In each iteration i: i=1, … , T

• Randomly sample with replacement from D  a training set Di of d tuples 
(i.e., boostrap)

– On avg, the bootstrap sample contains approximately 63% of the original D

• Train a chosen “base model” Mi (e.g. neural network, decision tree) on 
the sample Di

• Testing
– For each test example

• Get the predicted class from each trained base model M1, M2, … MT

• Final prediction by majority voting
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Bagging example I
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Training set
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Bagging example II
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Combining the predictions
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Bagging overview

• The performance of bagging depends on the stability of base 
learners
• If the base learner is unstable, bagging helps to reduce the errors 

associated with random fluctuations in the training data

• If a base learner is stable, i.e., robust to minor perturbations of the training 
set, bagging may not be able to improve the performance of the base 
learners significantly.

• It may even degrade the overall performance because the size of each dataset 
is ~37% smaller than the original data

• It is less susceptible to model overfitting when applied to noisy 
data
• since it does not focus on any particular instance of the training data
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Boosting

• An iterative procedure to adaptively change distribution of 
training data by focusing more on previously misclassified records
– Initially, all N records are assigned equal weights

– Unlike bagging, weights may change at the end of boosting round
– Records that are wrongly classified will have their weights increased

– Records that are classified correctly will have their weights decreased

• Adaptive boosting; each classifier is dependent on the previous 
one and focuses on the previous one’s errors

• Adaboost
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Adaboost (Freund and Schapire, 1995)

• Given a training set D of d instances (X1, y1), …, (Xd, yd)

• Initially, all instances have the same weight: 1/d

• A weak learner is trained and its error is computed 

• The weights are updated based on the weak learner error
– If a tuple is misclassified, its weight is increased, o.w. it is decreased

• The new weights are used in the next round

• The final decision (upon the arrival of a new test instance) is a linear 
combination of the weak learners decisions;  the decision of each weak 
learner is by its error
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Adaboost (Freund and Schapire, 1995)
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Adaboost example
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Round 1

Round 2

Round 3

Final classifier

From: http://videolectures.net/mlss05us_schapire_b/
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Boosting overview

• Concentrates on more difficult examples

• Can be quite susceptible to overfitting
– since it focuses on training examples that are wrongly classified

• Comparing to bagging: boosting tends to achieve greater 
accuracy, but it also risks overfitting the model to misclassified 
data
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Ensembles: overview

• Pros
– Better classification performance than individual classifiers
– More resilience to noise

• Cons
– Time consuming
– Overfitting

• Necessary conditions
– The base classifiers should be independent of each other
– The base classifiers should do better than a classifier that performs random 

guessing
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Outline

• Introduction

• Support Vector Machines

• Ensembles of classifiers

• An overview of classification

• Things you should know

• Homework/tutorial
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Overview of the classification process

• Model construction:
– Based on a training set
– The class label for each training instance is known
– The output of this step is a model :

• e.g.  a decision tree,  Naïve Bayes etc

• Model evaluation:
– Based on a test set
– The class label for each testing instance is known and is 

compared with the model prediction 
– The output of this step are some quality measures:

• e.g. accuracy

• Model usage: 
– If the quality is acceptable, use the model to classify data 

tuples whose class labels are not known
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Class attribute:  tenured={yes, no}

predefined class values

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Training set

known class label attribute

Test set

NAME RANK YEARS TENURED PREDICTED
Maria Assistant Prof 3 no no
John Associate Prof 7 yes no
Franz Professor 3 yes yes

known class label attribute

predicted class value by the model

NAME RANK YEARS TENURED PREDICTED
Jeff Professor 4 ? yes
Patrick Associate Prof 8 ? yes
Maria Associate Prof 2 ? no

unknown class label attribute

predicted class value by the model
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Decision tree classifiers

• A partition-based method

• Selecting the best attribute for splitting

• Avoiding overfitting
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Naïve Bayes classifiers

• A statistical method

• Maximum likelihood classification

• Bayes Rule

• Independency assumption: 

• Estimating: 
• P(c)

• P(Ai|c)

• Dealing with 0 probabilities
Knowledge Discovery in Databases I: Classification 47
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kNN classifiers

• A similarity-based method

• Learning from your neighbors

• Lazy learner

• Distance function

• # of neighbors (k)

• Voting
• Majority voting

• Weighted voting
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Support Vector machines

• A statistical method

• Maximizes the margin of the decision boundary

• Kernel functions
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More methods

• Neural networks

• Ensembles of classifiers
• Bagging 

• Boosting
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Evaluation of classifiers: quality measures

Confusion Matrix

Different quality measures:
• Accuracy - Error rate

• Sensitivity - Specificity

• Precision - Recall

• F1 score/ F-score/ F-measure
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Evaluation of classifiers: train – test sets

• Hold-out method
• Random sampling

• Cross-validation
• Leave-one-out

• Stratified cross-validation

• Bootstrap
• .632 bootstrap

Knowledge Discovery in Databases I: Classification 52



DATABASE
SYSTEMS
GROUP

Outline

• Introduction

• Support Vector Machines

• Ensembles of classifiers

• An overview of classification

• Things you should know

• Homework/tutorial

Knowledge Discovery in Databases I: Classification 53



DATABASE
SYSTEMS
GROUP

Things you should know

• Support Vector Machines

– Formulation

– Linear separable case

– Linear nonseparable cases

– Kernel functions

• Ensemble methods

– Boosting

– Bagging
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Homework/ Tutorial

Tutorial:  this Thursday  tutorial on
– Decision trees/ Support Vector Machines

Homework:

– Repeat the classification methods learned

Suggested reading:
– Han J., Kamber M., Pei J. Data Mining: Concepts and Techniques 3rd ed., Morgan 

Kaufmann, 2011 (Chapters 8, 9)

– Tan P.-N., Steinbach M., Kumar V., Introduction to Data Mining,  Addison-Wesley, 
2006 (Chapter 5). 

– Support Vector Machines tutorial by Chih-Jen Lin, Machine Learning Summer School 
(MLSS), Taipei 2006 (http://videolectures.net/mlss06tw_lin_svm/)

– Boosting tutorial by Robert Schapire, Machine Learning Summer School (MLSS), 
Chicago 2005 (http://videolectures.net/mlss05us_schapire_b/)
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