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Sources

• Previous KDD I lectures on LMU (Johannes Aßfalg, Christian Böhm, Karsten
Borgwardt, Martin Ester, Eshref Januzaj, Karin Kailing, Peer Kröger, Jörg Sander, 
Matthias Schubert, Arthur Zimek)

• Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and 
Techniques, 3rd ed., Morgan Kaufmann, 2011. 

• Margaret Dunham, Data Mining, Introductory and Advanced Topics, Prentice 
Hall, 2002.

• Tan P.-N., Steinbach M., Kumar V., Introduction to Data Mining,  Addison-
Wesley, 2006

• D. Jurafsky and C. Manning, Natural Language Processing course, 
https://www.coursera.org/course/nlp
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Outline

• Introduction

• Bayesian classifiers

• Lazy vs Eager learners

• k-Nearest Neighbors (or learning from your neighbors)

• Artificial neural networks

• Things you should know

• Homework/tutorial
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Bayesian classifiers

• A probabilistic framework for solving classification problems

• Predict class membership probabilities for an instance

• The class of an instance is the most likely class for the instance 
(Maximum Likelihood classification)

• Based on Bayes’ rule

• Bayesian classifiers
– Naïve Bayes classifiers

– Assume  class-conditional independence among attributes

– Bayesian Belief networks
– Graphical models

– Model dependencies among attributes

• Lately used a lot for: Text classification, Sentiment analysis
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Bayes’ theorem

• The probability of an event C given an observation A:

• e.g., given:
– A doctor knows that meningitis causes stiff neck 50% of the time 

– Prior probability of any patient having meningitis is  1/50,000 

– Prior probability of any patient having stiff neck is P(S)=1/20

• If a patient has stiff neck, what’s the probability he/she has meningitis?
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Bayesian classifiers I

• Let C={c1, c2, …, ck} be the class attribute.

• Let X=(A1, A2, A3,….An) be a n-dimensional instance.

• Classification problem: What is the probability of a class value c in 
C given an instance observation X?
– The event C to be predicted is the class value of the instance

– The observation is the instance values X

– P(c1|X)

– P(c2|X)

– …

– P(ck|X)

• The class of the instance is the class value with the higher 
probability: argmaxc(P(c|X)
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Bayesian classifiers II

• Consider each attribute and class label as random variables

• Given an instance X with attributes (A1A2…An) 
– Goal is to predict class label c in C

– Specifically, we want to find the value c of C that maximizes P(c|X)
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Bayesian classifiers III

• How can we estimate:                                                        ?

• Class prior P(c):  
– How often c occurs?

– Just count the relative frequencies in the training set

• Instance likelihood P(X|c):
– What is the probability of an instance X given the class c?

– but X=(A1A2…An), so, P(X|c)=P(A1A2…An |c)

– i.e., the probability of an instance given the class is equal to the probability 
of a set of features given the class

• So:
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Naïve Bayes classifier

How to estimate P(A1A2…An |c) ?

• Assume independence among attributes Ai when class is given:    

– P(A1A2…An |Cj) = Π P(Ai|c) = P(A1|c)P(A2|c)… P(An|c)

– Can estimate P(Ai|c) for all Ai and c in C based on training set

– New point is classified to:
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How to estimate probabilities from data I

• How to estimate class prior P(c)?
– P(c) = Nc/N

e.g.,  P(No) = 7/10, P(Yes) = 3/10

• How to estimate P(Ai| c)?
– For discrete attributes:

 P(Ai | c) = |Aic|/ Nc

|Aic|: # instances having attribute Ai
and belonging to class c

e.g.: 

P(Status=Married|No) = 4/7
P(Refund=Yes|Yes)=0

Knowledge Discovery in Databases I: Classification 10

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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How to estimate probabilities from data II

• How to estimate P(Ai| c)? For continuous attributes
– Discretize the range into bins 

• one ordinal attribute per bin

– Two-way split:  (A < v) or (A > v)
• choose only one of the two splits as new attribute

– Probability density estimation:
• Assume attribute follows a normal distribution
• Use data to estimate parameters of distribution 

(e.g., mean and standard deviation)
• Once probability distribution is known, can use it to estimate the 

conditional probability P(Ai|c)
• e.g. assume Gaussian (normal) distribution:
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How to estimate probabilities from data III
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Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

c c c • Normal distribution:

• e.g., for attribute income and class 
no:
– Sample mean = 110

– Sample variance s2=2975
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Naive Bayes classifier: Example I
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Naive Bayes classifier: Example II
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Name Give Birth Can Fly Live in Water Have Legs Class
human yes no no yes mammals
python no no no no non-mammals
salmon no no yes no non-mammals
whale yes no yes no mammals
frog no no sometimes yes non-mammals
komodo no no no yes non-mammals
bat yes yes no yes mammals
pigeon no yes no yes non-mammals
cat yes no no yes mammals
leopard shark yes no yes no non-mammals
turtle no no sometimes yes non-mammals
penguin no no sometimes yes non-mammals
porcupine yes no no yes mammals
eel no no yes no non-mammals
salamander no no sometimes yes non-mammals
gila monster no no no yes non-mammals
platypus no no no yes mammals
owl no yes no yes non-mammals
dolphin yes no yes no mammals
eagle no yes no yes non-mammals

Give Birth Can Fly Live in Water Have Legs Class
yes no yes no ?
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The problem of  0-probabilities

• Naïve Bayesian prediction requires each conditional probability P(Ai|c) be non-
zero.  Otherwise, the predicted probability will be zero

• e.g., suppose a dataset with 1000 tuples:  income=low (0);  income= medium 
(990); income = high (10)

• Probability estimation:

Knowledge Discovery in Databases I: Classification 15

∏∈= )|()(maxarg cAPcPc iCc

mN
mpNcAP

kN
NcAP

N
NcAP

c

ic
i

c

ic
i

c

ic
i

+
+

=

+
+

=

=

)|(:estimate-m

1)|(:Laplace

)|( :Original
k: number of classes

p: prior probability

m: parameter



DATABASE
SYSTEMS
GROUP

The problem of  0-probabilities: example

• in our example: Suppose a dataset with 1000 tuples:
– income=low (0) 

– income= medium (990) 

– income = high (10)

• Use Laplacian correction (or Laplacian estimator): add 1 to each class value
– Prob(income = low) = 1/1003

– Prob(income = medium) = 991/1003

– Prob(income = high) = 11/1003

• Result
– The probabilities are never 0

– The “corrected” prob. estimates are close to their “uncorrected” counterparts
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Naïve Bayes classifiers: overview

(+) Easy to implement

(+) It works surprisingly good in practice, although the independence assumption is 
to strong .

– It does not require precise estimations of the probabilities

– It is enough if the max probability belongs to the correct class

(+) Robust to irrelevant attributes

(+) Handle missing values by ignoring the instance during probability estimate 
calculations

(+) Robust to noise

(+) Incremental

(-) Strong independence assumption

(-) Practically, dependencies exist among variables
– Dependencies among these cannot be modeled by Naïve Bayesian Classifiers

– Use other techniques such as Bayesian Belief Networks (BBN)

Knowledge Discovery in Databases I: Classification 17
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Bayesian Belief Networks

• Bayesian belief networks allow class conditional independence to be defined 

between subsets of variables.

• A graphical model of causal relationships

• A belief network is defined by two components:

• A directed acyclic graph of nodes representing variables and arcs representing 

dependence relations among the variables. 

• A set of conditional probability tables (CPT)

Knowledge Discovery in Databases I: Classification 18

X Y

Z
P

• Nodes: random variables

• Links: dependency between variables

• X, Y are the parents of Z; Y is the parent of P

• No dependency between Z and P
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An example

• E.g., having lung cancer is 
influenced by a person’s family 
history and on whether or not the 
person is a smoker

• PositiveXRay is independent of 
“family history” and “smoker” 
attributes once we know that the 
person has a PositiveXRay

Knowledge Discovery in Databases I: Classification 19

Family
History

LungCancer
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Smoker

Emphysema
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Bayesian Belief Networks

• The conditional probability table (CPT) for 
variable LungCancer:

• Let X = (x1, x2,…, xn) be an instance 
described by the variables of attributes 
A1, A2,…An, respectively.

• The probability of X is given by:
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A Bayesian Belief Network has a conditional probability table (CPT) for each variable Y
• CPT of Y specifies the conditional distribution P(Y|Parents(Y))
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Outline

• Introduction

• Bayesian classifiers

• Lazy vs Eager learners

• k-Nearest Neighbors (or learning from your neighbors)

• Artificial neural networks

• Things you should know

• Homework/tutorial
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Lazy vs Eager learners

• Eager learners
– Construct a classification model (based on a training set) 

– Learned models are ready and eager to classify previously unseen instances

– e.g., decision trees

• Lazy learners
– Simply store training data and wait until a previously unknown instance 

arrives

– No model is constructed. 

– known also as instance based learners, because they store the training set

– e.g., k-NN classifier

Knowledge Discovery in Databases I: Classification 22

Eager learners
• Do lot of work on training data
• Do less work on classifying new 
instances

Lazy learners
• Do less work on training data
• Do more work on classifying new 
instances
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Outline

• Introduction

• Bayesian classifiers

• Lazy vs Eager learners

• k-Nearest Neighbors (or learning from your neighbors)

• Artificial neural networks

• Things you should know

• Homework/tutorial
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Lazy learners/ Instance-based learners: 
k-Nearest Neighbor classifier

• Nearest-neighbor classifiers compare a given unknown instance with

training tuples that are similar to it

• Basic idea: If it walks like a duck, quacks like a duck, then it’s probably a duck

Knowledge Discovery in Databases I: Classification 24

Training 
Records

Test Record
Compute 
Distance

Choose k of the 
“nearest” records
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k-Nearest Neighbor classifiers

Input:
• A training set D (with known class labels)

• A distance metric to compute the distance 
between two instances

• The number of neighbors k

Method: Given a new unknown instance X
• Compute distance to other training records

• Identify k nearest neighbors 

• Use class labels of nearest neighbors to    
determine the class label of unknown record    
(e.g., by taking majority vote)

It requires O(|D|) for each new instance

Knowledge Discovery in Databases I: Classification 25
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kNN algorithm

Pseudocode:
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Definition of k nearest neighbors 

• too small k: high sensitivity to outliers

• too large k: many objects from other classes in the resulting
neighborhood

• average k: highest classification accuracy, usually 1 << k < 10

Knowledge Discovery in Databases I: Classification 27

x

Neighborhood for k = 1

Neighborhood for k = 7

Neighborhood for k = 17

x: unknown instance
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Nearest neighbor classification

• “Closeness” is defined in terms of a distance metric
– e.g. Euclidean distance

• The k-nearest neighbors are selected among the training set

• The class of the unknown instance X is determined from the 
neighbor list
– If k=1, the class is that of the closest instance

– Majority voting: take the majority vote of class labels among the neighbors
• Each neighbor has the same impact on the classification

• The algorithm is sensitive to the choice of k

– Weighted voting: Weigh the vote of each neighbor according to its distance 
from the unknown instance
• weight factor, w = 1/d2

Knowledge Discovery in Databases I: Classification 28
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Nearest neighbor classification: example
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Nearest neighbor classification issues I

• Different attributes have different ranges
– e.g., height in [1.5m-1.8m];  income in [$10K -$1M]

– Distance measures might be dominated by one of the attributes

– Solution: normalization

• k-NN classifiers are lazy learners
– No model is built explicitly, like in eager learners such as decision trees

– Classifying unknown records are relatively expensive

– Possible solutions:
• Use index structures to speed up the nearest neighbors computation

• Partial distance computation  based on a  subset of attributes
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Nearest neighbor classification issues II

• The “curse of dimensionality”
– Ratio of (Dmax_d – Dmin_d) to Dmin_d converges to zero with increasing 

dimensionality d
• Dmax_d:  distance to the nearest neighbor in the d-dimensional space

• Dmin_d: distance to the farthest neighbor in the d-dimensional space

– This implies that: 
• all points tend to be ~ equidistant from each other in high dimensional spaces

• the distances between points cannot be used to differentiate them

– Possible solutions:
• Dimensionality reduction (e.g. PCA)

• Work on a subset of dimensions
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k-NN classifiers: overview

(+-) Lazy learners:  Do not require model building , but testing is more expensive

(-)   Classification is based on local information in contrast to e.g. DTs that try to 
find a global model that fits the entire input space: Susceptible to noise

(+)  Incremental classifiers

(-)   The choice of distance function and k is important

(+)  Nearest-neighbor classifiers can produce arbitrarily shaped decision 
boundaries, in contrary to e.g. decision trees that result in axis parallel hyper 
rectangles

Knowledge Discovery in Databases I: Classification 32
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Outline

• Introduction

• Bayesian classifiers

• Lazy vs Eager learners

• k-Nearest Neighbors (or learning from your neighbors)

• Artificial neural networks

• Things you should know

• Homework/tutorial
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Artificial Neural Networks (ANN): motivation

• Inspired by attempts to simulate 
biological neural systems

• Human brain consists primarily of  nerve 
cells (neurons), linked together with 
other neurons via strands of fiber 
(axons)

– Axons are used to transmit nerve 
impulses from one neuron to another 
whenever the neurons are stimulated

• A neuron is connected to the axons of 
other neurons by dendrites

• The contact point between a dendrite 
and an axon is called a synapse

• Neurologists have discovered that the 
human brain learns by changing the 
strength of the synaptic connection 
between neurons upon repeated 
stimulation by the same impulse

Knowledge Discovery in Databases I: Classification 34



DATABASE
SYSTEMS
GROUP

Artificial Neural Networks (ANN) I

• Analogous to human brain function, an ANN consists of an 
interconnected assembly of nodes and directed links.

Knowledge Discovery in Databases I: Classification 35

http://aemc.jpl.nasa.gov/activities/bio_regen.cfm

NASA: A Prediction of Plant Growth in Space
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Artificial Neural Networks (ANN) II

Knowledge Discovery in Databases I: Classification 36

Output Y is 1 if at least two of the three inputs are equal to 1.
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Artificial Neural Networks (ANN) III

• The simplest ANN model is called perceptron and consists of two types of 
nodes (also called neurons or units):
• input nodes: represent the input variables

• output nodes: represent model output

• Each input node is connected via a weighted link to an output node
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Artificial Neural Networks (ANN) IV

• Model is an assembly of 
interconnected nodes and weighted 
links

• Input nodes simply transmit the values 
they receive to their outgoing nodes 
without performing any transformation

• Output node sums up each of its input 
value according to the weights of its 
links

• Compare output node against some 
threshold t
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Learning perceptron model

• During the training phase of a perceptron model, the weight parameters w are 
adjusted until the outputs of the perceptron become consistent with the true 
outputs of the training data
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Perceptron learning algorithm

1. Let D={(xi,yi)|i=1,2,…,n} be the training set
2. Initialize the weigh vector with random values w(0)

3. repeat
4. for each training example (xi,yi) in D do
5. compute the predicted output y’i(k)

6. for each weight wj do
7. Update the weight wj(k+1)= wj(k) + λ(yi- y’i(k))xij
8. end for
9. until stopping condition is met

Learning rate

Weight update 
formula
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General structure: Multilayer ANN
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Outline

• Introduction

• Bayesian classifiers

• Lazy vs Eager learners

• k-Nearest Neighbors (or learning from your neighbors)

• Artificial neural networks

• Things you should know

• Homework/tutorial
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Things you should know

• Bayesian Classifiers: Bayes rule, Maximum Likelihood classification

• Naïve Bayes classifiers 

– Independence assumption

• Bayesian Belief Networks : general idea

• Eager learners – Lazy learners

• k-NN classifiers

– k/ Distance function

– Voting schema

• Neural networks: general idea

Knowledge Discovery in Databases I: Data Preprocessing / Feature spaces 42
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Homework/ Tutorial

Tutorial:  this Thursday  tutorial on
– Distance functions/ Evaluation of classifiers /Decision trees

– No lecture next Tuesday!  Tutorial yes next Thursday 

Homework:

– Implement a Naïve Bayes classifier for classifying text posts into 20 
predefined categories.

– 20 newsgroup dataset: 
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.data.html

Suggested reading:
– Han J., Kamber M., Pei J. Data Mining: Concepts and Techniques 3rd ed., Morgan 

Kaufmann, 2011 (Chapters 8, 9)

– Tan P.-N., Steinbach M., Kumar V., Introduction to Data Mining,  Addison-Wesley, 
2006 (Chapters 4, 5). 
• Chapter 4 is available online at: http://www-users.cs.umn.edu/~kumar/dmbook/ch4.pdf

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 43
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Dataset categories

1. alt.atheism

2. comp.graphics

3. comp.os.ms-windows.misc

4. comp.sys.ibm.pc.hardware

5. comp.sys.mac.hardware

6. comp.windows.x

7. misc.forsale

8. rec.autos

9. rec.motorcycles

10. rec.sport.baseball

11. rec.sport.hockey

12. sci.crypt

13. sci.electronics

14. sci.med 

15. sci.space

16. soc.religion.christian

17. talk.politics.guns

18. talk.politics.mideast

19. talk.politics.misc

20. talk.religion.misc

Knowledge Discovery in Databases I: Classification 44
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