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Sources

• Previous KDD I lectures on LMU (Johannes Aßfalg, Christian Böhm, Karsten
Borgwardt, Martin Ester, Eshref Januzaj, Karin Kailing, Peer Kröger, Jörg Sander, 
Matthias Schubert, Arthur Zimek)

• Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and 
Techniques, 3rd ed., Morgan Kaufmann, 2011. 

• Margaret Dunham, Data Mining, Introductory and Advanced Topics, Prentice 
Hall, 2002.

• Wikipedia
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Introduction

• Frequent patterns are patterns that appear frequently in a dataset.
– Patterns: items, substructures, subsequences …

• Typical example: Market basket analysis

• We want to know: What products were often purchased together?

• e.g.: beer and diapers?

• Applications: 
• Improving store layout

• Sales campaigns

• Cross-marketing

• Advertising
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Customer transactions

Tid Transaction items

1 Butter, Bread, Milk, Sugar

2 Butter, Flour, Milk, Sugar

3 Butter, Eggs, Milk, Salt

4 Eggs

5 Butter, Flour, Milk, Salt, Sugar

The parable of the beer and diapers:
http://www.theregister.co.uk/2006/08/15/beer_diapers/
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… its not only about market basket data

• Market basket analysis
• Items are the products

• Transactions are the products bought by a customer during a supermarket visit

• Example: Buy(X, “Diapers”) → Buy(X, “Beer”) [0.5%, 60%]

• Similarly in an online shop, e.g. Amazon
• Example: Buy(X, “Computer”) → Buy(X, “MS office”) [50%, 80%]

• University library
• Items are the books

• Transactions are the books borrowed by a student during the semester

• University
• Items are the courses

• Transactions are the courses that are chosen by a student

• Example: Major (X, “CS”) ^ Course(X, “DB”) → grade(X, “A”) [1%, 75%]

• … and many other applications. 

• Also, frequent patter mining is fundamental in other DM tasks.
Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 5
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Basic concepts: Items, itemsets and transactions

• Items I: the set of items I = {i1, ..., im} 
e.g. products in a supermarket, books in a bookstore 

• Itemset X: A set of items X ⊆ I

• Itemset size: the number of items in the itemset

• k-Itemset: an itemset of size k
e.g. {Butter, Brot, Milch, Zucker} is an 4-Itemset
e.g. {Mehl, Wurst} is a 2-Itemset

• Transaction T: T = (tid, XT)
e.g. products bought during a customer visit to the supermarket

• Database DB: A set of transactions T
e.g. customers purchases in a supermarket  during the last week

• Items in transactions or itemsets are lexicographically ordered

Itemset X = (x1, x2, ..., xk ), such as x1 ≤ x2≤ ... ≤ xk

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules

Tid Transaction items

1 Butter, Bread, Milk, Sugar

2 Butter, Flour, Milk, Sugar

3 Butter, Eggs, Milk, Salt

4 Eggs

5 Butter, Flour, Milk, Salt, Sugar
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Basic concepts: frequent itemsets, support

Let X be an itemset.

• Itemset cover: the set of transactions containing X:

cover(X) = {tid | (tid, XT) ∈ DB, X ⊆ XT}

• (absolute) support/ support count of X: 
# transactions containing X

supportCount(X) = |cover(X)|

• (relative) support of X: the fraction of transactions that contain X (or the 
probability that a transaction contains X)

support(X) = P(X) = supportCount(X) / |DB|

• Frequent itemset: An itemset X is frequent in DB if its support is no less than a 
minSupport threshold s: 

support(X) ≥ s

• Lk: the set of frequent k-itemsets
• L comes from “Large” (“large itemsets”), another term for “frequent itemsets”

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 8
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2 Butter, Flour, Milk, Sugar

3 Butter, Eggs, Milk, Salt

4 Eggs

5 Butter, Flour, Milk, Salt, Sugar
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Example:  itemsets

I = {Butter, Bread, Eggs, Flour, Milk, Salt, Sugar}

• support(Butter) =  4/5=80%
• cover(Butter) = {1,2,3,4}

• support(Butter, Bread) =  1/5=20%
• cover(Butter, Bread) = ….

• support(Butter, Flour) =  2/5=40%
• cover(Butter, Flour) = ….

• support(Butter, Milk, Sugar) =  3/5=60%
• Cover(Butter, Milk, Sugar)= ….

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 9
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Frequent Itemsets Mining (FIM) problem

Problem 1: Frequent Itemsets Mining (FIM)

Given:
– A set of items I

– A transactions database DB over I

– A minSupport threshold s

Goal: Find all frequent itemsets in DB, i.e.: 

{X ⊆ I | support(X) ≥ s}

TransaktionsID Items
2000 A,B,C
1000 A,C
4000 A,D
5000 B,E,F

Support of 1-Itemsets:

(A): 75%, (B), (C): 50%, (D), (E), (F): 25%,

Support of 2-Itemsets:

(A, C): 50%,

(A, B), (A, D), (B, C), (B, E), (B, F), (E, F): 25%

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 10
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Basic concepts: association rules, support, confidence

Let X, Y be two itemsets: X,Y ⊆ I and X∩Y=Ø .
• Association rules: rules of the form

X   Y

• Support s of a rule:  the percentage of transactions  containing X ∪ Y in the DB or 
the probability P(X ∪ Y)

support(XY)=P(X ∪ Y) = support(X ∪ Y)

• Confidence c of a rule: the percentage of transactions containing X ∪ Y in the set of 
transactions containing X or the conditional probability that a transaction 
containing X also contains Y

confidence(XY)= P(Y|X)= P(X ∪ Y)/P(X)=support(X ∪ Y) / support (X)

• Support and confidence are measures of rules interestingness.

• Rules are usually written as follows:

XY (support, confidence)

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 11

head or LHS (left-hand side) or antecedent of the rule body or RHS (right-hand side) or consequent of the rule
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Example: association rules

I = {Butter, Bread, Eggs, Flour, Milk, Salt, Sugar}

Sample rules:

• ButterBread (20%, 25%)
• support(Butter ∪Bread)=1/5=20%

• support(Butter)=4/5=80%

• Confidence = 20%/80%=1/4=25%

• {Butter, Milk}  Sugar (60%, 75%)
• support(Butter, Milk ∪ Sugar) =  3/5=60%

• Support(Butter,Milk) = 4/5=80%

• Confidence = 60%/80%=3/4=75%

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 12
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Association Rules Mining problem

Problem 2: Association Rules Mining
Given:

– A set of items I

– A transactions database DB over I

– A minSupport threshold s and a minConfidence threshold c

Goal: Find all association rules X  Y in DB w.r.t. minimum support s and minimum 
confidence c, i.e.:

{X  Y | support(X ∪Y) ≥ s, confidence(XY) ≥ c}
These rules are called strong.

TransaktionsID Items
2000 A,B,C
1000 A,C
4000 A,D
5000 B,E,F

Association rules:

A ⇒ C  (Support = 50%, Confidence= 66.6%)

C ⇒ A  (Support = 50%, Confidence= 100%)

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 13



DATABASE
SYSTEMS
GROUP

Problems solving

Problem 1 (FIM): Find all frequent itemsets in DB, i.e.:  {X ⊆ I | support(X) ≥ s}

Problem 2 (ARM): Find all association rules X  Y in DB, w.r.t. min support s and min 
confidence c: {X  Y | support(X ∪Y) ≥ s, confidence(XY) ≥ c, X,Y ⊆ I and X∩Y=Ø}

• Problem 1 is part of Problem 2: 
– Once we have support(X ∪Y) and support(X), we can check if XY is strong.

• 2-step method to extract the association rules:
1. Determine the frequent itemsets w.r.t. min support s:

“Naïve” algorithm: count the frequencies for all k-itemsets
Inefficient!!! There are such subsets

Total cost: O(2| I |)
=> Apriori-algorithm and variants

2. Generate the association rules w.r.t. min confidence c:
from frequent itemset X, generate Y (X - Y), Y ⊂ X, Y ≠ Ø, Y≠X









k
I ||
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Step 1(FIM) is the most costly, so the overall performance of an 
association rules mining algorithm is determined by this step.

FIM problem
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Itemsets lattice

• The number of itemsets can be really huge.

Let us consider a small set of items: I = {A,B,C,D}

• # 1-itemsets: 

• # 2-itemsets: 

• # 3-itemsets: 

• # 4-itemsets: 

• In the general case, for |I| items, there exist:

• So, generating all possible combinations and computing their support is inefficient!

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 15
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Apriori algorithm [Agrawal & Srikant @VLDB’94]

• First, frequent 1-itemsets are determined, then frequent 2-itemsets and so on

• Method: 

– Initially, scan DB once to get frequent 1-itemset

– Generate length (k+1) candidate itemsets from length k frequent itemsets

– Test the candidates against DB (one scan)

– Terminate when no frequent or candidate set can be generated

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 17
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Apriori property

• Naïve approach: Count the frequency of all k-itemsets from I

test itemsets,  i.e., O(2|I|).

• Candidate itemset X:
– the algorithm evaluates whether X is frequent

– the set of candidates should be as small as possible!!!

• Downward closure property / Monotonic property of frequent itemsets:
– If X is frequent, all its subsets Y ⊆ X are also frequent.

- If {beer, diaper, nuts} is frequent, so is {beer, diaper}

- i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper} 

- similarly for {diaper, nuts}, {beer, nuts}

– Contrary: When X is not frequent, all its supersets are not frequent and thus they
should not be generated/ tested!!! reduce the candidate itemsets set

- If {beer, diaper} is not frequent, {beer, diaper, nuts} would not be frequent also

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 18

12 ||
||

1

||
−=







∑
=

I
I

k k
I



DATABASE
SYSTEMS
GROUP

Search space

{}:4

{Bier}:2 {Chips}:3 {Pizza}:2 {Wein}:2

{Bier,Chips}:2 {Bier,Pizza}:0 {Bier,Wein}:1 {Chips,Wein}:1{Chips,Pizza}:1 {Pizza,Wein}:1

{Bier,Chips,Pizza}:0 {Bier,Chips,Wein}:1 {Bier,Pizza,Wein}:0 {Chips,Pizza,Wein}:0

{Bier,Chips,Pizza,Wein}:0

Positive border-itemsets Negative border-itemsetsminSupport s = 1

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 19

Border Itemset X: all subsets Y ⊂ X are frequent, all supersets Z ⊃ X are not frequent

• Positive border: X is also frequent
• Negative border: X is not frequent
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From Lk-1 to Ck to Lk
Lk: frequent itemsets of size k; Ck: candidate itemsets of size k

A 2-step process:

• Join step: generate candidates Ck

– Lk is generated by self-joining Lk-1: Lk-1 *Lk-1

– Two (k-1)-itemsets p, q are joined, if they agree 

in the first (k-2) items

• Prune step: prune Ck and return Lk

– Ck is superset of Lk

– Naïve idea: count the support for all candidate itemsets in Ck ….|Ck| might be large!

– Use Apriori property:  a candidate k-itemset that has some non-frequent (k-1)-
itemset cannot be frequent

– Prune all those k-itemsets, that have some (k-1)-subset  that is not frequent (i.e. does not 
belong to Lk-1)

– Due to the level-wise approach of Apriori, we only need to check (k-1)-subsets

– For the remaining itemsets in Ck,  prune by support count (DB)

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 20

Example:
Let L3={abc, abd, acd, ace, bcd}

- Join step: C4=L3*L3

C4={abc*abd=abcd; acd*ace=acde}

- Prune step:
acde is pruned since cde is not frequent
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Apriori algorithm (pseudo-code)

Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=∅; k++) do begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in Ck+1 that are contained in t
Lk+1 = candidates in Ck+1 with min_support

end
return ∪k Lk;

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 21

Candidate generation
(self-join, apriori property)

DB scan

Prune by support count

subset function

Subset function:
- The subset function must for every transaction T in DB check all candidates 
in the candidate set Ck whether they are part of the transaction T
- Organize candidates Ck in a hash tree
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Example 

Database TDB

1st scan

C1
L1

L2

C2 C2
2nd scan

C3 L33rd scan

Tid Items
10 A, C, D
20 B, C, E
30 A, B, C, E
40 B, E

Itemset sup
{A} 2
{B} 3
{C} 3
{D} 1
{E} 3

Itemset sup
{A} 2
{B} 3
{C} 3
{E} 3

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Itemset sup
{A, B} 1
{A, C} 2
{A, E} 1
{B, C} 2
{B, E} 3
{C, E} 2

Itemset sup
{A, C} 2
{B, C} 2
{B, E} 3
{C, E} 2

Itemset
{B, C, E}

Itemset sup
{B, C, E} 2

Supmin = 2

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules
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Apriori overview

• Advantages:
– Apriori property 

– Easy implementation (in parallel also)

• Disadvantages:
– It requires up to |I| database scans 

• |I| is the maximum transaction length

– It assumes that the itemsets are in memory

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 23
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Association Rules Mining

• (Recall the) 2-step method to extract the association rules:
1. Determine the frequent itemsets w.r.t. min support s
2. Generate the association rules w.r.t. min confidence c.

• Regarding step 2, the following method is followed:
– For every frequent itemset X
– for every subset Y of X: Y≠Ø, Y ≠X, the rule Y (X - Y) is formed
– Remove rules that violate min confidence c

– Store the frequent itemsets and their supports in a hash table
• no database scan!

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 25

FIM problem  (Apriori)
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Ycountsupport
XcountsupportYXYconfidence =−→
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Pseudocode

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 26



DATABASE
SYSTEMS
GROUP

Example

tid XT

1 {Bier, Chips, Wein}

2 {Bier, Chips}

3 {Pizza, Wein}

4 {Chips, Pizza}

I = {Bier, Chips, Pizza, Wein}

Transaction database

Itemset Cover Sup. Freq.

{} {1,2,3,4} 4 100 %

{Bier} {1,2} 2 50 %

{Chips} {1,2,4} 3 75 %

{Pizza} {3,4} 2 50 %

{Wein} {1,3} 2 50 %

{Bier, Chips} {1,2} 2 50 %

{Bier, Wein} {1} 1 25 %

{Chips, Pizza} {4} 1 25 %

{Chips, Wein} {1} 1 25 %

{Pizza, Wein} {3} 1 25 %

{Bier, Chips, Wein} {1} 1 25 %

Rule Sup. Freq. Conf.

{Bier} ⇒ {Chips} 2 50 % 100 %

{Bier} ⇒ {Wein} 1 25 % 50 %

{Chips} ⇒ {Bier} 2 50 % 66 %

{Pizza} ⇒ {Chips} 1 25 % 50 %

{Pizza} ⇒ {Wein} 1 25 % 50 %

{Wein} ⇒ {Bier} 1 25 % 50 %

{Wein} ⇒ {Chips} 1 25 % 50 %

{Wein} ⇒ {Pizza} 1 25 % 50 %

{Bier, Chips} ⇒ {Wein} 1 25 % 50 %

{Bier, Wein} ⇒ {Chips} 1 25 % 100 %

{Chips, Wein} ⇒ {Bier} 1 25 % 100 %

{Bier} ⇒ {Chips, Wein} 1 25 % 50 %

{Wein} ⇒ {Bier, Chips} 1 25 % 50 %

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 27
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Evaluating Association Rules

Interesting and misleading association rules

Example:

• Database on the behavior of students in a school with 5000 students

• Itemsets:

- 60% of the students play Soccer,

- 75% of the students eat chocolate bars

- 40% of the students play Soccer and eat chocolate bars

• Association rules:

“Play Soccer” “Eat chocolate bars”, confidence = 40%/60%= 67%

∅  “Eat chocolate bars”, confidence= 75%

Playing Soccer and eating chocolate bars are negatively correlated

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 28
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Evaluating Association Rules cont’

Task: Filter out misleading rules

• Condition for a rule A B

- for a suitable constant d > 0

• Measure of “interestingness“ of a rule: interest

- the higher the value the more interesting the rule is

• Measure of dependent/correlated events: lift

- the ratio of the observed support to that expected if X and Y were independent.
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Measuring Quality of Association Rules

For a rule A B

• Support  

e.g. support(milk, bread, butter)=20%, i.e. 20% of the transactions contain these

• Confidence

e.g. confidence(milk, bread butter)=50%, i.e. 50% of the times a customer buys milk and bread, 

butter is bought as well.

• Lift

e.g. lift(milk, bread butter)=20%/(40%*40%)=1.25. the observed support is 20%, the expected (if 

they were independent) is 16%.

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 30
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Apriori improvements

• Major computational challenges in Apriori: 
– Multiple scans of the DB: For  each step (k-itemsets), a database scan is 

required

– Huge number of candidates

– Tedious workload of support counting for candidates
– Too many candidates; One transaction may contain many candidates.

• Improving Apriori: general ideas
– Reduce passes of transaction database scans

– Shrink number of candidates

– Facilitate support counting of candidates

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 32
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Partition

Partition (A. Savasere, E. Omiecinski and S. Navathe, VLDB’95)

• Partition the DB into n non-overlapping partitions: DB1, DB2, …, DBn

• Apply Apriori in each partition DBi extract local frequent itemsets

– local minSupport threshold in DBi: minSupport * |DBi|

• Any itemset that is potentially frequent in DB must be frequent in at least one 

of the partitions of DB!

• The set of local frequent itemsets forms the global candidate itemsets

• Find the actual support of each candidate  global frequent itemsets

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 33
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Partition cont’

Pseudocode

Advantages:
• adapted to fit in main memory size

• parallel execution

• 2 scans in DB

Dissadvantages:
• # candidates in 2nd scan might be large

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 34
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Sampling

Sampling (H. Toinoven, VLDB’96)

• Select a sample S of DB (that fits in memory) 

• Apply Apriori to the sample  PL   (potential 
large itemsets from sample)
• minSupport might be relaxed in the sample

• Since we search only in S, we might miss some 
global frequent itemsets

• Candidate set C = PL ∪BD-(PL):
• BD-: negative border (minimal set of itemsets which are 

not in PL, but whose subsets are all in PL.)

• Count support of C in DB using minSupport

• If there are frequent itemsets in BD-, expand C by 
repeatedly applying BD-

• Finally, count C in DB

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 35

PL

PL ∪BD-(PL)
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Sampling cont’

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 36

PL PL ∪BD-(PL) frequent itemsets

Repeated application of BD-
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Sampling cont’

Pseudocode

Advantages:
– Reduces number of database scans to 1 in the best case and 2 in worst.

– Scales better.

Disadvantages:
• The candidate set might be large

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules 37

1. Ds = sample of Database D;
2. PL = Large itemsets in Ds using smalls;

3. C = PL ∪ BD-(PL);
4. Count C in Database using s;

5. ML = large itemsets in BD-(PL);
6. If ML = ∅ then done

7. else C = repeated application of BD-;

8. Count C in Database;
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FPGrowth (Han, Pei & Yin, SIGMOD’00)

• Bottlenecks of the Apriori approach

– Breadth-first (i.e., level-wise) search

– Candidate generation and test

• Often generates a huge number of candidates

• The FPGrowth (frequent pattern growth) approach

– Depth-first search (DFS)

– Avoid explicit candidate generation

– Use an extension of prefix tree to “compact” the database
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{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3

min_support = 3

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o, w} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

f-list = f-c-a-b-m-p

Construct FP-tree from transaction database

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules

• To facilitate tree traversal, 
each item in the header table 
points to its occurrences in 
the tree via a chain of node-
links
• most common items appear 
close to the root
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FP-tree construction

• Frequent Pattern (FP) tree compresses the database, retaining the transactions 
information

• Method: 

1. Scan DB once, find frequent 1-itemset.

2. Sort frequent items in frequency descending order  f-list

3. Scan DB again, construct FP-tree

• Create the root of the tree, labeled with “null”

• Insert first transaction t1 in the tree e.g. t1=(A, B,C): create a new branch in the tree

• Insert the next transaction t2 in the tree

– If they are identical (i.e., t2=(A,B,C)), just update the  the nodes along the path

– If they share a common prefix (e.g., if t2=(A,B,D), update nodes in the shared part 
(A,B), create a new branch for the rest of the transaction (D)

– If nothing in common, start a new branch from the root

• Repeat for all transactions
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Transaction items are 
accessed in f-list order!!!

Scan 1

Scan 2
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Benefits of FP-tree structure

• Completeness 
– Preserve complete information for frequent pattern mining

– Never break a long pattern of any transaction

• Compactness
– Reduce irrelevant info—infrequent items are gone

– Items in frequency descending order: the more frequently occurring, the 
more likely to be shared

– Never be larger than the original database (not count node-links and the 
count field)

– Achieves high compression ratio
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• Frequent patterns can be partitioned into subsets according to 
f-list
– F-list=f-c-a-b-m-p

– Patterns containing p

– Patterns having m but no p

– …

– Patterns having c but no a nor b, m, p

– Pattern f

• Completeness and non-redundency

Partition Patterns and Databases
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Starting at the frequent item header table in the FP-tree
Traverse the FP-tree by following the link of each frequent item p
Accumulate all of transformed prefix paths of item p to form p’s conditional 

pattern base

Conditional pattern bases
item cond. pattern base
c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3

Find Patterns Having P From P-conditional 
Database
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For each pattern-base

– Accumulate the count for each item in the base

– Construct the FP-tree for the frequent items of the 
pattern base

m-conditional pattern base:
fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree

All frequent patterns 
relate to m
m, 
fm, cm, am, 
fcm, fam, cam, 
fcam

 

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table
Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3

From Conditional Pattern-bases to Conditional 
FP-trees
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Vertical vs horizontal representation

Transactions A B C D E F

100 1 1 0 0 0 1

200 1 0 1 1 0 0

300 0 1 0 1 1 1

400 0 0 0 0 1 1
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Horizontal representation: {TID, itemset}

Items 100 200 300 400

Α 1 1 0 0

Β 1 0 1 0

C 0 1 0 0

D 0 1 1 0

E 0 0 1 1

F 1 0 1 1

Vertical representation: {item, TID_set}
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Mining with vertical representation

Eclat (Zaki, TKDE’00)

• Vertical data format

• For each itemset, a list of transaction ids containing the itemset is 
maintained
• Χ.tidlist ={t1, t2, t3, t5}; Y.tidilist={t1, t2, t5, t8,t10}

• To find the support of X ∪Y, we use their lists intersection
• Χ.tidlist ∪Y.tidilist={t1, t2, t5}

• Support(X ∪Y)=| Χ.tidlist ∪Y.tidilist |=3

• No need to access the DB (use instead lists intersection)

• As we proceed, the size of the lists decrease, so intersection 
computation is faster
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Example
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Outline

• Introduction

• Basic concepts

• Frequent Itemsets Mining (FIM) – Apriori

• Association Rules Mining

• Apriori improvements

• Closed frequent itemsets (CFI) & Maximal frequent itemsets (MFI)

• Things you should know

• Homework/tutorial
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To many frequent itemsets

• The number of frequent itemsets (FI) is too large
• depends on the minSupport threshold of course, see example below
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Closed Frequent Itemsets (CFI)

• A frequent itemset X is called closed if there exists no frequent superset Y ⊇ X 
with suppD(X) = suppD(Y ).

• The set of closed frequent itemsets is denoted by CFI

• CFIs comprise a lossless representation of the FIs since no information is lost, 
neither in structure (itemsets), nor in measure (support).
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Maximal Frequent Itemsets (MFI)

• A frequent itemset is called maximal if it is not a subset of any other frequent 
itemset.

• The set of maximal frequent itemsets is denoted by MFI

• MFIs comprise a lossy representation of the FIs since it is only the lattice 
structure (i.e. frequent itemsets) that can be determined from MFIs whereas 
frequent itemsets supports are lost. 
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FIs – CFIs  - MFIs
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Outline

• Introduction

• Basic concepts

• Frequent Itemsets Mining (FIM) – Apriori

• Association Rules Mining

• Apriori improvements

• Closed frequent itemsets (CFI) & Maximal frequent itemsets (MFI)

• Things you should know

• Homework/tutorial
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Things you should know

• Frequent Itemsets, support, minSupport, itemsets lattice

• Association Rules, support, minSupport, confidence, minConfidence, strong rules

• Frequent Itemsets Mining: computation cost, negative border, downward closure 

property

• Apriori: join step, prune step, DB scans

• Association rules extraction from frequent itemsets

• Quality measures for association rules

• Improvements of Apriori (Partition, Sampling, FPGrowth, Eclat)

• Horizontal representation / Vertical representation

• Closed Frequent Itemsets (CFI)

• Maximal Frequent Itemsets (MFI)

Knowledge Discovery in Databases I: Data Preprocessing / Feature spaces 54



DATABASE
SYSTEMS
GROUP

Homework/ Tutorial

Tutorial: 2nd tutorial on Thursday  on:
– Frequent Itemsets and Association rules

– Detecting frequent itemsets/ association rules in a real dataset from stack overflow 
(http://stackoverflow.com/).

Homework: Have a look at the tutorial in the website and try to solve the 
exercises. 

– Try to run Apriori in Weka using dataset weather.nominal.arff (in weka installation 
folder/data)
• A bigger dataset  supermarket.arff (in weka installation folder/data )

– Try to implement Apriori

Suggested reading:
– Han J., KamberM., Pei J. Data Mining: Concepts and Techniques 3rd ed., Morgan 

Kaufmann, 2011 (Chapter 6)

– Apriori algorithm: Rakesh Agrawal and R. Srikant, Fast Algorithms for Mining 
Association Rules, VLDB’94.
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