#### HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt

# Current Topics in Information-theoretic Data Mining

NINA HUBIG, ANNIKA TONCH

### Helmholtz-Hochschul research group iKDD



Heterogeneous Input Data

Information Factory

Valid Output Knowledge



Applications: Neuroscience, Diabetes research.

# Outline

- 1. Introduction
- 2. General Information
- 3. Short Presentation of Topics
- 4. Selection of Topics

# Information-theoretic Data Mining

INTRODUCTION

# Example Clustering: Find a natural grouping of the data objects.



# The Algorithm K-Means









1) **Initialize** K cluster centers randomly.

2) **Assign** points to the closest center.

3) **Update** centers.



+ fast convergence,

- + well-defined objective function,
- + gives a model describing the result.

$$J = \sum_{j=1}^{k} \sum_{i=1}^{n} \left\| x_i^{(j)} - c_j \right\|^2$$

### We need a quality criterion for clustering



# Measuring Clustering Quality by Data Compression



#### Data compression is a good criterion for...

- the required number of clusters
- the goodness of a cluster structure
- the quality of a cluster description

#### How can a cluster be compressed?

# Measuring Clustering Quality by Data Compression



#### Data compression is a good criterion for...

- the required number of clusters
- the goodness of a cluster structure
- the quality of a cluster description by a pdf

#### How can a cluster be compressed?

Minimum Description Length (MDL) Principle: Automatic balance of Goodness-of-fit and model complexity



#### Data compression is a very general measure for:

- The amount of any kind of non-random information in any kind of data,
- The success of any kind of data mining technique.

# **General Information**

ABOUT THE SEMINAR

# Goals of the Seminar

Learn how to:

- Read scientific papers
- Discover the state-of-the-art on a specific topic
- Write a scientific report
- Do a scientific presentation

# The Seminar in Practice

- ECTS: 3 Credits (Bachelor), 6 Credits (Master)
- Master students get the harder papers ;)
- Presentation: 20 min presentation/10 min questions. Download the template from the seminar web page
- Write a **report** (max 8 pages).
  - 3-4 pages Bachelor students
  - 5-6 pages Master students
- Attendance and participation of the seminar meetings
  - ASK the lecturers ;)
- Seminar days: February 19 -20, time to be announced at the website.

# Contents of the Report

Follow the structure of a scientific publication.

- Abstract and Introduction
  - General motivation.
- State of the Art and Contributions
  - How is this paper different from (SoA)? e.g What is new? What is better? What is faster?
- Problem statement
  - Mathematical formulation
- Method
  - Overview: input, output.
  - Method/Algorithm.
- Results
  - Summary of experiments and results (what type of data and validation).
  - YOUR CRITIQUE of the methodology, set-up and validation (what else could have been done?, is it enough to demonstrate the contribution?, is the data biased?, are there non mentioned assumptions?, can it be easily reproduced?)
- Conclusion
  - YOUR PERSONAL CONCLUSION & IDEAS
- References

# Contents of the Presentation

As a rule of thumb: max 1 slide per minute (max 20 slides for 20 mins)

- Present the paper
  - Type and year of publication: journal, conference, workshop, etc.
  - Authors/Institution
- Motivation and Goal
  - What is the problem that the authors try to solve?
  - Name potential applications: what for?
  - General motivation: why is it interesting?
- Related Work (state of the art)
  - Mention most similar approaches and explain how your paper is different from them?
  - Citing/Referencing other people's work [Lastname-Conference-Year].
- Method
  - Overview (1 or 2 slides): input, output, contribution (the proposed new elements).
  - Method/Algorithm (Only key ideas).
- Results (short version)
  - Explain the type of data used.
  - Validation: what is being validated and how.
- Conclusion (include your own conclusions!!)

# **Topic Selection**

FIND YOUR OWN PAPER

#### HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt

# Mining Numerical and Mixed Data

BASIC CLUSTERING FINDING ALTERNATIVE CLUSTERINGS MIXED (NUMERICAL, CATEGORICAL DATA)

#### Algorithm RIC: Robust Information-theoretic Clustering (KDD 2006)





Start with an arbitrary partitioning

 Robust Fitting (RF): Purifies individual clusters from noise, determines a stable model.

2. Cluster Merging (CM): Stiches clusters which match well together.

Additional value-add:

Description of the cluster content by assigning model distribution functions to the individual coordinates.

#### Free from sensitve parameter settings !



### A Nonparametric Information- Theoretic Clustering Algorithm



- first google pick for information theoretical clustering ;)
- close to machine learning
- uses entropy and **mutual information** as quality function
  - → a bit different than our MDL-based approaches!



### minCEntropy: a Novel Information Theoretic Approach for the Generation of Alternative Clusterings



- Aims at finding different **alternative clusterings** for the same data set
- Uses a **general entropy** as objective function (not Shannon)
- can also be used semi-supervised (close to machine learning topics)



# INCONCO: Interpretable Clustering of Numerical and Categorical Objects



- Uses Minimum Description Length (MDL) ;)
- Tackles mixed-type attributes: numerical, categorical data
- Clusters by revealing "dependency patterns" among attributes by using and extended Cholesky decomposition



### Dependency Clustering across measurement scales



- Uses MDL ;)
- supports mixed-type attributes
- finds attribute dependencies regardless the measurement scale



# Relevant overlapping subspace clusters on categorical data



- Focus on subspace clustering on categorical data.
- Non redundant approach
- Parameter free /automized

#### HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt

# Graph Mining

#### CLUSTERING

WEIGHTED GRAPHS

SUMMARIZATION, STRUCTURE MINING



# Fully Automatic Cross-Associations



- Finding structures in datasets (parameter-free, fully automatic, scalable to very large matrices)
- Input data: binary matrix (for example gained by graph data)
- Rearrangement of rows and columns according to the smallest coding costs suggested by MDL



# Weighted Graph Compression for Parameter-free Clustering With PaCCo



- Clustering weighted graphs (parameter-free, fully automatic, reduced runtime)
- Input data: adjacency matrix (containing weight information)
- Downsplitting of the clusters according to the smallest coding costs suggested by MDL

# Summarization-based Mining Bipartite Graphs



- Mining bipartite graphs
- Transforming the original graph into a compact summary graph controlled by MDL

Easy

• Contributions: Clustering, hidden structure Mining, link prediction



# Subdue: Compression-Based Frequent Pattern Discovery in Graph Data





b)

d)

e)





c)





- Discovering interesting patterns
- Input data: single graph or set of graphs (labeled or unlabeled)
- Outputting substructures that best compress the input data set according to MDL



# Compression-based Graph Mining Exploiting Structure Primitives



•Graph clusterer that distinguishes different pattern in graphs

- Suitable for sparse graphs
- Minimum Description Length compression leads to favorizing "stars" or "cliques"

# PICS: Parameter-free Identification of Cohesive Subgroups in Large Attributed Graphs



•Summarizes Graphs with node Attributes

- Fully Automatic
- Linear runtime



# VOG: Summarizing and Understanding Large Graphs



Wikipedia Original (a) Controversy graph (with 'spring embedded' layout [15]). No structure stands out.





each-other's edits.



(b) VoG: 8 out of the 10 most (c) VoG: The most informative (d) VoG: the second most inforinformative structures are stars bipartite graph - 'edit war' - war- mative bipartite graph - another (their centers in red - Wikipedia ring factions (one of them, in 'edit war', between vandals (boteditors, heavy contributors etc.). the top-left red circle), changing tom left circle of red points) vs responsible editors (in white).

- Compressing a graph with structure patterns: cliques, hubs, chains
- near linear runtime
- •Newest paper on the line ;)



# Mining Connection Pathways for Marked Nodes in Large Graphs



(a) What to say about this "list" of authors?







(c) The "right" connections  $\rightarrow$  Better sensemaking

- determining connection pathways → different ways of link analysis
- NP hard problem (travelling salesman)
- Uses minimum description length

# Vielen Dank für die Aufmerksamkeit

