

Überblick

- 4.1 Einleitung
- 4.2 Clustering
- 4.3 Klassifikation

Klassifikationsproblem

Gegeben:

- eine Menge $O \subseteq D$ von Objekten $o = (o_1, ..., o_d) \in O$ mit Attributen A_i , 1 ≤ $i \le d$
- eine Menge von Klassen $C = \{c_1,...,c_k\}$
- Klassenzuordnung $T: O \rightarrow C$

Gesucht:

- − die Klassenzugehörigkeit für Objekte aus D\O
- ein Klassifikator $K: D \rightarrow C$

Abgrenzung zum Clustering

- Klassifikation: Klassen a priori bekannt
- Clustering: Klassen werden erst gesucht

Verwandtes Problem: Regression

– gesucht ist der Wert für ein numerisches Attribut

Beispiel

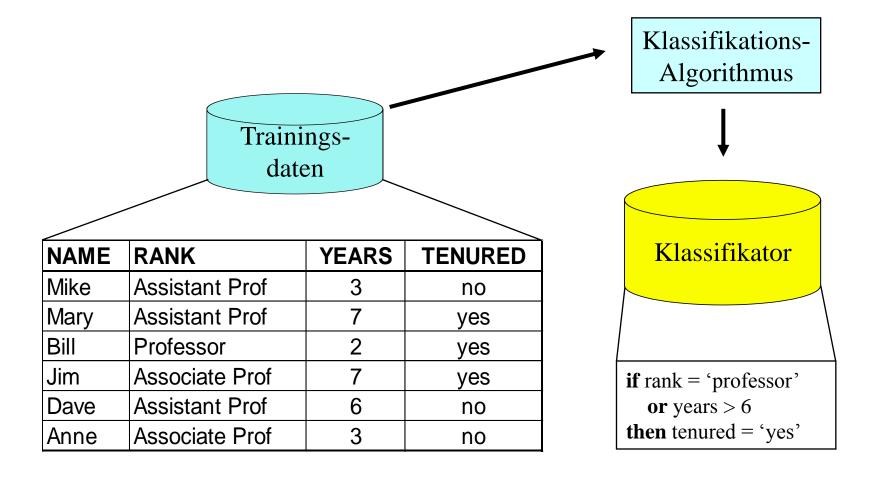
ID Alter		Autotyp	Risiko	
1	23	Familie	hoch	
2	17	Sport	hoch	
3	43	Sport	hoch	
4	68	Familie	niedrig	
5	32	LKW	niedrig	

Einfacher Klassifikator

```
if Alter > 50 then Risikoklasse = Niedrig;
if Alter ≤ 50 and Autotyp=LKW then
Risikoklasse=Niedrig;
if Alter ≤ 50 and Autotyp ≠ LKW
then Risikoklasse = Hoch.
```

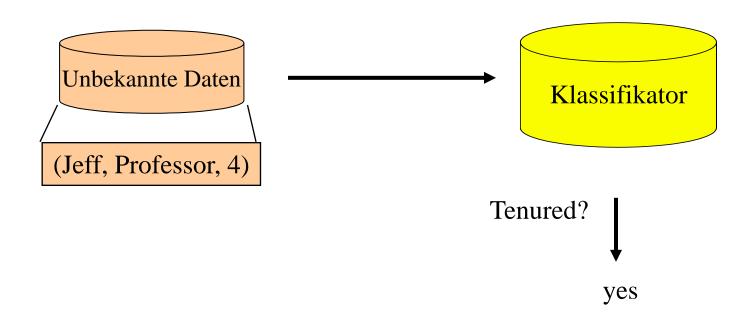

Klassifikations-Prozess

Konstruktion des Modells



Klassifikations-Prozess

Anwendung des Modells



manchmal: keine Klassifikation unbekannter Daten sondern "nur" besseres Verständnis der Daten

Grundbegriffe

• Sei K ein Klassifikator und sei $TR \subseteq O$ die Trainingsmenge. $O \subseteq D$ ist die Menge der Objekte, bei denen die Klassenzugehörigkeit bereits bekannt ist .

Problem der Bewertung:

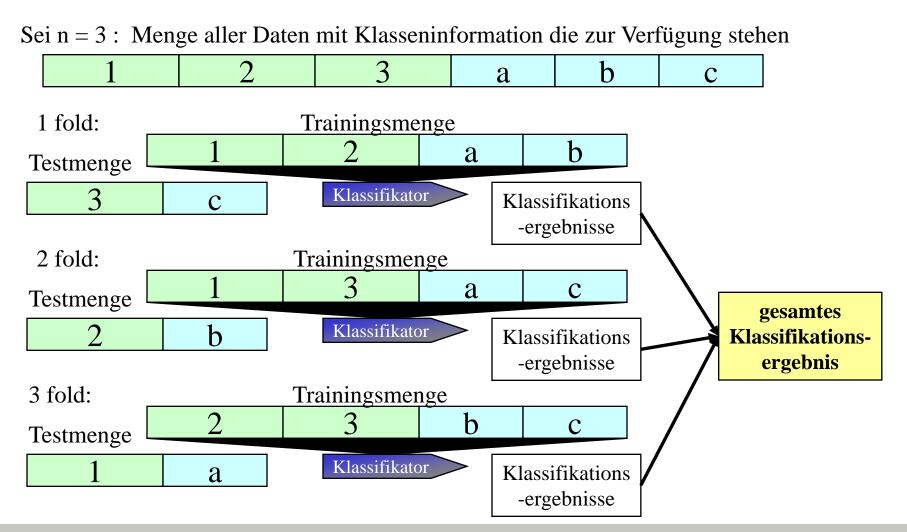
- gewünscht ist gute Performanz auf ganz D.
- Klassifikator ist für TR optimiert.
- Test auf *TR* erzeugt in der Regel viel bessere Ergebnisse, als auf *D\TR*.

Daher kein realistisches Bild der Performanz auf D.

⇒ Overfitting

- Abschätzung der Vorhersagequalität auf unbekannten Daten: k-fache Kreuzvalidierung (k-fold cross-validation)
 - Teile Trainingsmenge $TR \subseteq O$ in k Partitionen $TR_1, ..., TR_k$ ein.
 - für i = 1...k:
 - trainiere einen Klassifikator K_i auf TR\TR_i
 - teste K_i auf TR_i
 - Mittle die k beobachteten Fehlerraten

Ablauf 3-fache Überkreuzvalidierung (3-fold Cross Validation)



Ergebnis des Tests : Konfusionsmatrix (confusion matrix)

klassifiziert als ...

		Klasse1	Klasse 2	Klasse 3	Klasse 4	other
tatsächliche Klasse	Klasse 1	35	1	1	1	4
	Klasse 2	0	31	1	1	5
	Klasse 3	3	1	50	1	2
	Klasse 4	1	0	1	10	2
	other	3	1	9	15	13

korrekt klassifizierte Objekte

Aus der Konfusionsmatrix lassen sich diverse Kennzahlen berechnen, z.B. Accuracy, Classification Error, Precision und Recall.

Gütemaße für Klassifikatoren

- •Sei K ein Klassifikator, $TR \subseteq O$ die Trainingsmenge, $TE \subseteq O$ die Testmenge. Bezeichne T(o) die tatsächliche Klasse eines Objekts o.
- Klassifikationsgenauigkeit (classification accuracy) von K auf TE:

$$G_{TE}(K) = \frac{|\{o \in TE : K(o) = T(o)\}|}{|TE|}$$

Tatsächlicher Klassifikationsfehler (true classification error)

$$F_{TE}(K) = \frac{|\{o \in TE : K(o) \neq T(o)\}|}{|TE|}$$

Beobachteter Klassifikationsfehler (apparent classification error)

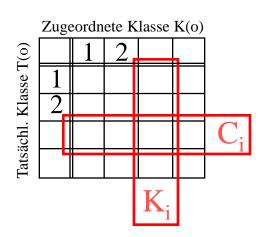
$$F_{TR}(K) = \frac{|\{o \in TR : K(o) \neq T(o)\}|}{|TR|}$$

Recall:

Anteil der Testobjekte einer Klasse i, die richtig erkannt wurden.

Sei
$$C_i = \{o \in TE : T(o) = i\}$$
, dann ist

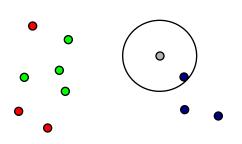
Recall_{TE}(K,i) =
$$\frac{|\{o \in C_i: K(o) = T(o)\}|}{|C_i|}$$



Precision:

Anteil der zu einer Klasse i zugeordneten Testobjekte, die richtig erkannt wurden. Sei $K_i = \{o \in TE : K(o) = i\}$, dann ist

Precision_{TE}(K,i) =
$$\frac{|\{o \in K_i : K(o) = T(o)\}|}{|K_i|}$$



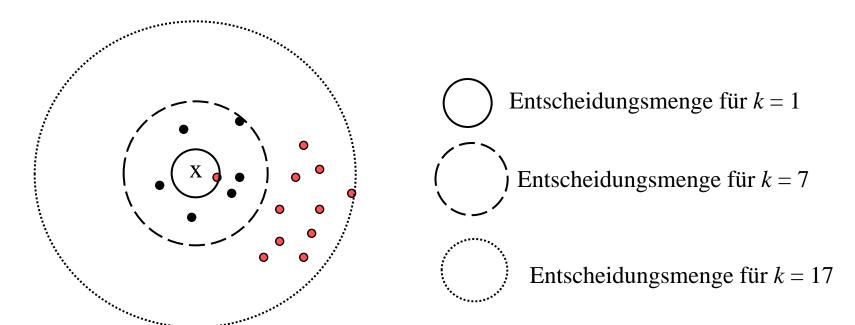
- SchraubenNägelKlammernTrainings-daten
- Neues Objekt => Schraube

- Instanzbasiertes Lernen (instance based learning)
- Einfachster Nächste-Nachbar-Klassifikator: Zuordnung zu der Klasse des nächsten Nachbarpunkts
- Im Beispiel: Nächster Nachbar ist eine Schraube

- Problem: Punkt links oben wahrscheinlich nur Ausreißer
 neues Objekt vermutlich grün statt rot
- Besser: Betrachte mehr als nur einen Nachbarn
 → k-Nächste-Nachbarn-Klassifikator
- Entscheidungsmenge die Menge der zur Klassifikation betrachteten k-nächsten Nachbarn
- Entscheidungsregel
 wie bestimmt man aus den Klassen der Entscheidungsmenge die Klasse des
 zu klassifizierenden Objekts?
 - Interpretiere Häufigkeit einer Klasse in der Entscheidungsmenge als Wahrscheinlichkeit der Klassenzugehörigkeit
 - Maximum-Likelihood-Prinzip: Mehrheitsentscheidung
 - Ggf. Gewichtung

Wahl des Parameters k

- "zu kleines" k: hohe Sensitivität gegenüber Ausreißern
- "zu großes" *k*: viele Objekte aus anderen Clustern (Klassen) in der Entscheidungsmenge.
- mittleres k: höchste Klassifikationsgüte, oft 1 << k < 10



x: zu klassifizieren

Entscheidungsregel

- Standardregel
 - wähle die Mehrheitsklasse der Entscheidungsmenge
- Gewichtete Entscheidungsregel gewichte die Klassen der Entscheidungsmenge
 - nach Distanz, meist invers quadriert: $weight (dist) = 1/dist^2$
 - nach Verteilung der Klassen (oft sehr ungleich!)
 Problem: Klasse mit zu wenig Instanzen (< k/2) in der Trainingsmenge bekommt keine Chance, ausgewählt zu werden, selbst bei optimaler Distanzfunktion
 - Klasse A: 95 %, Klasse B 5 %
 - Entscheidungsmenge = {A, A, A, A, B, B, B}
 - Standardregel \Rightarrow A, gewichtete Regel \Rightarrow B

Ausblick

Data Mining und andere Wissenschaften

- Data Mining lebt von der Anwendung und muss für viele Anwendungsszenarien und Probleme zugeschnitten werden.
- Data Mining kann im Anwendungsgebiet (z.B. einer anderen Wissenschaft – Geographie, BWL, Kunst, Sprachwissenschaft, Physik, Biologie,...) zu neuen Erkenntnissen führen.
- Umgekehrt bietet ein konkretes Anwendungsszenario oft interessante Herausforderungen für die Forschung im Bereich Data Mining.