

Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme

Lecture notes Knowledge Discovery in Databases Summer Semester 2012

Lecture 3: Frequent Itemsets Mining & Association Rules Mining

Lecture: Dr. Eirini Ntoutsi Exercises: Erich Schubert

http://www.dbs.ifi.lmu.de/cms/Knowledge_Discovery_in_Databases_I_(KDD_I)

- Previous KDD I lectures on LMU (Johannes Aßfalg, Christian Böhm, Karsten Borgwardt, Martin Ester, Eshref Januzaj, Karin Kailing, Peer Kröger, Jörg Sander, Matthias Schubert, Arthur Zimek)
- Jiawei Han, Micheline Kamber and Jian Pei, *Data Mining: Concepts and Techniques, 3rd ed.,* Morgan Kaufmann, 2011.
- Margaret Dunham, Data Mining, *Introductory and Advanced Topics*, Prentice Hall, 2002.
- Wikipedia

- Introduction
- Basic concepts
- Frequent Itemsets Mining (FIM) Apriori
- Association Rules Mining
- Apriori improvements
- Closed frequent itemsets (CFI) & Maximal frequent itemsets (MFI)
- Things you should know
- Homework/tutorial

- Frequent patterns are patterns that appear frequently in a dataset.
 - Patterns: items, substructures, subsequences ...
- Typical example: Market basket analysis

Customer transactions

Tid	Transaction items		
1	Butter, Bread, Milk, Sugar		
2	Butter, Flour, Milk, Sugar		
3	Butter, Eggs, Milk, Salt		
4	Eggs		
5	Butter, Flour, Milk, Salt, Sugar		

- We want to know: What products were often purchased together?
 - e.g.: beer and diapers?
- Applications:
 - Improving store layout
 - Sales campaigns
 - Cross-marketing
 - Advertising

The parable of the beer and diapers: http://www.theregister.co.uk/2006/08/15/beer_diapers/

... its not only about market basket data

- Market basket analysis
 - Items are the products
 - Transactions are the products bought by a customer during a supermarket visit
 - Example: Buy(X, "Diapers") \rightarrow Buy(X, "Beer") [0.5%, 60%]
- Similarly in an online shop, e.g. Amazon
 - Example: Buy(X, "Computer") \rightarrow Buy(X, "MS office") [50%, 80%]
- University library
 - Items are the books
 - Transactions are the books borrowed by a student during the semester
- University
 - Items are the courses
 - Transactions are the courses that are chosen by a student
 - Example: Major (X, "CS") \land Course(X, "DB") \rightarrow grade(X, "A") [1%, 75%]
- ... and many other applications.
- Also, frequent patter mining is fundamental in other DM tasks.

- Introduction
- Basic concepts
- Frequent Itemsets Mining (FIM) Apriori
- Association Rules Mining
- Apriori improvements
- Closed frequent itemsets (CFI) & Maximal frequent itemsets (MFI)
- Things you should know
- Homework/tutorial

- Items *I*: the set of items *I* = {*i*₁, ..., *i*_m}
 e.g. products in a supermarket, books in a bookstore
- **Itemset** X: A set of items $X \subseteq I$
- Itemset size: the number of items in the itemset
- *k*-Itemset: an itemset of size *k* e.g. {Butter, Brot, Milch, Zucker} is an 4-Itemset
 e.g. {Mehl, Wurst} is a 2-Itemset
- **Transaction T:** $T = (tid, X_T)$

e.g. products bought during a customer visit to the supermarket

• Database DB: A set of transactions T

e.g. customers purchases in a supermarket during the last week

• Items in transactions or itemsets are lexicographically ordered

Itemset *X* = ($x_1, x_2, ..., x_k$), such as $x_1 \le x_2 \le ... \le x_k$

Tid	Transaction items	
1	Butter, Bread, Milk, Sugar	
2	Butter, Flour, Milk, Sugar	
3	Butter, Eggs, Milk, Salt	
4	Eggs	
5	Butter, Flour, Milk, Salt, Sugar	

Let X be an itemset.

• **Itemset cover:** the set of transactions containing *X*:

 $cover(X) = \{tid \mid (tid, X_T) \in DB, X \subseteq X_T\}$

(absolute) support/ support count of X:
 # transactions containing X

supportCount(X) = |cover(X)|

Tid	Transaction items	
1	Butter, Bread, Milk, Sugar	
2	Butter, Flour, Milk, Sugar	
3	Butter, Eggs, Milk, Salt	
4	Eggs	
5	Butter, Flour, Milk, Salt, Sugar	

• (relative) support of X: the fraction of transactions that contain X (or the probability that a transaction contains X)

support(X) = P(X) = supportCount(X) / |DB|

• **Frequent itemset**: An itemset X is frequent in DB if its support is no less than a minSupport threshold s:

 $support(X) \ge s$

- L_k: the set of frequent k-itemsets
 - L comes from "<u>Large</u>" ("large itemsets"), another term for "frequent itemsets"

Example: itemsets

Tid	Transaction items		
1	Butter, Bread, Milk, Sugar		
2	Butter, Flour, Milk, Sugar		
3	Butter, Eggs, Milk, Salt		
4	Eggs		
5	Butter, Flour, Milk, Salt, Sugar		

I = {Butter, Bread, Eggs, Flour, Milk, Salt, Sugar}

- support(Butter) = 4/5=80%
 - cover(Butter) = {1,2,3,4}
- support(Butter, Bread) = 1/5=20%
 - cover(Butter, Bread) =
- support(Butter, Flour) = 2/5=40%
 - cover(Butter, Flour) =
- support(Butter, Milk, Sugar) = 3/5=60%
 - Cover(Butter, Milk, Sugar)=

Problem 1: Frequent Itemsets Mining (FIM)

<u>Given:</u>

- A set of items /
- A transactions database DB over I
- A minSupport threshold s

Goal: Find all frequent itemsets in DB, i.e.:

 $\{X \subseteq I \mid support(X) \ge s\}$

TransaktionsID	Items
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

Support of 1-Itemsets: (A): 75%, (B), (C): 50%, (D), (E), (F): 25%, Support of 2-Itemsets: (A, C): 50%, (A, B), (A, D), (B, C), (B, E), (B, F), (E, F): 25%

Let X, Y be two itemsets: $X, Y \subseteq I$ and $X \cap Y = \emptyset$.

• Association rules: rules of the form

head or LHS (left-hand side) or antecedent of the rule

body or RHS (right-hand side) or consequent of the rule

- Support s of a rule: the percentage of transactions containing X \cup Y in the DB or the probability P(X \cup Y)

 $support(X \rightarrow Y) = P(X \cup Y) = support(X \cup Y)$

 Confidence c of a rule: the percentage of transactions containing X ∪ Y in the set of transactions containing X or the conditional probability that a transaction containing X also contains Y

confidence($X \rightarrow Y$)= P($Y \mid X$)= P($X \cup Y$)/P(X)=support($X \cup Y$) / support (X)

- Support and confidence are measures of rules interestingness.
- Rules are usually written as follows:

 $X \rightarrow Y$ (support, confidence)

Example: association rules

Tid	Transaction items		
1	Butter, Bread, Milk, Sugar		
2	Butter, Flour, Milk, Sugar		
3	Butter, Eggs, Milk, Salt		
4	Eggs		
5	Butter, Flour, Milk, Salt, Sugar		

I = {Butter, Bread, Eggs, Flour, Milk, Salt, Sugar}

Sample rules:

- Butter \rightarrow Bread (20%, 25%)
 - support(Butter ∪Bread)=1/5=20%
 - support(Butter)=4/5=80%
 - Confidence = 20%/80%=1/4=25%
- {Butter, Milk} → Sugar (60%, 75%)
 - support(Butter, Milk ∪ Sugar) = 3/5=60%
 - Support(Butter,Milk) = 4/5=80%
 - Confidence = 60%/80%=3/4=75%

Problem 2: Association Rules Mining

<u>Given:</u>

- A set of items *I*
- A transactions database DB over /
- A minSupport threshold s and a minConfidence threshold c

<u>Goal</u>: Find all association rules $X \rightarrow Y$ in *DB* w.r.t. minimum support *s* and minimum confidence *c*, i.e.:

 $\{X \rightarrow Y \mid support(X \cup Y) \ge s, confidence(X \rightarrow Y) \ge c\}$

These rules are called strong.

TransaktionsID	Items
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

Association rules:

- $A \Rightarrow C$ (Support = 50%, Confidence= 66.6%)
- $C \Rightarrow A$ (Support = 50%, Confidence= 100%)

Problems solving

<u>Problem 1 (FIM)</u>: Find all frequent itemsets in *DB*, i.e.: $\{X \subseteq I \mid support(X) \ge s\}$

<u>Problem 2 (ARM)</u>: Find all association rules $X \rightarrow Y$ in *DB*, w.r.t. min support *s* and min confidence *c*: $\{X \rightarrow Y \mid support(X \cup Y) \ge s, confidence(X \rightarrow Y) \ge c, X, Y \subseteq I and X \cap Y = \emptyset\}$

- Problem 1 is part of Problem 2:
 - Once we have support(X \cup Y) and support(X), we can check if X \rightarrow Y is strong.
- 2-step method to extract the association rules:
 - 1. Determine the frequent itemsets w.r.t. min support s: ← FIM problem

"Naïve" algorithm: count the frequencies for all *k*-itemsets

```
Inefficient!!! There are \begin{pmatrix} |I| \\ | \end{pmatrix} such subsets
```

```
Total cost: O(2^{||})
```

=> Apriori-algorithm and variants

2. Generate the association rules w.r.t. min confidence *c*:

from frequent itemset X, generate $Y \rightarrow (X - Y)$, $Y \subset X$, $Y \neq \emptyset$, $Y \neq X$

Step 1(FIM) is the most costly, so the overall performance of an association rules mining algorithm is determined by this step.

SYSTEMS

Itemsets lattice

- The number of itemsets can be really huge. \bullet Let us consider a small set of items: $I = \{A, B, C, D\}$
- # 1-itemsets: $\binom{4}{1} = \frac{4!}{(4-1)!*1!} = \frac{4!}{3!} = 4$

DATABASE

GROUP

- **# 2-itemsets:** $\binom{4}{2} = \frac{4!}{(4-2)!*2!} = \frac{4!}{2!*2!} = 6$ •
- # 3-itemsets: $\binom{4}{3} = \frac{4!}{(4-3)!*3!} = \frac{4!}{3!} = 4$
- # 4-itemsets: $\binom{4}{4} = \frac{4!}{(4-4)!*4!} = 1$
- In the general case, for [1] items, there exist:

 $\binom{|I|}{1} + \binom{|I|}{2} + \dots + \binom{|I|}{k} = 2^{|I|} - 1$

So, generating all possible combinations and computing their support is inefficient!

- Introduction
- Basic concepts
- Frequent Itemsets Mining (FIM) Apriori
- Association Rules Mining
- Apriori improvements
- Closed frequent itemsets (CFI) & Maximal frequent itemsets (MFI)
- Things you should know
- Homework/tutorial

• First, frequent 1-itemsets are determined, then frequent 2-itemsets and so on

- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB (one scan)
 - Terminate when no frequent or candidate set can be generated

- Naïve approach: Count the frequency of all k-itemsets from I test $\sum_{k=1}^{|I|} {|I| \choose k} = 2^{|I|} - 1$ itemsets, i.e., O(2^{|||}).
- Candidate itemset X:
 - the algorithm evaluates whether X is frequent
 - the set of candidates should be as small as possible!!!
- Downward closure property / Monotonic property of frequent itemsets:
 - If X is frequent, all its subsets $Y \subseteq X$ are also frequent.
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
 - similarly for {diaper, nuts}, {beer, nuts}
 - Contrary: When X is not frequent, all its supersets are not frequent and thus they should not be generated/ tested!!! → reduce the candidate itemsets set
 - If {beer, diaper} is not frequent, {beer, diaper, nuts} would not be frequent also

Border Itemset X: all subsets $Y \subset X$ are frequent, all supersets $Z \supset X$ are not frequent

- Positive border: X is also frequent
- Negative border: X is not frequent

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules

From L_{k-1} to C_k to L_k L_k: frequent itemsets of size k; C_k: candidate itemsets of size k

A 2-step process:

- Join step: generate candidates C_k
 - L_k is generated by self-joining L_{k-1} : $L_{k-1} * L_{k-1}$
 - Two (k-1)-itemsets p, q are joined, if they agree in the first (k-2) items
- **Prune step:** prune C_k and return L_k
 - C_k is superset of L_k

Example: Let L₃={abc, abd, acd, ace, bcd}

```
- Join step: C<sub>4</sub>=L<sub>3</sub>*L<sub>3</sub>
C<sub>4</sub>={abc*abd=abcd; acd*ace=acde}
```

- Prune step: acde is pruned since cde is not frequent

- Naïve idea: count the support for all candidate itemsets in $C_k \dots |C_k|$ might be large!
- Use Apriori property: a candidate k-itemset that has some non-frequent (k-1)itemset cannot be frequent
 - Prune all those k-itemsets, that have some (k-1)-subset that is not frequent (i.e. does not belong to L_{k-1})
 - Due to the level-wise approach of Apriori, we only need to check (k-1)-subsets
- For the remaining itemsets in C_k , prune by support count (DB)

Apriori algorithm (pseudo-code)

return $\cup_k L_k$;

Subset function:

- The subset function must for every transaction T in DB check all candidates in the candidate set C_k whether they are part of the transaction T
- Organize candidates C_k in a hash tree

Example

Knowledge Discovery in Databases I: Frequent Itemsets Mining & Association Rules

Apriori overview

- Advantages:
 - Apriori property
 - Easy implementation (in parallel also)
- Disadvantages:
 - It requires up to |I| database scans
 - |I| is the maximum transaction length
 - It assumes that the itemsets are in memory

- Introduction
- Basic concepts
- Frequent Itemsets Mining (FIM) Apriori
- Association Rules Mining
- Apriori improvements
- Closed frequent itemsets (CFI) & Maximal frequent itemsets (MFI)
- Things you should know
- Homework/tutorial

Association Rules Mining

- (Recall the) 2-step method to extract the association rules:
 - 1. Determine the frequent itemsets w.r.t. min support s ← FIM problem (Apriori)
 - 2. Generate the association rules w.r.t. min confidence c.
- Regarding step 2, the following method is followed:
 - For every frequent itemset X
 - for every subset Y of X: $Y \neq \emptyset$, $Y \neq X$, the rule $Y \rightarrow (X Y)$ is formed
 - Remove rules that violate min confidence c

 $confidence(Y \rightarrow (X - Y)) = \frac{support_count(X)}{support_count(Y)}$

- Store the frequent itemsets and their supports in a hash table
 - no database scan!

Pseudocode

Input:	
D	//Database of transactions
Ι	//Items
L	//Large itemsets
s	//Support
lpha	//Confidence
Output:	
R	//Association Rules satisfying $s and \alpha$
ARGen	Algorithm:
$R = \emptyset$	•
for ea	$\mathbf{ach} \ l \in L \ \mathbf{do}$
fo	r each $x \subset l$ such that $x \neq \emptyset$ and $x \neq l$ do
	if $\frac{support(l)}{support(x)} \ge \alpha$ then
	$R = R \cup \{x \Rightarrow (l - x)\};$

Example

tid	X _τ	
1	{Bier, Chips, Wein}	
2	{Bier, Chips}	
3	{Pizza, Wein}	
4	{Chips, Pizza}	

Itemset	Cover	Sup.	Freq.
{}	{1,2,3,4}	4	100 %
{Bier}	{1,2}	2	50 %
{Chips}	{1,2,4}	3	75 %
{Pizza}	{3,4}	2	50 %
{Wein}	{1,3}	2	50 %
{Bier, Chips}	{1,2}	2	50 %
{Bier, Wein}	{1}	1	25 %
{Chips, Pizza}	{4}	1	25 %
{Chips, Wein}	{1}	1	25 %
{Pizza, Wein}	{3}	1	25 %
{Bier, Chips, Wein}	{1}	1	25 %

Transaction database

$I = \{\text{Bier, Chips}\}$	s, Pizza, Wein}
------------------------------	-----------------

Rule	Sup.	Freq.	Conf.
$\{Bier\} \Rightarrow \{Chips\}$	2	50 %	100 %
$\{Bier\} \Longrightarrow \{Wein\}$	1	25 %	50 %
${Chips} \Rightarrow {Bier}$	2	50 %	66 %
${Pizza} \Rightarrow {Chips}$	1	25 %	50 %
${Pizza} \Rightarrow {Wein}$	1	25 %	50 %
$\{Wein\} \Longrightarrow \{Bier\}$	1	25 %	50 %
$\{Wein\} \Longrightarrow \{Chips\}$	1	25 %	50 %
$\{Wein\} \Rightarrow \{Pizza\}$	1	25 %	50 %
$\{Bier, Chips\} \Rightarrow \{Wein\}$	1	25 %	50 %
$\{Bier, Wein\} \Rightarrow \{Chips\}$	1	25 %	100 %
{Chips, Wein} \Rightarrow {Bier}	1	25 %	100 %
${Bier} \Rightarrow {Chips, Wein}$	1	25 %	50 %
$\{Wein\} \Rightarrow \{Bier, Chips\}$	1	25 %	50 %

Interesting and misleading association rules

Example:

- Database on the behavior of students in a school with 5000 students
- Itemsets:
 - 60% of the students play Soccer,
 - 75% of the students eat chocolate bars
 - 40% of the students play Soccer and eat chocolate bars
- Association rules:

"Play Soccer" \rightarrow "Eat chocolate bars", confidence = 40%/60%= 67%

 \varnothing \rightarrow "Eat chocolate bars", confidence= 75%

Playing Soccer and eating chocolate bars are negatively correlated

Task: Filter out misleading rules

• Condition for a rule $A \rightarrow B$

$$\frac{P(A \cup B)}{P(A)} > P(B) - d$$

- for a suitable constant d > 0
- Measure of "interestingness" of a rule: interest

$$\frac{P(A \cup B)}{P(A)} - P(B)$$

- the higher the value the more interesting the rule is
- Measure of dependent/correlated events: lift

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

- the ratio of the observed support to that expected if X and Y were independent.

For a rule $A \rightarrow B$

• Support $P(A \cup B)$

e.g. support(milk, bread, butter)=20%, i.e. 20% of the transactions contain these

• Confidence $\frac{P(A \cup B)}{P(A)}$

e.g. confidence(milk, bread \rightarrow butter)=50%, i.e. 50% of the times a customer buys milk and bread, butter is bought as well.

• Lift $\frac{P(A \cup B)}{P(A)P(B)}$

e.g. lift(milk, bread \rightarrow butter)=20%/(40%*40%)=1.25. the observed support is 20%, the expected (if they were independent) is 16%.

- Introduction
- Basic concepts
- Frequent Itemsets Mining (FIM) Apriori
- Association Rules Mining
- Apriori improvements
- Closed frequent itemsets (CFI) & Maximal frequent itemsets (MFI)
- Things you should know
- Homework/tutorial

Apriori improvements

- Major computational challenges in Apriori:
 - Multiple scans of the DB: For each step (k-itemsets), a database scan is required
 - Huge number of candidates
 - Tedious workload of support counting for candidates
 - Too many candidates; One transaction may contain many candidates.
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Pass 1

Partition (A. Savasere, E. Omiecinski and S. Navathe, VLDB'95)

- Partition the DB into n non-overlapping partitions: DB₁, DB₂, ..., DB_n
- Apply Apriori in each partition $DB_i \rightarrow extract$ local frequent itemsets
 - local minSupport threshold in DB_i: minSupport * |DB_i|
- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB!
- The set of local frequent itemsets forms the *global candidate itemsets*
- Find the actual support of each candidate \rightarrow global frequent itemsets Pass 2

Partition cont'

Pseudocode

```
1. Divide D into partitions D^1, D^2, ..., D^{p};

2. For i = 1 to p do

3. L^i = Apriori(D^i); // 1<sup>st</sup> pass

4. C = L^1 \cup ... \cup L^p;

5. Count C on D to generate L; // 2<sup>nd</sup> pass
```

Advantages:

- adapted to fit in main memory size
- parallel execution
- 2 scans in DB

Dissadvantages:

• # candidates in 2nd scan might be large

Sampling

Sampling (H. Toinoven, VLDB'96)

- Select a sample S of DB (that fits in memory)
- Apply Apriori to the sample → PL (potential large itemsets from sample)
 - minSupport might be relaxed in the sample
- Since we search only in S, we might miss some global frequent itemsets
- Candidate set C = $PL \cup BD^{-}(PL)$:
 - BD⁻: negative border (minimal set of itemsets which are not in PL, but whose subsets are all in PL.)
- Count support of C in DB using minSupport
- If there are frequent itemsets in BD⁻, expand C by repeatedly applying BD⁻
- Finally, count C in DB

Sampling cont'

Pseudocode

 $D_s = sample of Database D;$ 1. 2. PL = Large itemsets in D_s using smalls; 3. $C = PL \cup BD (PL);$ 4. Count C in Database using s; ML = large itemsets in BD (PL); 5. If ML = \emptyset then done 6. else C = repeated application of BD 7. 8. Count C in Database;

Advantages:

- Reduces number of database scans to 1 in the best case and 2 in worst.
- Scales better.

Disadvantages:

• The candidate set might be large

- Bottlenecks of the Apriori approach
 - Breadth-first (i.e., level-wise) search
 - Candidate generation and test
 - Often generates a huge number of candidates
- The FPGrowth (frequent pattern growth) approach
 - Depth-first search (DFS)
 - Avoid explicit candidate generation
 - Use an extension of prefix tree to "compact" the database

Construct FP-tree from transaction database

LMU

min_support = 3

• To facilitate tree traversal, each item in the header table points to its occurrences in the tree via a chain of nodelinks

 most common items appear close to the root

FP-tree construction

- Frequent Pattern (FP) tree compresses the database, retaining the transactions information
- Method:
 - 1.Scan DB once, find frequent 1-itemset.Scan 1
 - 2. Sort frequent items in frequency descending order \rightarrow f-list
 - 3. Scan DB again, construct FP-tree
 - Create the root of the tree, labeled with "null"
 - Insert first transaction t1 in the tree e.g. t1=(A, B,C): create a new branch in the tree
 - Insert the next transaction t2 in the tree
 - If they are identical (i.e., t2=(A,B,C)), just update the the nodes along the path
 - If they share a common prefix (e.g., if t2=(A,B,D), update nodes in the shared part (A,B), create a new branch for the rest of the transaction (D)
 - If nothing in common, start a new branch from the root
 - Repeat for all transactions

Transaction items are accessed in f-list order!!!

Scan 2

Benefits of FP-tree structure

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database (not count node-links and the count field)
 - Achieves high compression ratio

- Frequent patterns can be partitioned into subsets according to f-list
 - F-list=f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - ...
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Completeness and non-redundency

Find Patterns Having P From P-conditional Database

Starting at the frequent item header table in the FP-tree Traverse the FP-tree by following the link of each frequent item *p* Accumulate all of *transformed prefix paths* of item *p* to form *p*'s conditional pattern base

For each pattern-base

- Accumulate the count for each item in the base
- Construct the FP-tree for the frequent items of the pattern base

Vertical vs horizontal representation

Transactions	A	В	С	D	Е	F
100	1	1	0	0	0	1
200	1	0	1	1	0	0
300	0	1	0	1	1	1
400	0	0	0	0	1	1

Horizontal representation: {TID, itemset}

Items	100	200	300	400
А	1	1	0	0
В	1	0	1	0
С	0	1	0	0
D	0	1	1	0
Е	0	0	1	1
F	1	0	1	1

Vertical representation: {item, TID_set}

Eclat (Zaki, TKDE'00)

- Vertical data format
- For each itemset, a list of transaction ids containing the itemset is maintained
 - X.tidlist ={t1, t2, t3, t5}; Y.tidilist={t1, t2, t5, t8,t10}
- To find the support of $X \cup Y$, we use their lists intersection
 - X.tidlist \cup Y.tidilist={t1, t2, t5}
 - Support(X ∪Y)= | X.tidlist ∪Y.tidilist |=3
- No need to access the DB (use instead lists intersection)
- As we proceed, the size of the lists decrease, so intersection computation is faster

Example

- Introduction
- Basic concepts
- Frequent Itemsets Mining (FIM) Apriori
- Association Rules Mining
- Apriori improvements
- Closed frequent itemsets (CFI) & Maximal frequent itemsets (MFI)
- Things you should know
- Homework/tutorial

To many frequent itemsets

- The number of frequent itemsets (FI) is too large
 - depends on the minSupport threshold of course, see example below

Figure 4.2: Effect of δ increase on the lattice structure ($\sigma = 0.1$)

Closed Frequent Itemsets (CFI)

- A frequent itemset X is called closed if there exists no frequent superset Y ⊇ X with suppD(X) = suppD(Y).
- The set of closed frequent itemsets is denoted by CFI
- CFIs comprise a lossless representation of the FIs since no information is lost, neither in structure (itemsets), nor in measure (support).

- A frequent itemset is called maximal if it is not a subset of any other frequent itemset.
- The set of maximal frequent itemsets is denoted by MFI
- MFIs comprise a lossy representation of the FIs since it is only the lattice structure (i.e. frequent itemsets) that can be determined from MFIs whereas frequent itemsets supports are lost.

DATABASE **SYSTEMS** GROUP

Fls – CFls - MFls

- Introduction
- Basic concepts
- Frequent Itemsets Mining (FIM) Apriori
- Association Rules Mining
- Apriori improvements
- Closed frequent itemsets (CFI) & Maximal frequent itemsets (MFI)
- Things you should know
- Homework/tutorial

Things you should know

- Frequent Itemsets, support, minSupport, itemsets lattice
- Association Rules, support, minSupport, confidence, minConfidence, strong rules
- Frequent Itemsets Mining: computation cost, negative border, downward closure property
- Apriori: join step, prune step, DB scans
- Association rules extraction from frequent itemsets
- Quality measures for association rules
- Improvements of Apriori (Partition, Sampling, FPGrowth, Eclat)
- Horizontal representation / Vertical representation
- Closed Frequent Itemsets (CFI)
- Maximal Frequent Itemsets (MFI)

Homework/ Tutorial

<u>Tutorial</u>: 2nd tutorial on Thursday on:

- Frequent Itemsets and Association rules
- Detecting frequent itemsets/ association rules in a real dataset from stack overflow (http://stackoverflow.com/).

Homework: Have a look at the tutorial in the website and try to solve the

exercises.

- Try to run Apriori in Weka using dataset weather.nominal.arff (in weka installation folder/data)
 - A bigger dataset supermarket.arff (in weka installation folder/data)
- Try to implement Apriori 🙂

Suggested reading:

- Han J., KamberM., Pei J. Data Mining: Concepts and Techniques 3rd ed., Morgan Kaufmann, 2011 (Chapter 6)
- Apriori algorithm: Rakesh Agrawal and R. Srikant, Fast Algorithms for Mining Association Rules, VLDB'94.