

Überblick

4.1 Einleitung

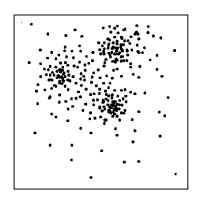
4.2 Clustering

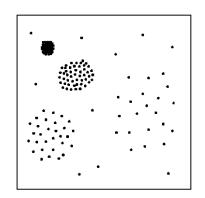
4.3 Klassifikation

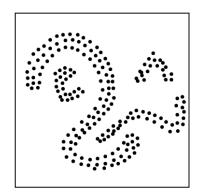
Ziel des Clustering

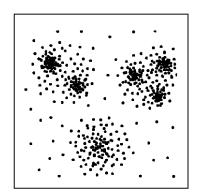
Ziel: Identifikation einer endlichen Menge von Kategorien, Klassen oder Gruppen (*Cluster*) in den Daten

- Objekte im gleichen Cluster sollen möglichst ähnlich sein
- Objekte aus verschiedenen Clustern sollen möglichst unähnlich zueinander sein









Herausforderungen:

- Cluster unterschiedlicher Größe, Form und Dichte
- hierarchische Cluster
- Rauschen (Noise)
 - => unterschiedliche Clustering-Algorithmen

Typen von Clustering-Verfahren

Partitionierende Verfahren

- Parameter: Anzahl k der Cluster, Distanzfunktion
- sucht ein "flaches" Clustering in k Cluster mit minimalen Kosten

Dichtebasierte Verfahren

- Parameter: minimale Dichte in einem Cluster, Distanzfunktion
- erweitert Punkte um ihre Nachbarn solange Dichte groß genug

Partitionierende Verfahren

Grundlagen

- Ziel
 - Partitionierung in k Cluster so dass eine Kostenfunktion minimiert wird (Gütekriterium)
- Lokal optimierendes Verfahren
 - wähle *k* initiale Cluster-Repräsentanten
 - optimiere diese Repräsentanten iterativ
 - ordne jedes Objekt seinem ähnlichsten Repräsentanten zu
- Typen von Cluster-Repräsentanten
 - Mittelwert des Clusters (Centroid)
 - Element des Clusters (Medoid)
 - Wahrscheinlichkeitsverteilung des Clusters (Erwartungsmaximierung)

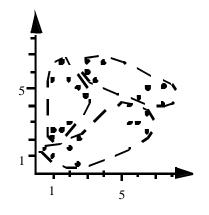
Partitionierende Verfahren

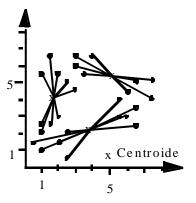
Beispiel

Cluster

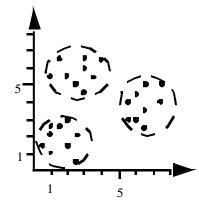
Cluster-Repräsentanten

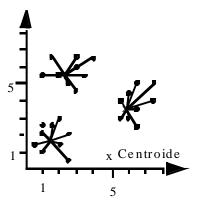
schlechtes Clustering





optimales Clustering





Grundbegriffe

- Objekte sind Punkte $p=(p_1, ..., p_d)$ in einem euklidischen Vektorraum
- euklidische Distanz
- Centroid μ_C : Mittelwert aller Punkte im Cluster C
- Maß für die Kosten (Kompaktheit) eines Clusters C

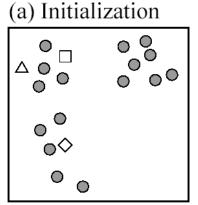
$$TD^{2}(C) = \sum_{p \in C} dist(p, \mu_{C})^{2}$$

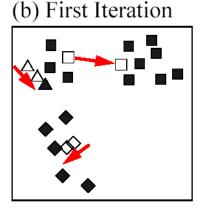
Maß für die Kosten (Kompaktheit) eines Clustering

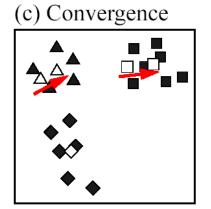
$$TD^2 = \sum_{i=1}^k TD^2(C_i)$$

Idee des Algorithmus

- Algorithmus startet z.B. mit zufällig gewählten Punkten als Cluster-Repräsentanten
- Der Algorithmus besteht aus zwei alternierenden Schritten:
 - Zuordnung jedes Datenpunktes zum räumlich nächsten Repräsentanten
 - Neuberechnung der Repräsentanten (Centroid der zugeordneten Punkte)
- Diese Schritte werden so lange wiederholt, bis sich keine Änderung mehr ergibt



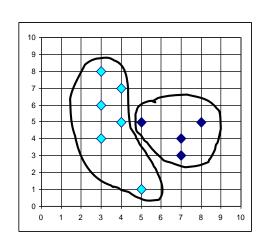




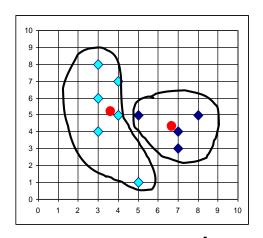
Algorithmus

```
ClusteringDurchVarianzMinimierung(Punktmenge D, Integer k)
   Erzeuge eine "initiale" Zerlegung der Punktmenge D in k Klassen;
   Berechne die Menge C'={C1, ..., Ck} der Zentroide für die k Klassen;
   C = {};
   repeat
        C = C';
        Bilde k Klassen durch Zuordnung jedes Punktes zum
            nächstliegenden Zentroid aus C;
        Berechne die Menge C'={C'1, ..., C'k} der Zentroide für die neu
        bestimmten Klassen;
until C = C';
return C;
```

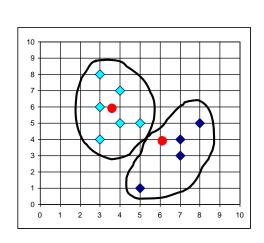

Beispiel



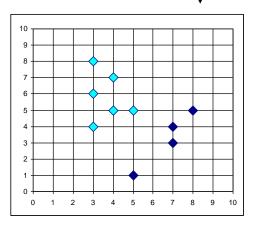
Berechnung der neuen Zentroide



Zuordnung zum nächsten Zentroid



Berechnung der neuen Zentroide



Diskussion

- + Effizienz:
 - Anzahl der Iterationen ist im allgemeinen klein (~ 5 10).
- + einfache Implementierung:
 - k-means ist das populärste partitionierende Clustering-Verfahren
- Anfälligkeit gegenüber Rauschen und Ausreißern
 (alle Objekte gehen ein in die Berechnung des Zentroids)
- Cluster müssen konvexe Form haben
- die Anzahl k der Cluster muss bekannt sein
- starke Abhängigkeit von der initialen Zerlegung (sowohl Ergebnis als auch Laufzeit)