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Information-theoretic
Data Mining

INTRODUCTION




Example Clustering:
Find a natural grouping of the data objects.




The Algorithm K-Means
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1) Initialize 2) Assign points to 3) Update 4) Iterate
K cluster centers the closest center. centers. 2) und 3) until
randomly. convergence.

+ fast convergence,

— 2 :k 2 :n (1) 2
+ well-defined objective function, J = 4 _ 1HXi CjH
J: I=

+ gives a model describing the result.




We need a quality criterion for clustering




Measuring Clustering Quality

by Data Compression

~o _

Data compression is a good criterion for...

- the required number of clusters
- the goodness of a cluster structure
- the quality of a cluster description

How can a cluster be compressed?




Measuring Clustering Quality
by Data Compression

Data compression is a good criterion for...

- the required number of clusters
- the goodness of a cluster structure
POfLapi(3.5,1)(X) - the quality of a cluster description by a pdf
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How can a cluster be compressed?
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Data compression is a very general measure for:
- The amount of any kind of non-random information in any kind of data,
- The success of any kind of data mining technique.



General Information

ABOUT THE SEMINAR




Goals of the Seminar

Learn how to:
o Read scientific papers
> Discover the state-of-the-art on a specific topic
o Write a scientific report
° Do a scientific presentation



The Seminar in Practice

o

ECTS: 3 Credits (Bachelor), 6 Credits (Master)
Master students get the harder papers ;)

o

o

Presentation: 20 min presentation/10 min questions. Download the
template from the seminar web page

o

Write a report (max 8 pages).

o 3-4 pages Bachelor students

> 5-6 pages Master students

Attendance and participation of the seminar meetings
o ASK the lecturers ;)

(e]

(e]

Seminar days: February 19 -20, time to be announced at the website.



Contents of the Report

Follow the structure of a scientific publication.
Abstract and Introduction
— General motivation.
State of the Art and Contributions

— How is this paper different from (SoA)? e.g What is new? What is better? What is faster?
Problem statement

— Mathematical formulation
Method

— Overview: input, output.

— Method/Algorithm.
Results

— Summary of expenments and results (what type of data and validation).

— YOUR CRITIQUE of the methodology, set-up and validation (what else could have been done?,
Is it enough to demonstrate the contribution?, is the data biased?, are there non mentioned
assumptions?, can it be easily reproduced?)

Conclusion
— YOUR PERSONAL CONCLUSION & IDEAS
References



Contents of the Presentation

As a rule of thumb: max 1 slide per minute (max 20 slides for 20 mins)
Present the paper
— Type and year of publication: journal, conference, workshop, etc.
— Authors/Institution

Motivation and Goal
— What is the problem that the authors try to solve?

— MName potential applications: what for?
— General motivation: why is it interesting?

Related Work (state of the art)
— Mention most similar approaches and explain how your paper is different from them?
— Citing/Referencing other people’s work [Lastname-Conference-Year).

Method
— Overview (1 or 2 slides): input, output, contribution (the proposed new elements).
— Method/Algorithm (Only key ideas).

Results (short version)
— Explain the type of data used.

— Validation: what is being validated and how.

Conclusion (include your own conclusions!!)



Topic Selection

FIND YOUR OWN PAPER
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Mining Numerical
and Mixed Data

BASIC CLUSTERING
FINDING ALTERNATIVE CLUSTERINGS
MIXED (NUMERICAL, CATEGORICAL DATA)




Algorithm RIC:

Robust Information-theoretic Clustering (KDD 2006) @ .
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Start with an arbitrary partitioning

1. Robust Fitting (RF):
Purifies individual clusters from noise,
determines a stable model.

2. Cluster Merging (CM):
Stiches clusters which match well together.

Additional value-add:

Description of the cluster content by
assigning model distribution functions to the
individual coordinates.

Free from sensitve parameter settings !



A Nonparametric Information- Theoretic
Clustering Algorithm
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* first google pick for information theoretical clustering ;)
* close to machine learning
* uses entropy and mutual information as quality function

=» a bit different than our MDL-based approaches!



minCEntropy: a Novel Information Theoretic @
Approach for the Generation of Alternative
Clusterings
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* Aims at finding different alternative clusterings for the same data set

 Uses a general entropy as objective function (not Shannon)

* can also be used semi-supervised (close to machine learning topics)



INCONCO: Interpretable Clustering of
Numerical and Categorical Objects

Color Color L,

blue
red
Ereen

* Uses Minimum Description Length (MDL) ;)
* Tackles mixed-type attributes: numerical, categorical data

* Clusters by revealing ,,dependency patterns” among attributes by using
and extended Cholesky decomposition



Dependency Clustering across
measurement scales
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* Uses MIDL ;)
* supports mixed-type attributes

* finds attribute dependencies regardless the measurement scale



Relevant overlapping subspace
clusters on categorical data
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Subspace clustering Full-D clustering No clustering
6076 bits 6147 bits 6671 bits

* Focus on subspace clustering on
categorical data.

* Non redundant approach

* Parameter free /automized
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Graph Mining

CLUSTERING
WEIGHTED GRAPHS
SUMMARIZATION, STRUCTURE MINING
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Fully Automatic Cross-Associations

Orlglnal matrix lteration 1 (rows) Iteration 2 (cols) Iteration 4 (cols)
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* Finding structures in datasets (parameter-free, fully automatic,
scalable to very large matrices)

e |nput data: binary matrix (for example gained by graph data)

e Rearrangement of rows and columns according to the smallest
coding costs suggested by MDL

100 200 300

100 300 400 500 400
Colum Clusters Column Clusters

0
300 400 500 600
Column Clusters



Weighted Graph Compression for @
Parameter-free Clustering With PaCCo

Input: Adjacency Matrix
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Clustering weighted graphs (parameter-free, fully automatic,
reduced runtime)

Input data: adjacency matrix (containing weight information)

Downsplitting of the clusters according to the smallest coding costs
suggested by MDL



Summarization-based Mining @

Bipartite Graphs
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Mining bipartite graphs
Transforming the original graph
into a compact summary graph
controlled by MDL
Contributions: Clustering,
hidden structure Mining, link
prediction




Subdue: Compression-Based Frequent @
Pattern Discovery in Graph Data

a) b)

%2 O — * Discovering interesting
c% 2T CEJ) 2 patterns

v © * Input data: single graph

5 . or set of graphs (labeled

°, or unlabeled)

2
21

C

d)
e (va) :
CDGED c‘ ezi‘ . * Outputting substructures
° &) GO Ga) that best compress the
. input data set according
to MDL

d)

~




</

Compression-based Graph Mining
Exploiting Structure Primitives

*Graph clusterer that distinguishes different pattern in graphs
* Suitable for sparse graphs

*Minimum Description Length compression leads to favorizing ,,stars” or
H o
,cliques



PICS: Parameter-free Identificatior

of Cohesive Subgroups
in Large Attributed Graphs
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*Summarizes Graphs with node Attributes

* Fully Automatic

° Linear runtime




VOG: Summarizing and
Understanding Large Graphs

e o 4L (b) VOG: 8 out of the 10 most (c) VOG: The most informative (d) VOG: the second most infor-

Y. [Orig. w'klpe(,jm informative structures are stars bipartite graph - ‘edit war’ - war- mative bipartite graph - another

‘CO!"It roversy 'graph (with (their centers in red - Wikipedia ring factions (one of them, in ‘edit war’, between vandals (bot-

peing ecabeckisct fypars i), editors, heavy contributors etc.). the top-left red circle), changing tom left circle of red points) vs
each-other’s edits. responsible editors (in white).

No structure stands out.

* Compressing a graph with structure patterns: cliques, hubs, chains

* near linear runtime

*Newest paper on the line ;)



Mining Connection Pathways for

Marked Nodes in Large Graphs
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(b) Any patterns? “Too many” connections.
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(c) The “right” connections — Better sensemaking

* determining connection pathways =
different ways of link analysis

* NP hard problem (travelling salesman)

e Uses minimum description length



Vielen Dank fur die
Aufmerksambkeit




