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Sources

• Previous KDD I lectures on LMU (Johannes Aßfalg, Christian Böhm, Karsten
Borgwardt, Martin Ester, Eshref Januzaj, Karin Kailing, Peer Kröger, Jörg Sander, 
Matthias Schubert, Arthur Zimek)

• Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and 
Techniques, 3rd ed., Morgan Kaufmann, 2011. 

• Margaret Dunham, Data Mining, Introductory and Advanced Topics, Prentice 
Hall, 2002.

• Tom Mitchel, Machine Learning, McGraw Hill, 1997.

• Wikipedia
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Outline

• Introduction

• The classification process

• Classification (supervised) vs clustering (unsupervised)

• Decision trees

• Evaluation of classifiers

• Things you should know

• Homework/tutorial
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Classification problem

Given:
• a dataset D={t1,t2,…,tn} and 

• a set of classes C={c1,…,ck}

the classification problem is to define a mapping f:DC where each ti is assigned 
to one class cj.

Classification  
– predicts categorical (discrete, unordered) class labels 
– Constructs a model (classifier) based on a training set
– Uses this model to predict the class label for new unknown-class instances

Prediction
– is similar, but may be viewed as having infinite number of classes
– more on prediction in next lectures

Knowledge Discovery in Databases I: Classification 4



DATABASE
SYSTEMS
GROUP

5

A simple classifier

A simple classifier:

if Alter > 50 then Risk= low;

if Alter ≤ 50 and Autotyp=LKW then Risk=low;

if Alter ≤ 50 and Autotyp ≠ LKW then Risk = high.

ID Alter Autotyp Risk
1 23 Familie high
2 17 Sport high
3 43 Sport high
4 68 Familie low
5 32 LKW low

Knowledge Discovery in Databases I: Classification
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Applications

• Credit approval
• Classify bank loan applications as e.g. safe or risky.

• Fraud detection
• e.g., in credit cards

• Churn prediction
• E.g., in telecommunication companies

• Target marketing
• Is the customer a potential buyer for a new computer?

• Medical diagnosis

• Character recognition

• …

Knowledge Discovery in Databases I: Classification 6
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Outline

• Introduction

• The classification process

• Classification (supervised) vs clustering (unsupervised)

• Decision trees

• Evaluation of classifiers

• Things you should know

• Homework/tutorial
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Classification techniques

• Typical approach:
– Create specific model by evaluating training data (or using domain 

experts’ knowledge).
• Assess the quality of the model

– Apply model developed to new data.

• Classes must be predefined!!!
• Many techniques

– Decision trees
– Naïve Bayes
– kNN
– Neural Networks 
– Support Vector Machines
– ….
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Classification technique (detailed)

• Model construction: describing a set of predetermined 
classes

– The set of tuples used for model construction is training set
– Each tuple/sample is assumed to belong to a predefined 

class, as determined by the class label attribute
– The model is represented as classification rules, decision 

trees, or mathematical formulae

• Model evaluation: estimate accuracy of the model
– The set of tuples used for model evaluation is test set
– The class label of each tuple/sample in the test set is 

known in advance
– The known label of test sample is compared with the 

classified result from the model
• Accuracy rate is the percentage of test set samples that are 

correctly classified by the model

– Test set is independent of training set, otherwise over-
fitting will occur

• Model usage: for classifying future or unknown objects
– If the accuracy is acceptable, use the model to classify data 

tuples whose class labels are not known
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Class attribute:  tenured={yes, no}

predefined class values

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Training set

known class label attribute

Test set

NAME RANK YEARS TENURED PREDICTED
Maria Assistant Prof 3 no no
John Associate Prof 7 yes no
Franz Professor 3 yes yes

known class label attribute

predicted class value by the model

NAME RANK YEARS TENURED PREDICTED
Jeff Professor 4 ? yes
Patrick Associate Prof 8 ? yes
Maria Associate Prof 2 ? no

unknown class label attribute

predicted class value by the model
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Training
Data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification
Algorithms

IF rank = ‘professor’ OR years > 6 
THEN tenured = ‘yes’ 

Classifier
(Model)

Model construction
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Class attribute

IF (rank!=’professor’) AND (years < 6) 
THEN tenured = ‘no’ 

Attributes



DATABASE
SYSTEMS
GROUP

Model evaluation
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IF rank = ‘professor’ OR years > 6 
THEN tenured = ‘yes’ 

Classifier
(Model)

IF (rank!=’professor’) AND (years < 6) 
THEN tenured = ‘no’ 

Testing
Data

NAME RANK YEARS TENURED
Tom Assistant Prof 2 no
Merlisa Associate Prof 7 no
George Professor 5 yes
Joseph Assistant Prof 7 yes

Classifier quality
Is it acceptable?
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Unseen Data

Tenured?

Model usage for prediction 

IF (rank = ‘professor’) OR (years > 6) THEN tenured = ‘yes’ 

Classifier
(Model)

Training
Data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification
Algorithms
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NAME RANK YEARS TENURED
Jeff Professor 4 ?

Patrick Assistant Profe 8 ?

Maria Assistant Profe 2 ?
IF (rank!=’professor’) AND (years < 6) THEN tenured = ‘no’ 

Tenured?

Tenured?

?

?
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Outline

• Introduction

• The classification process

• Classification (supervised) vs clustering (unsupervised)

• Decision trees

• Evaluation of classifiers

• Things you should know

• Homework/tutorial
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A supervised learning task

• Classification is a supervised learning task
– Supervision: The training data (observations, measurements, etc.) are 

accompanied by labels indicating the class of the observations

– New data is classified based on the training set

• Clustering is an unsupervised learning task
– The class labels of training data is unknown

– Given a set of measurements, observations, etc., the goal is to group the 

data into groups of similar data (clusters)

Knowledge Discovery in Databases I: Classification 14
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Supervised learning example

Knowledge Discovery in Databases I: Classification 15

Paper clips

New object (unknown class)

Nails

Screw

Classification model
Width[cm]

H
ei

gh
t [

cm
]

Screw? Nail? Paper clip?

Question:
What is the class of a new object???
Is it a screw, a nail or a paper clip?

Screw? Nail? Paper clip? Screw? Nail? Paper clip?
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Unsupervised learning example
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Cluster 1: paper clipsCluster 2: nails

H
ei

gh
t [

cm
]

Width[cm]

Clustering

Question:
Is there any structure in data (based on their 
characteristics, i.e., width, height)? 
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Classification techniques

• Statistical methods
– Bayesian classifiers etc

• Partitioning methods
– Decision trees etc

• Similarity based methods
– K-Nearest Neighbors etc

Knowledge Discovery in Databases I: Classification 17
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Outline

• Introduction

• The classification process

• Classification (supervised) vs clustering (unsupervised)

• Decision trees

• Evaluation of classifiers

• Things you should know

• Homework/tutorial
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Decision trees (DTs)

• One of the most popular classification methods

• DTs are included in many commercial systems nowadays

• Easy to interpret, human readable, intuitive

• Simple and fast methods

• Partition based method: Partitions the space into rectangular 

regions

• Many algorithms have been proposed

– ID3 (Quinlan 1986), C4.5 (Quinlan 1993), CART (Breiman et al 1984)….

Knowledge Discovery in Databases I: Classification 19
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Decision tree for the “play tennis” problem

Knowledge Discovery in Databases I: Classification 20
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Representation

• Representation
– Each internal node specifies a test of some attribute of the instance

– Each branch descending from a node corresponds to one of the possible values for this 
attribute

– Each leaf node assigns a class label 

• Decision trees classify instances by sorting them down the tree from the root to 

some leaf node, which provides the classification of the instance

Knowledge Discovery in Databases I: Classification 21

Training set

Attribute test

Class value

Attribute value

Each branch corresponds to a 
possible value of outlook
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Representation cont’

• Decision trees represent a disjunction of conjunctions of constraints on the 
attribute values of the instances

• Each path from the root to a leaf node, corresponds to a conjunction of 
attribute tests 

• The whole tree corresponds to a disjunction of these conjunctions

• We can “translate” each path into IF-THEN rules (human readable)

Knowledge Discovery in Databases I: Classification 22

IF  ((Outlook = Sunny) ^ (Humidity = Normal)),
THEN (Play tennis=Yes)

IF  ((Outlook = Rain) ^ (Wind = Weak)),
THEN (Play tennis=Yes)
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The basic decision tree learning algorithm

Basic algorithm (ID3, Quinlan 1986)
– Tree is constructed in a top-down recursive divide-and-conquer manner

– At start, all the training examples are at the root node

– The question is “which attribute should be tested at the root?”
• Attributes are evaluated using some statistical measure, which determines how well  each 

attribute alone classifies the training examples

• The best attribute is selected and used as the test attribute at the root

– For each possible value of the test attribute, a descendant of the root node is created and the 
instances are mapped to the appropriate descendant node.

– The procedure is repeated for each descendant node, so instances are partitioned 
recursively.

When do we stop partitioning?
– All samples for a given node belong to the same class

– There are no remaining attributes for further partitioning – majority voting is 
employed for classifying the leaf

Knowledge Discovery in Databases I: Classification 23
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Algorithm cont’

• Pseudocode

• But, …. which attribute is the best?

Knowledge Discovery in Databases I: Classification 24

• The goal is to select the attribute that 
is most useful for classifying examples.

• By useful we mean that the resulting 
partitioning is as pure as possible

• A partition is pure if all its instances 
belong to the same class.
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Attribute selection measure: 
Information gain

• Used in ID3

• It uses entropy, a measure of pureness of the data

• The information gain Gain(S,A) of an attribute A relative to a collection of 
examples S measures the gain reduction in S due to splitting on A:

• Gain measures the expected reduction in entropy due to splitting on A

• The attribute with the higher entropy reduction is chosen

Knowledge Discovery in Databases I: Classification 25
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Entropy

• Let S be a collection of positive and negative examples for a binary 
classification problem, C={+, -}.

• p+: the percentage of positive examples in S

• p-: the percentage of negative examples in S

• Entropy measures the impurity of S:

• Examples :
– Let S: [9+,5-] 

– Let S: [7+,7-] 

– Let S: [14+,0-] 

• Entropy = 0, when all members belong to the same class

• Entropy = 1, when there is an equal number of positive and negative examples
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Information Gain example 1

Which attribute to choose next???

Knowledge Discovery in Databases I: Classification 27
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Information Gain example 2

Knowledge Discovery in Databases I: Classification 28

Training set
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Attribute selection measure: Gain ratio

• Information gain is biased towards attributes with a large number of values

– Consider  the attribute ID (unique identifier)

• C4.5 (a successor of ID3) uses gain ratio to overcome the problem, which 

normalizes the gain

• Example:

• Humidity={High, Low}

• Wind={Weak, Strong}

• Outlook = {Sunny, Overcast, Rain}

• The attribute with the maximum gain ratio is selected as the splitting attribute
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Attribute selection measure: 
Gini Index (CART)

• Let a dataset S containing examples from k classes. Let pj be the probability of 
class j in S. The Gini Index of S is given by:

• Gini index considers a binary split for each attribute
• If S is split based on attribute A into two subsets S1 and S2 :

• Reduction in impurity:

• The attribute A that provides the smallest Gini(S,A) (or the largest reduction in 
impurity) is chosen to split the node

• How to find the binary splits?
– For discrete-valued attributes,  we consider all possible subsets that can be formed by values of A
– For numerical attributes, we find the split points (slides 41-42)
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Gini index example

Let  S has 9 tuples in buys_computer = “yes” and 5 in “no”

Suppose the attribute income partitions S into 10 in S1: {low, medium} and 4 in S2

The Gini Index measures of the remaining partitions

for the income attribute:

So, the best binary split for income is on {medium, high} and {low}
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Comparing Attribute Selection Measures

• The three measures, are commonly used and in general, return good results 
but

– Information gain Gain(S,A): 

• biased towards multivalued attributes

– Gain ratio GainRatio(S,A) : 

• tends to prefer unbalanced splits in which one partition is much smaller than 
the others

– Gini index: 

• biased to multivalued attributes

• has difficulty when # of classes is large

• tends to favor tests that result in equal-sized partitions and purity in both 
partitions

• Several other measures exist
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Hypothesis search space (by ID3)

Knowledge Discovery in Databases I: Classification 33

• Hypothesis space is complete

– Solution is surely in  there

• Greedy approach

• No back tracking

– Local minima

• Outputs a single hypothesis
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Space partitioning

Knowledge Discovery in Databases I: Classification 34

• Decision boundary: The border line between 
two neighboring regions of different classes

• Decision regions: Axis parallel hyper-rectangles
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Comparing DTs/ partitionings

Knowledge Discovery in Databases I: Classification 35
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Overfitting

Consider adding a noisy training example D15 to the training set

How the earlier tree (built upon D1-D14) would be effected?

Knowledge Discovery in Databases I: Classification 36

Training set

D15     Sunny        Hot            Normal     Strong    No
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Overfitting

• An induced tree may overfit the training data 

– Too many branches, some may reflect anomalies due to noise or outliers

– Poor accuracy for unseen samples

• Overfitting: Consider an hypothesis h

– errortrain(h): the error of h in training set

– errorD(h): the error of h in the entire distribution D of data

– Hypothesis h overfits training data if there is an alternative hypothesis h’ in 

H such that: 

Knowledge Discovery in Databases I: Classification 37
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Overfitting

Κνοωλεδγε ∆ισχοϖερψ ιν ∆αταβασεσ Ι: Χλασσιφιχατιον 38
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Avoiding overfitting

• Two approaches to avoid overfitting

– Prepruning: Halt tree construction early—do not split a node if this would 

result in the goodness measure falling below a threshold

• Difficult to choose an appropriate threshold

– Postpruning: Remove branches from a “fully grown” tree—get a sequence 

of progressively pruned trees

• Use a set of data different from the training data to decide which is the 

“best pruned tree”

– Test set

Knowledge Discovery in Databases I: Classification 39
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Effect of prunning

Knowledge Discovery in Databases I: Classification 40
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Dealing with continuous-valued attributes

• Let attribute A be a continuous-valued attribute

• Must determine the best split point t for A, (A ≤ t)

– Sort the value A in increasing order

– Identify adjacent examples that differ in their target classification 

• Typically, every such pair suggests a potential split threshold t= (ai+ai+1)/2

– Select threshold t that yields the best value of the splitting criterion.
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2 potential thresholds:Temperature>54, Temperature >85

Compute the attribute selection measure (e.g. information gain) for both
Choose the best (Temperature>54 here)

t=(48+60)/2=54 t =(80+90)/2=85
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Continuous-valued attributes cont’

• Let t be the threshold  chosen from the previous step

• Create a boolean attribute based on A and threshold t with two possible 
outcomes: yes, no

– S1 is the set of tuples in S satisfying (A >t), and S2 is the set of tuples in S 
satisfying (A ≤ t)

Knowledge Discovery in Databases I: Classification 42

Temperature>54

yes no

Temperature

>54 ≤54orHow it looks

An example of a tree for the 
play tennis problem when 

attributes Humidity and Wind 
are continuous
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When to consider decision trees

• Instances are represented by attribute-value pairs
– Instances are represented by a fixed number of attributes, e.g. outlook, humidity, wind and 

their values, e.g. (wind=strong, outlook =rainy, humidity=normal)

– The easiest situation for a DT is when attributes take a small number of disjoint possible 
values, e.g. wind={strong, weak}

– There are extensions for numerical attributes also, e.g. temperature, income.

• The class attribute has discrete output values
– Usually binary classification, e.g. {yes, no}, but also for more class values, e.g. {pos, neg, 

neutral}

• The training data might contain errors
– DTs are robust to errors: both errors in the class values of the training examples and in the 

attribute values of these examples

• The training data might contain missing values
• DTs can be used even when some training examples have some unknown attribute values

Knowledge Discovery in Databases I: Classification 43
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Outline

• Introduction

• The classification process

• Classification (supervised) vs clustering (unsupervised)

• Decision trees

• Evaluation of classifiers

• Things you should know

• Homework/tutorial
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Classifier evaluation

• The quality of a classifier is evaluated over a test set, different from the training set

• For each instance in the test set, we know its true class label

• Compare the predicted class (by some classifier) with the true class of the test instances

• Terminology
– Positive tuples: tuples of the main class of interest

– Negative tuples: all other tuples

• A useful tool for analyzing how well a classifier performs is the confusion matrix

• For an m-class problem, the matrix is of size m x m

• An example of a matrix for a 2-class problem:
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C1 C2 totals

C1 TP (true positive) FN (false negative) P

C2 FP(false positive) TN (true negative) N

Totals P’ N’

Predicted class

A
ct
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l 

cl
as

s
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Classifier evaluation measures

• Accuracy/ Recognition rate: 
% of test set instances correctly classified

• Error rate/ Missclassification rate: error_rate(M)=1-accuracy(M)

• More effective when the class distribution is relatively balanced
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TNTPMaccuracy
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classes buy_computer = yes buy_computer = no total recognition(%)

buy_computer = yes 6954 46 7000

buy_computer = no 412 2588 3000

total 7366 2634 10000 95.42

NP
FNFPMaccuracy
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C1 C2 totals

C1 TP (true positive) FN (false negative) P

C2 FP(false positive) TN (true negative) N

Totals P’ N’
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Classifier evaluation measures cont’

If classes are imbalanced:

• Sensitivity/ True positive rate/ recall: 
% of positive tuples that are correctly recognized

• Specificity/ True negative rate : % of negative tuples that are correctly 
recognized
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P
TPMysensitivit =)(

N
TNMyspecificit =)(

classes buy_computer = yes buy_computer = no total recognition(%)

buy_computer = yes 6954 46 7000 99.34

buy_computer = no 412 2588 3000 86.27

total 7366 2634 10000 95.42

C1 C2 totals

C1 TP (true positive) FN (false negative) P

C2 FP(false positive) TN (true negative) N

Totals P’ N’
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Classifier evaluation measures cont’

• Precision: % of tuples labeled as positive 
which are actually positive

• Recall: % of positive tuples labeled as positive

– Precision does not say anything about misclassified instances

– Recall does not say anything about possible instances from other classes labeled as positive

• F-measure/ F1 score/F-score combines both

• Fβ-measure is a weighted measure of precision and recall
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Classifier evaluation methods

• Holdout method
– Given data is randomly partitioned into two independent sets

• Training set (e.g., 2/3) for model construction

• Test set (e.g., 1/3) for accuracy estimation

– It takes no longer to compute (+)

– It depends on how data are divided (-)

– Random sampling: a variation of holdout
• Repeat holdout k times, accuracy is the avg accuracy obtained
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Classifier evaluation methods cont’

• Cross-validation (k-fold cross validation, k = 10 usually)
– Randomly partition the data into k mutually exclusive subsets D1, …, Dk

each approximately equal size

– Training and testing is performed k times
• At the i-th iteration, use Di as test set and others as training set

– Accuracy is the avg accuracy over all iterations

– Does not rely so much on how data are divided (+)

– The algorithm should re-run from scratch k times (-)

– Leave-one-out: k folds where k = #of tuples, so only one sample is used as a test set 
at a time;  for small sized data

– Stratified cross-validation: folds are stratified so that class distribution in each fold is 
approximately the same as that in the initial data

• Stratified 10 fold cross-validation is recommended
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Classifier evaluation methods cont’

• Bootstrap: Samples the given training data uniformly with replacement
– i.e., each time a tuple is selected, it is equally likely to be selected again and re-added to the training set

– Works well with small data sets

• Several boostrap methods, and a common one is .632 boostrap
– Suppose we are given a data set of #d tuples.  

– The data set is sampled #d times, with replacement, resulting in a training set of #d samples (also known as 
bootstrap sample):

• It is very likely that some of the original tuples will occur more than once in this set

– The data tuples that did not make it into the training set end up forming the test set.  

– On average, 36.8 of the tuples will not be selected for training and thereby end up in the test set; the 
remaining 63.2 will form the train test

• Each sample has a probability 1/d of being selected and (1-1/d) of not being chosen. We repeat d times, so the 
probability for a tuple to not be chosen during the whole period is (1-1/d)d.

• For large d: 

– Repeat the sampling procedure k times, report the overall accuracy of the model:
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Classifier evaluation summary

• Accuracy measures

– accuracy, error rate, sensitivity, specificity, precision, F-score, Fβ

• Other parameters

– Speed (construction time, usage time)

– Robustness  to noise, outliers and missing values

– Scalability for large data sets

– Interpretability from humans
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Things you should know

• What is classification

• Class attribute, attributes

• Train set, test set, new unknown instances

• Supervised vs unsupervised

• Decision tree induction algorithm

• Choosing the best attribute for splitting

• Overfitting

• Dealing with continuous attributes

• Evaluation of classifiers
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Homework/ Tutorial

Tutorial: No tutorial this Thursday  (Christi Himmelfahrt)
– Repeat exercises from the previous tutorials

– Get familiar with Weka/ Elki/ R/ SciPy.

Homework:
– Run decision tree classification in Weka

– Implement a decision tree classifier 

Suggested reading:
– Han J., Kamber M., Pei J. Data Mining: Concepts and Techniques 3rd ed., Morgan 

Kaufmann, 2011 (Chapter 8)

– Tom Mitchel, Machine Learning, McGraw Hill, 1997 (Chapter 3)
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