3.5 Balancierung gemäß Zugriffshäufigkeit

Bisherige (implizite) Annahme:

• die Zugriffshäufigkeit aller Datensätze ist gleichverteilt.

aber:

- Diese Annahme ist oft nicht gegeben,
- d.h. es wird mit unterschiedlicher Häufigkeit auf Datensätze zugegriffen.

Gewichte und Weglängen

Gegeben seien N Datensätze, die durch ihre Primärschlüssel x_1 bis x_N charakterisiert sind.

• Gewicht von x_i

die Anzahl der Zugriffe zu einem Schlüssel x_i.

Bezeichung: ω_i .

• Gesamtgewicht aller Datensätze

die Gesamtanzahl aller Zugriffe.

Bezeichnung: **W**.

Es gilt: $\omega = \sum \omega_i$

• relatives Gewicht von x_i

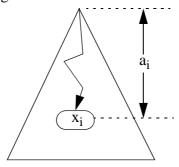
die relative Häufigkeit eines Zugriffs zu x_i.

Bezeichnung: p_i Es gilt: $p_i = \frac{\omega_i}{\omega}$

• Weglänge a_i zu einem Schlüssel x_i

die Differenz zwischen der Höhe eines Schlüssels x_i und der Höhe der Baumwurzel.

Die Weglänge entspricht der Anzahl der Seitenzugriffe, die bei einer Suche nach x_i von der Wurzel bis zu dem x_i beherbergenden Knoten anfallen.



• gewichtete Weglänge

die Summe aller gewichteten Weglängen $p_i \times a_i$

Bezeichnung: P NEs gilt: $P = \sum p_i \times a_i$

Gewichtetes dynamisches Dictionary

Gesucht ist eine Datenstruktur,

- die dynamisch ist,
- die die Schlüssel gemäß ihrem Gewicht abspeichert,
- die die gewichtete Weglänge P möglichst gut minimiert.

Anmerkung:

In den bisherigen Definitionen wurde nur auf die Wahrscheinlichkeit eingegangen, daß man auf einen vorhandenen Schlüssel zugreift. Wichtig wäre es, zusätzlich die Wahrscheinlichkeit zu berücksichtigen, daß man einen Schlüssel nicht findet. Technisch ist dies in den im folgenden vorgestellten Strukturen problemlos möglich. Aus didaktischen Gründen wird jedoch darauf verzichtet.

Optimale Suchbäume

Suchbäume mit minimaler gewichteter Weglänge P heißen optimale Suchbäume.

Vorschlag:

Für Primärschlüssel mit Gewichten verwende man optimale binäre Suchbäume oder optimale B-Bäume.

Probleme:

- Die Zugriffshäufigkeiten sind oft nicht von vornherein bekannt oder ändern sich im Laufe der Zeit.
- Der Aufwand zur Bestimmung eines optimalen Suchbaumes ist bereits bei binären Bäumen sehr hoch: $O(n^2)$.

Einfügungen oder Entfernungen zerstören die Optimalität, die dann mit gleichem Zeitaufwand wieder hergestellt werden muß.

Nahezu-optimale Suchbäume (gewichtete 2B-Bäume)

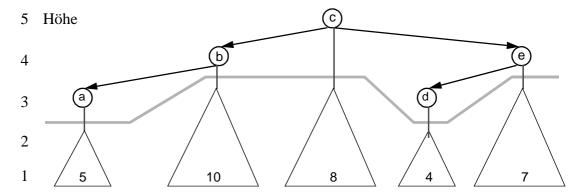
Idee:

- Anstatt optimaler Suchbäume verwenden wir *nahezu-optimale Bäume*, die wesentlich bessere dynamische Eigenschaften besitzen.
- Die Höhe eines Schlüssels im Baum wird durch eine *Heuristik* bestimmt:

Je höher das Gewicht eines Schlüssels, desto höher ist er im Baum plaziert.

Beispiel:

- Betrachten wir das Beispiel aus Abschnitt 3.3 auf Seite 21.
- Wir können die Anzahl verschiedener Datensätze mit gleichem Wert des ersten Attributs auch als dessen Gewicht interpretieren.
- Wir erhalten dann folgenden Baum:



• Dieser 2B-Baum speichert folgende 5 Datensätze der Form (x_i, ω_i) : (a,5), (b,10), (c,8), (d,4), (e,7).

Gewichteter 2B-Baum

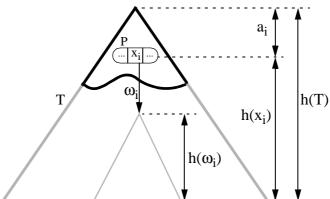
Ein gewichteter 2B-Baum der Ordnung m ist ein 2B-Baum mit folgenden Eigenschaften:

- Die Schlüssel werden auf dem oberen Level abgespeichert.
- Auf dem unteren Level werden physisch keine EQSON-Teilbäume mehr abgespeichert:
 - Die EQSON-Teilbäume existieren nur noch virtuell.
 - Diese virtuellen Teilbäume werden genutzt, um durch ihre von ω_i abhängige Höhe, den Schlüssel x_i auf der richtigen Höhe zu positionieren.
 - Damit wird jedem Schlüssel x_i statt seines EQSON-Zeigers sein Gewicht ω_i zugeordnet.

Suchzeit

Frage:

Wie groß kann die Weglänge a_i zu einem Schlüssel x_i in einem gewichteten 2B-Baum der Ordnung m maximal werden ?



$$a_i \rightarrow MIN \Leftrightarrow h(\omega_i) \rightarrow MAX$$

$$a_i = h(T) - h(x_i)$$

•
$$h(T) \le \log_{m+1} \mathbf{\omega} + 2$$

•
$$h(x_i) \ge h_{max}(\omega_i) + 1 = (log_{m+1} \ \omega_i + 1) + 1 = log_{m+1} \ \omega_i + 2$$

$$\Rightarrow a_i \le (\log_{m+1} \mathbf{\omega} + 2) - (\log_{m+1} \omega_i + 2)$$

$$= \log_{m+1} \left(\frac{\mathbf{\omega}}{\mathbf{\omega}_i} \right) = \log_{m+1} \left(\frac{1}{p_i} \right)$$

Folgerungen:

• In einem gewichteten 2B-Baum der Ordnung m mit einem Gesamtgewicht ω kann die Suche nach Schlüssel x_i mit Gewicht ω_i in

O
$$(\log_{m+1}\left(\frac{\mathbf{\omega}}{\mathbf{\omega}_i}\right))$$
 Zeit

durchgeführt werden.

• Damit ist der Baum "nahezu-optimal".

Zeit für eine Update-Operation

Update-Operation

Nach einem Zugriff auf einen Schlüssel x_i muß sein Gewicht ω_i um 1 erhöht werden.

Dadurch kann sich seine Position im Baum erhöhen.

Die Operation, die diese Erhöhung vornimmt, heißt UPDATE.

Eigenschaft

Die Zeit für ein UPDATE nach einer Suche ist höchstens proportional zur Suchzeit.

Begründung:

Zum Zeitpunkt t wird nach x_i im Knoten P gesucht.

Das Gewicht von x_i zu diesem Zeitpunkt ist ω_i^t .

Die Suche bewirkt:

$$\omega_{i}^{t+1} = \omega_{i}^{t} + 1$$

Die Höhe des virtuellen Teilbaumes von x_i verhält sich wie die eines normalen B-Baumes, d.h. falls

$$h(x_i) = h_{max}(\omega_i^{t+1}) = \left[\log_{m+1}\left(\frac{\omega_i^{t+1}+1}{2}\right)\right] + 1$$

muß x_i im oberen Level um 1 angehoben werden.

Dieses Anheben erfolgt über eine normale Operation des kB-Baumes:

Im schlimmsten Fall entsteht:

⇒ ein OVERFLOW oder ein UNDERFLOW.

Deren Behandlung läuft im schlimmsten Fall den Suchpfad wieder hoch.

Einfügezeit

Eigenschaft:

In einen gewichteten 2B-Baum der Ordnung m kann ein neuer Schlüssel mit beliebigem Gewicht in

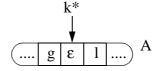
O
$$(\log_{m+1} \omega)$$
 Zeit

eingefügt werden.

Begründung:

Das Einfügen eines Schlüssels k* mit einem Gewicht ω läuft wie folgt ab:

- Suche nach der Einfügestelle von k*.
- Wir erreichen einen Knoten A, in dem k* zwischen zwei Schlüssel g und l fällt.
 Es gibt keinen Verweis (gekennzeichnet durch ε) zwischen g und l auf einen Knoten des gleichen Levels.
- $h_{max}(\omega)$ ist die Höhe des virtuellen B-Baumes für das Gewicht ω .



2 Fälle können eintreten:

- 1. A ist ein Blatt
- 2. A ist kein Blatt

Fall 1: A ist ein Blatt, d.h. die Höhe h von A ist 2.

Fall 1.1:
$$h_{max}(\omega) = \left[\log_{m+1} \left(\frac{\omega+1}{2} \right) \right] + 1 = 1$$

k* hat die richtige Höhe.

Möglicherweise entsteht durch Einfügen von k* in A ein Überlauf (OVERFLOW).

⇒ Behandlung über normale kB-Baum-Algorithmen (bleibt auf Suchpfad beschränkt).

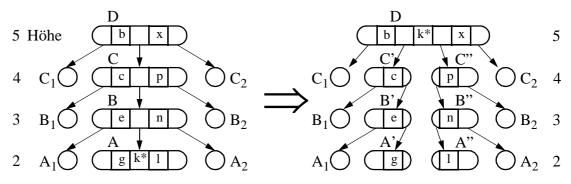
Fall 1.2:
$$h_{max}(\omega) = \left\lceil \log_{m+1} \left(\frac{\omega+1}{2} \right) \right\rceil + 1 > 1$$

 $\emph{k* mu\beta}$ angehoben werden auf einen Knoten der Höhe $h_{max}(\omega)+1$.

Dieses erfolgt durch: $h_{max}(\omega)$ -1 LIFTKEY-Operationen.

Beispiel: $h_{max}(\omega) = 4$

⇒ k* muß auf Höhe 5 angehoben werden.



k* befindet sich nun auf seiner korrekten Höhe 5 (wo er kB-Repräsentant ist).

- ⇒ Die Fragmente A', B', C' und A", B", C" sind entstanden.
- ⇒ Diese Knoten sind möglicherweise unterfüllt (UNDERFLOW).
- ⇒ Wenn der Vaterschlüssel, der nicht k* ist (k* ist kB-Repräsentant), dadurch seine Eigenschaft als kB-Separator verliert, wird die Struktur eines gewichteten 2B-Baumes verletzt

UNDERFLOW-Behandlung:

- durch Balancieren mit dem gesunden Bruder oder
- durch Kollabieren mit dem gesunden Bruder.

Beispiel: Wenn A' unterfüllt ist, wird er mit seinem linken Bruder A₁ balanciert oder kollabiert.

Dieses Restrukturieren wandert einerseits den Pfad A'B'C'D und andererseits den Pfad A'B"C"D hoch, denn:

• Wird ein Knoten mit seinem direkten Bruder kollabiert, kann ein UNDERFLOW im gemeinsamen Vaterknoten auftreten.

• Wird ein Knoten mit einem indirekten Bruder kollabiert, kann ein UNDERFLOW im Bruder des leeren Vaterknotens des Fragmentknotens auftreten.

Beide Fälle werden korrekt behandelt, da die weitere UNDERFLOW-Behandlung genau diese beiden Knoten betrachtet.

Das Restrukturieren wandert die Pfade A'B'C' und A"B"C" hoch bis D erreicht wird. *Mögliche Fälle, die auftreten können:*

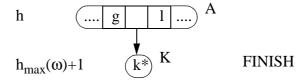
- 1. Entweder sind C' und C" beide korrekt oder beide werden balanciert.

 ⇒ möglicher OVERFLOW in D (die Anzahl der Schlüssel in D wird um 1 erhöht).
- 2. Nur einer, C' oder C", wird kollabiert, der andere ist korrekt oder wird balanciert.
 - ⇒ FINISH (die Anzahl der Schlüssel in D bleibt unverändert).
- 3. C' und C" werden beide kollabiert.
 - ⇒ möglicher UNDERFLOW in D (die Anzahl der Schlüssel in D wird um 1 verringert).
- ⇒ Das Restrukturieren bleibt auf den Suchpfad beschränkt.
- \Rightarrow Das Einfügen in ein Blatt kann in O ($\log_{m+1} \omega$) Zeit erfolgen.

Fall 2: A ist kein Blatt, d.h. h ist größer als 2.

$$Fall \ 2.1: h > h_{max}(\omega) + 1 = \left\lceil \log_{m+1} \left(\frac{\omega+1}{2}\right) \right\rceil + 2$$

Es wird ein neuer Knoten K auf Höhe $h_{max}(\omega)+1$ mit Schlüssel k^* angelegt. Der Zeiger zwischen g und l wird auf diesen neuen Knoten K gerichtet.



Fall 2.2:
$$h \le h_{max}(\omega) + 1$$

Wir fügen k* in Knoten A an der entsprechenden Position ein:

Weiter geht es wie in Fall 1.

⇒ Der Zeitaufwand für das Einfügen in einen inneren Knoten ist proportional zur Zugriffszeit zu diesem Knoten.

Es gilt:

Wenn ein Schlüssel mit hohem Gewicht zwischen zwei Schlüsseln mit niedrigem Gewicht eingefügt wird, bestimmt die Suchzeit nach den Schlüsseln mit niedrigem Gewicht die Einfügezeit.

Weitere Operationen für gewichtete dynamische Dictionaries

• PROMOTE

erhöht das Gewicht ω_i eines Schlüssels x_i um eine positive Zahl δ auf den Wert $\omega_i + \delta$.

DEMOTE

erniedrigt das Gewicht ω_i eines Schlüssels x_i um eine positive Zahl δ auf den Wert ω_i - δ . Voraussetzung: $\omega_i > \delta$.

• SPLIT

teilt einen gewichteten 2B-Baum T gemäß eines Schlüssels x_i in 2 gewichtete 2B-Bäume auf:

- T_1 enthält alle Schlüssel, die kleiner als x_i sind und
- T₂ enthält alle Schlüssel, die größer als x_i sind.

CONCATENATE

konstruiert aus zwei gewichteten 2B-Bäumen T_1 und T_2 einen gewichteten 2B-Baum T, der alle Schlüssel aus T_1 und T_2 enthält.

Voraussetzung: alle Schlüssel aus T₁ sind kleiner als alle Schlüssel aus T₂.

Zeitaufwand

Die folgende Tabelle gibt den Zeitaufwand im schlechtesten Fall in einem gewichteten 2B-Baum für die jeweilige Operation an:

Operation	Zeit proportional zu	Bemerkung
Suchen	$\log \frac{\omega}{\omega_i}$	
Einfügen	$\log \omega$	
Entfernen	$\log \omega$	Einzige Operation in nicht-idealer Zeit (ideal wäre die Suchzeit zum Schlüssel)
PROMOTE	$\log \frac{\omega}{\omega_i}$	Zeit proportional zur alten Suchzeit
DEMOTE	$\log \frac{\omega}{\omega_i - \delta}$	Zeit proportional zur neuen Suchzeit
SPLIT	$\log \frac{\omega}{\omega_i}$	
CONCATENATE	$logmax(\omega_1, \omega_2)$	

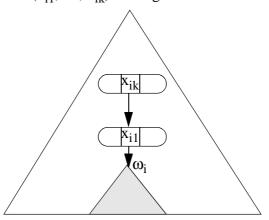
Nahezu-optimale mehrdimensionale Suchbäume (gewichtete (k+1)B-Bäume) Idee:

Jedem k-dimensionalen Schlüssel $(x_{i1}, ..., x_{ik})$ wird ein Gewicht ω_i zugeordnet.

Gewichteter (k+1)B-Baum

Ein gewichteter (k+1)B-Baum der Ordnung m ist ein (k+1)B-Baum mit folgenden Eigenschaften:

- Die Schlüssel werden auf den oberen k Leveln abgespeichert.
- Auf dem unteren Level werden nur noch virtuelle Teilbäume abgespeichert, deren Höhe vom Gewicht ω_i des Schlüssels (x_{i1}, \dots, x_{ik}) abhängt:



Eigenschaften:

- Exact Match Queries nach $(x_{i1},...,x_{ik})$ können in $O(\log_{m+1} \omega/\omega_i + k)$ Zeit durchgeführt werden
- Der Baum ist immer *nahezu optimal*.
- In einem gewichteten (k+1)B-Baum können alle Operationen eines gewichteten dynamischen Dictionaries ausgeführt werden.
- Der *Zeitaufwand* für die Operationen erhöht sich gegenüber gewichteten 2B-Bäumen um den additiven Faktor k.

Leistungsverhalten

Einwand:

Gewichtete 2B- und (k+1)B-Bäume sind viel zu komplexe Strukturen und lohnen sich erst bei sehr großen Dateien.

Leistungsvergleich für die Suchzeit:

B-Baum und gewichteter 2B-Baum:

- Es wurden B- und gewichtete 2B-Bäume implementiert und gegeneinander verglichen.
- Bei Primärschlüsseln mit normal verteilten Zugriffshäufigkeiten sind gewichtete 2B-Bäume bereits ab 750 Datensätzen den einfachen B-Bäumen überlegen.
- Diese Überlegenheit vergrößert sich ständig von diesem niedrigen Amortisationspunkt an

3.6 Originalliteratur

MDB-Bäume:

[SO 82] Scheuermann P., Ouksel M.: 'Multidimensional B-trees for associative searching in database systems', Information Systems, Vol. 7, No. 2, 1982, pp. 123-137.

kB- und kB⁺-Bäume:

- [GK 80] Güting H., Kriegel H.-P.: 'Multidimensional B-trees: An efficient dynamic file structure for exact match queries', GI-Jahrestagung, Saarbrücken, 1980, in: Informatik-Fachberichte, Vol. 33, Springer, 1980, pp. 375-388.
- [Kri 82] Kriegel H.-P.: 'Variants of Multidimensional B-trees as Dynamic Index Structures for Associative Retrieval in Database Systems', Proc. 8th Conf. on Graphtheoretic Concepts in Computer Science, 1982, pp. 109-128.

gewichtete kB-Bäume:

[GK 81] Güting H., Kriegel H.-P.: 'Dynamic k-dimensional multiway search under time-varying frequencies', Proc. 5th GI Conf. on Theoretical Computer Science, Karlsruhe, in: Lecture Notes in Computer Science, Vol. 104, Springer, 1981, pp. 135-145.

4 Raumorganisierende Strukturen zur Primärschlüsselsuche

Die bisher vorgestellten Suchbaumverfahren sind

• datenorganisierende Strukturen

d.h. sie organisieren die Menge der tatsächlich auftretenden Daten.

In diesem und dem nächsten Kapitel werden *dynamische Hashverfahren* zur Primär- und Sekundärschlüsselsuche vorgestellt. Die dynamischen Hashverfahren sind

• raumorganisierende Strukturen

d.h. sie organisieren den Raum, in den die Daten eingebettet sind.

4.1 Hashverfahren

Hashverfahren sind eine weit verbreitete Methode zur Organisation von Daten sowohl im Hauptals auch im Sekundärspeicher.

Prinzip

Gegeben:

- Wertemenge der Schlüssel: Domain(K)
- Menge der möglichen Adressen: $Adre\beta raum$ A (im weiteren sei A = [0 ... N-1])

Hashfunktion

Man nehme eine "geeignete" Funktion, die die Schlüssel auf den Adreßraum abbildet:

 $h: Domain(K) \rightarrow A$,

Diese Funktion h heißt *Hashfunktion*.

Verteilung der Schlüssel über den Adreßraum

Ziel:

gleichmäßige Verteilung der Schlüssel über den Adreßraum

Probleme:

- Die Schlüssel sind nicht gleichmäßig über den Datenraum verteilt.
- | Domain(K) | >> | A | (| x | = Kardinalität von x)

Beispiel: Personaldatei mit Nachnamen bis zur Länge 10 auf 1000 Datenseiten

- Häufungspunkte bei "Schmidt", "Müller", "Meyer" usw.
- $| Domain(K) | = 26^{10} >> | A | = 1000$

Verbreiteter Ansatz:

• h(K) sei möglichst unabhängig von K:

h(K) erzeugt möglichst zufällige Adressen von den (nichtzufälligen) Schlüsseln K (daher auch der Begriff "Hash"-Funktion).

Beispiel: Divisionsmethode

$$h(K) = K \text{ MOD } N$$

 $h(K) = ORD(K) \text{ MOD } N$

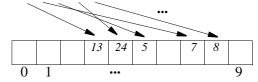
für numerische Schlüssel für nicht-numerische Schlüssel

Konkrete Beipiele:

Für ganzzahlige Schlüssel:
$$h: K \to [0, 1, ..., N-1]$$
 mit $h(K) = K \text{ MOD } N$.

sei:
$$N = 10$$

Schlüssel: 13, 7, 5, 24, 8, 18, 17, 31, 3, 11, 9, 30, 24, 27, 21, 19



Zeichenketten: Benutze die 'ORD-Funktion' zur Abbildung auf ganzzahlige Werte, z.B.:

$$h: STRING \to \begin{pmatrix} len(STRING) \\ \sum_{i=1} & (ORD(STRING[i]) - ORD(`a`) + 1) \end{pmatrix} MOD N$$

sei:
$$N = 15$$
 JAN $\rightarrow 25 \text{ MOD } 15 = 10$
 JUL $\rightarrow 43 \text{ MOD } 15 = 13$

 FEB $\rightarrow 13 \text{ MOD } 15 = 13$
 AUG $\rightarrow 29 \text{ MOD } 15 = 14$

 MAR $\rightarrow 32 \text{ MOD } 15 = 2$
 SEP $\rightarrow 40 \text{ MOD } 15 = 10$

 APR $\rightarrow 35 \text{ MOD } 15 = 5$
 OKT $\rightarrow 46 \text{ MOD } 15 = 1$

 MAI $\rightarrow 23 \text{ MOD } 15 = 8$
 NOV $\rightarrow 51 \text{ MOD } 15 = 6$

 JUN $\rightarrow 45 \text{ MOD } 15 = 0$
 DEZ $\rightarrow 35 \text{ MOD } 15 = 5$

Wie sollte N aussehen?

- $N = 2^k$
 - einfach zu berechnen
 - K MOD 2^k liefert die letzten k Bits der Binärzahl K
 - ⇒ Widerspruch zur Forderung nach Unabhängigkeit von K
- N gerade
 - h(K) gerade $\Leftrightarrow K$ gerade
 - ⇒ Widerspruch zur Forderung nach Unabhängigkeit von K
- N Primzahl
 - hat sich erfahrungsgemäß bewährt

Anforderungen von Datenbanksystemen (DBS):

- Gleichbleibend effiziente Suche
- Dynamisches Einfügen und Löschen von Datensätzen
- Hohe Speicherplatzausnutzung
 - ⇒ der Adreßraum verändert sich dynamisch über die Laufzeit des DBS.

Dynamische Hashverfahren

Ein Hashverfahren ist dynamisch, wenn

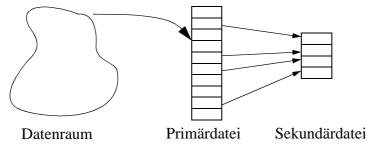
- Datensätze effizient eingefügt und gelöscht werden können und
- infolgedessen sich der Adreßraum dynamisch anpaßt.

Hashverfahren für DBS müssen dynamisch sein.

4.2 Klassifizierung

Bei den dynamischen Hashverfahren lassen sich zwei prinzipielle Vorgehensweisen unterscheiden:

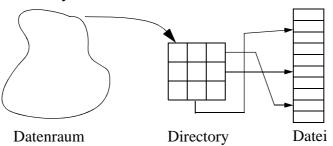
• Verfahren ohne Directory:



Falls Seiten in der *Primärdatei* überlaufen, kann es notwendig sein, Datensätze in sogenannte *Überlaufseiten* einer *Sekundärdatei* auszulagern.

• Fallen viele Datensätze in Überlaufseiten, können die Suchzeiten stark zunehmen.

• Verfahren mit Directory:



Die Größe des Directory ist eine monoton wachsende Funktion in der Anzahl der Datensätze. *Folgen:*

- Auch das Directory muß für hinreichend große Dateien auf dem Sekundärspeicher abgelegt werden.
- Jeder Zugriff auf einen Datensatz verlangt mindestens 2 Sekundärspeicherzugriffe.

Besonderes Problem vieler Verfahren:

• Das Directory wächst superlinear in der Anzahl der Datensätze.

4.3 Verfahren mit Directory

Erweiterbares Hashing (extendible hashing) [FNPS 79]

Die Hashfunktion

Gegeben sei eine *Hashfunktion h*:

 $h: Domain (K) \rightarrow \{Indizes der Directoryeinträge\}$

Beim erweiterbaren Hashing liefert h eine Bitfolge:

$$h(K) = (b_1, b_2, b_3, ...)$$

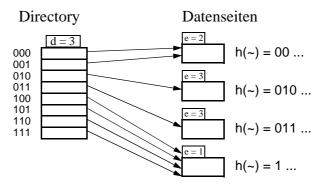
- h(K) heißt Pseudoschlüssel.
- Jede Hashfunktion ist einsetzbar, wenn die von ihr gelieferte Zahl als eine Folge von Bits interpretiert werden kann.

Das Directory

Das *Directory* D ist ein eindimensionales Feld:

$$D = ARRAY [0 ... 2^{d}-1] OF Seitennummer$$

- Die *Größe des Directory* ist eine 2er Potenz 2^d , $d \ge 0$.
- d heißt Tiefe des Directory.
- Jeder Directoryeintrag enthält einen Zeiger zu einer Datenseite (d.h. die Seitennummer).
- Verschiedene Directoryeinträge können zu derselben Datenseite verweisen.



Das Einfügen eines Schlüssels

Gegeben:

Datensatz mit Schlüssel K

1. Schritt:

Bestimme die ersten d Bits des Pseudoschlüssels $h(K) = (b_1, b_2, ..., b_d, ...)$

2. Schritt:

Der Directoryeintrag D[b₁b₂ ... b_d] liefert die gewünschte Seitennummer.

Der Datensatz wird in der Seite mit der entsprechenden Seitennummer eingefügt.

Lokale Tiefe:

Um eine Seitenadresse zu bestimmen, benötigt man e Bits ($e \le d$). e heißt *lokale Tiefe* (siehe Beispiel).

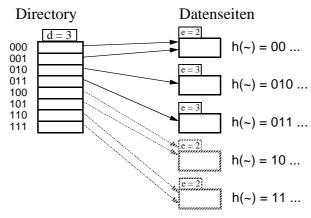
Fall: Datenseite muß aufgespalten werden

Grund: Sie läuft über oder ist z.B. mehr als 90 % gefüllt.

Beispiel:

Die Datenseite mit den Pseudoschlüsseln h(K) = 1... muß aufgespalten werden.

⇒ sie wird in 2 Datenseiten aufgespalten, jeweils mit lokaler Tiefe 2.

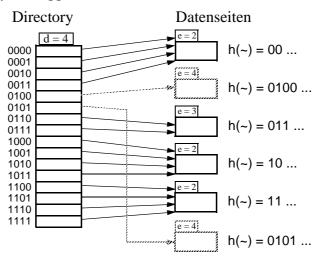


Fall: Directory muß verdoppelt werden.

Grund: Eine Datenseite läuft über mit lokaler Tiefe e = Tiefe des Directory d. *Beispiel:*

Die Datenseite mit h(K) = 010... wird aufgespalten.

⇒ das Directory verdoppelt sich in seiner Größe, seine Tiefe d erhöht sich um 1.



Eigenschaften

- Das Directory muß i.a. aufgrund seiner Größe im Sekundärspeicher abgelegt werden. ⇒ jeder Datensatz kann garantiert mit 2 Zugriffen gefunden werden.
- Wichtigster Nachteil:

Das Wachstum des Directory ist superlinear:

bei Gleichverteilung: Directorygröße ist $O(n^{1+1/b})$

(n = # Datensätze, b = # Datensätze pro Datenseite)

bei Nichtgleichverteilung: Exponentielles Wachstum des Directory

• Speicherplatzausnutzung = $\ln 2 \approx 0.693$ für Gleichverteilung der Daten im Datenraum.

4.4 Verfahren ohne Directory

Bei Hashverfahren ohne Directory liefert die Hashfunktion direkt die Seitenadressen:

h: domain $(K) \rightarrow \{\text{Seitenadressen}\}\$

Beispiel:

$$h(K) = K \mod M, M = 3, 5, ...$$
 (M Primzahl)

Kollisionsbehandlung

Kollision

- Ein Datensatz mit Schlüssel K wird in die Seite h(K) eingefügt.
- Die Seite h(K) ist bereits voll.

d.h.: # Datensätze = b (Kapazität der Datenseite)

⇒ Jetzt liegt ein Überlauf (eine Kollision) vor.

Kollisionsbehandlung

- Erweiterbares Hashing: sofortiges Aufspalten
- Hashverfahren ohne Directory:
 - die Datenseiten werden nicht immer sofort aufgespalten, stattdessen:
 - besondere Kollisionsbehandlung der eingefügten Datensätze gemäß einer Überlaufstrategie.
 - Verbreitet ist die Überlaufstrategie getrennte Verkettung.

Überlaufstrategie getrennte Verkettung

Nutzung zweier verschiedener Seitentypen:

• Primärseiten

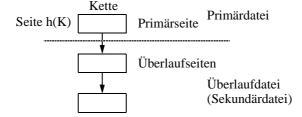
Die eigentlichen Datenseiten, deren Adressen von der Hashfunktion berechnet werden. Sie bilden die *Primärdatei*.

• Überlaufseiten

Sie speichern Datensätze, die nicht mehr in Primärseiten passen (*Überlaufsätze*). Die Überlaufseiten bilden eine zweite Datei, die *Überlaufdatei* (*Sekundärdatei*).

Es gilt:

- (i) Überlaufseiten und Primärseiten sind verschieden.
- (ii) Jede Überlaufseite ist genau einer Hashadresse h(K) zugeordnet.
- (iii) Neue Überlaufseiten werden mit existierenden (Überlauf- oder Primär-) Seiten verkettet.



Es gilt:

- Die Suche nach einem Überlaufsatz benötigt mindestens 2 Seitenzugriffe.
- Entstehen lange Überlaufketten, können die Suchzeiten degenerieren.

Lineares Hashing [Lit 80]

Bis ca. 1978 ging man davon aus, daß

- die Größe der Primärdatei statisch ist und
- Überläufe nur durch Einführung von Überlaufsätzen gelöst werden können.
- ⇒ schnelle Degeneration der Suchzeiten, wenn die Primärseiten voll werden.

Folge von Hashfunktionen

- das Einfügen von K führt zu einem Überlauf
- keine weiteren Datensätze der Seite h(K) sollen in Überlaufseiten gespeichert werden
 - ⇒ Um K in einer Primärseite abzuspeichern, muß eine *neue Hashfunktion* gewählt werden.
 - ⇒ Wir benötigen Folgen von Hashfunktionen.

Grundideen des linearen Hashing:

- Folge von Hashfunktionen: h₀, h₁, h₂, ...
- Expansion der Datei:

Die Datei wird um jeweils eine neue Primärseite erweitert.

• Feste Splitreihenfolge:

Die Seiten werden in einer festen Reihenfolge gesplittet.

• Expansionszeiger (Splitzeiger) p bestimmt, welche Seite als nächstes gesplittet werden muß.

• Kontrollfunktion

bestimmt, wann die Datei expandiert wird.

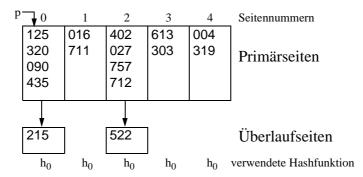
Beim linearen Hashing wird folgende Kontrollfunktion für die Expansion benutzt:

- Wenn der *Belegungsfaktor* bf einen vorgegebenen *Schwellenwert* (z.B. 0.8) überschreitet, wird die Datei expandiert.
- Belegungsfaktor bf = $\frac{\text{\# abgespeicherter Datens\"{a}tze}}{\text{\# Datens\"{a}tze, die in Prim\"{a}rseiten passen}}$

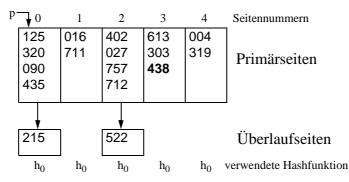
Beispiel:

Ausgangssituation:

- Datei mit 16 Datensätzen auf 5 Primärseiten der Seitengröße 4.
- Folge von Hashfunktionen: $h_0(K) = K \mod 5$, $h_1(K) = K \mod 10$, ...
- Aktuelle Hashfunktion: h₀.
- Belegungsfaktor bf = $\frac{16}{20}$ = 0.8
- Schwellenwert für den Belegungsfaktor = 0.8
- Expansionszeiger p zeigt auf Seite 0.



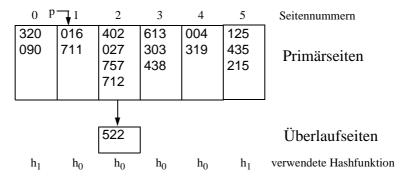
Einfügen eines Datensatzes mit Schlüssel 438:



• Der Belegungsfaktor übersteigt den Schwellenwert:

$$bf = \frac{17}{20} = 0.85 > 0.8$$

⇒ Expansion durch Split der Seite 0 auf die Seiten 0 und 5.



- Welche Datensätze von Seite 0 nach Seite 5 umgespeichert werden, bestimmt die Hashfunktion h₁:
 - alle Sätze mit $h_1(K) = 5$ werden umgespeichert
 - alle Sätze mit $h_1(K) = 0$ bleiben

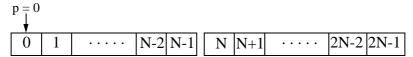
Anschließend wird der Expansionszeiger p, der jeweils auf die nächste zu splittende Seite verweist, um 1 heraufgesetzt.

Prinzip der Expansion durch Splits

Ausgangssituation:

nach dem ersten Split:

nach der Verdoppelung der Datei:



Anforderungen an die Hashfunktionen

Wir benötigen eine Folge von Hashfunktionen $\{h_i\}$, $i \ge 0$, die folgende Bedingungen erfüllen:

1.) Bereichsbedingung:

$$h_L$$
: domain (K) $\to \{0, 1, ..., (2^L N)-1\}, L \ge 0$

2.) Splitbedingung:

$$\begin{split} h_{L+1}(K) &= h_L(K) \quad \text{oder} \\ h_{L+1}(K) &= h_L(K) + 2^L * N \;, \; L \geq 0 \end{split}$$

Der Level L gibt an, wie oft sich die Datei schon vollständig verdoppelt hat.

Beispiel für eine mögliche Hashfunktion:

$$h_L(K) = K \mod (2^L N)$$
 erfüllt die Bedingungen 1.) und 2.)

Zusätzliche Eigenschaft der Hashfunktionen:

Für p = 0 haben alle Ketten die gleiche Wahrscheinlichkeit, einen neu eingefügten Datensatz aufzunehmen.

Wichtige Eigenschaften von linearem Hashing

- Die Seiten werden in einer fest vorgegebenen Ordnung gesplittet, anstatt die Seite zu splitten die überläuft.
 - ⇒ ein Datensatz, der einen Überlauf produziert, kommt nicht durch einen Split sofort in eine Primärseite, sondern erst nach einer Verzögerung (wenn der Splitzeiger auf die betreffende Kette zeigt).
- Der Prozentsatz der Überlaufsätze ist gering.
- Gutes Leistungsverhalten für gleichverteilte Datensätze.
- Der Adreßraum wächst <u>linear</u> an und ist gerade so groß wie nötig.

4.5 Partielle Erweiterungen

Lineares Hashing mit partiellen Erweiterungen [Lar 80]

Beobachtung:

• Hashverfahren sind am effizientesten, wenn die Datensätze möglichst gleichmäßig auf die Seiten in der Datei verteilt sind.

Einwand gegen das lineare Hashing:

• Die Verteilung der Datensätze auf die Seiten weicht stark von diesem Ideal ab.

Ursachen:

- Der Erwartungswert für den Belegungsfaktor einer bereits gesplitteten Seite ist nur halb so groß wie der Erwartungswert für den Belegungsfaktor einer noch nicht gesplitteten Seite.
- Die Primärdatei wird in nur einem Durchlauf verdoppelt.

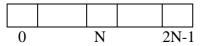
Partielle Expansionen

• Das Verdoppeln der Primärseitenzahl erfolgt nicht in einem, sondern in mehreren Durchläufen: Serie von n₀ ≥ 2 *partiellen Expansionen*.

Vorgehen: (für $n_0 = 2$)

Ausgangssituation:

Datei mit 2N Seiten



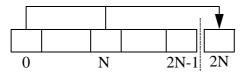
logisch unterteilt in N Paare (j, j+N) für j = 0, 1, ..., N-1

1. partielle Expansion

- Nach Einfügen von Datensätzen wird aufgrund der Kontrollfunktion mehr Speicherplatz verlangt.
- Expansion der Datei um die Seite 2N:

Etwa $\frac{1}{3}$ der Sätze aus den Seiten 0 und N werden nach Seite 2N umgespeichert.

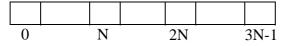
Datei mit 2N+1 Seiten



logisch unterteilt in N Paare (j, j+N) für j = 0, 1, ..., N-1

- Für j = 0, 1, ..., N-1 werden die Paare (j, j+N) um die Seite j+2N expandiert.
- ⇒ Die Datei hat sich von 2N Seiten auf 3N Seiten (auf das 1,5fache) vergrößert:

Datei mit 3N Seiten



logisch unterteilt in N Tripel (j, j+N, j+2N) für j = 0, 1, ..., N-1

2. Partielle Expansion:

• Zunächst Expansion der Datei um die Seite 3N:

Etwa je $\frac{1}{4}$ der Sätze aus den Seiten 0, N, 2N werden umgespeichert auf die Seite 3N.

Datei mit 3N+1 Seiten



logisch unterteilt in N Tripel (j, j+N, j+2N) für j = 0, 1, ..., N-1

• Nachfolgend werden für j=1,2,..., N-1 die Tripel (j,j+N,j+2N) um die Seite j+3N expandiert, wobei ca. $\frac{1}{4}$ der Sätze aus den Seiten j,j+N,j+2N umgespeichert werden.

Resultat:

• Die Datei hat sich auf 4N Seiten verdoppelt:



• Weiter geht es mit dieser neuen Ausgangssituation.

Analyse der partiellen Expansionen

Für das lineare Hashing gilt während der 1. bzw. 2. partiellen Expansion:

• Der Belegungsfaktor einer gesplitteten Seite ist $\frac{2}{3}$ bzw. $\frac{3}{4}$ des Belegungsfaktors einer ungesplitteten Seite.

Kontrollfunktion:

Larson schlägt vor, als Kontrollfunktion die Speicherplatzausnutzung zu wählen.

Speicherplatzausnutzung =
$$\frac{\text{\# tatsächlich abgespeicherter Sätze}}{\text{\# möglicher Sätze (in Primär- und Überlaufseiten)}}$$

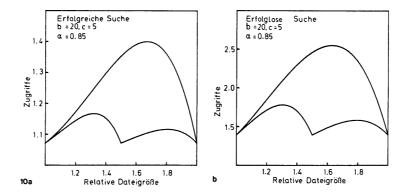
Expansionsregel:

- Jedesmal, wenn ein Datensatz eingefügt wird, wird die Speicherplatzausnutzung überprüft.
- Falls die Speicherplatzausnutzung größer als ein Schwellenwert α ist, $0 < \alpha < 1$: wird die Datei um eine weitere Seite expandiert.

Somit ist die Kontrollfunktion in gewissem Sinne optimal und garantiert, daß die Speicherplatzausnutzung annähernd konstant gleich α ist.

Leistungsverhalten

Vergleich: # Zugriffe bei erfolgreicher bzw. erfolgloser Suche für $n_0 = 1$ und $n_0 = 2$. b = Kapazität einer Primärseite, c = Kapazität einer Überlaufseite



Beobachtungen:

- Die Effizienz des Suchens ist dann am größten, wenn die Belegung aller Ketten möglichst gleich ist.
- zyklisches Verhalten:

Länge eines Zyklus = 2 * Länge des vorangegangenen Zyklus

Vergleich: Durchschnittliche # Zugriffe für $n_0 = 1$, $n_0 = 2$ und $n_0 = 3$ für eine Datei mit b = 20, c = 5, $\alpha = 0.85$.

	$n_0 = 1$	$n_0 = 2$	$n_0 = 3$
Erfolgreiche Suche	1.27	1.12	1.09
Erfolglose Suche	2.12	1.58	1.48
Einfügen	3.57	3.21	3.31
Entfernen	4.04	3.53	3.56

Folgerung:

 $n_0 = 2$ partielle Expansionen stellen den besten Kompromiß dar zwischen

- Effizienz des Suchens,
- Effizienz der Update-Operationen (Einfügen und Entfernen) und
- Komplexität des Programmcodes.

4.6 Ordnungserhaltung

Wichtige Eigenschaft von Indexstrukturen (vgl. 1. Kapitel):

lokale Ordnungserhaltung

Datensätze mit Schlüsseln, die in der Ordnung aufeinander folgen, sollten in der gleichen Seite gespeichert werden.

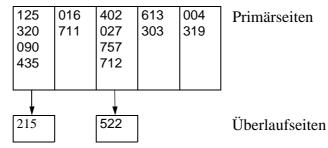
- Suchbäume wie z.B. B-Bäume sind (lokal) ordnungserhaltend.
- Lineares Hashing ist mit den bisherigen Hashfunktionen nicht ordnungserhaltend.

Beispiel:

 B^+ -Baum:

004 125 319 402 711 Da 016 215 320 435 712 757 757 613 757	atenseiten
--	------------

Lineares Hashing (Beispiel von Seite 50):



Für eine Bereichsanfrage (z.B. [0..125]) müßten in diesem Beispiel beim linearen Hashing alle Seiten durchsucht werden.

⇒ Wir benötigen ein ordnungserhaltendes lineares Hashing.

Ordnungserhaltendes Lineares Hashing (eindimensionales Interpolationsverfahren)

Datenraum: Domain (K) = [0,1)

[0,1) ist durch Transformation herstellbar.

Bitstring-Darstellung

• Jeder Schlüssel $K \in [0,1)$ kann durch einen Bitstring $(b_1, ..., b_w)$, $w \in N$, dargestellt werden mit

$$K = \sum_{i=1}^{w} b_i 2^{-i}$$

• Diese Bitstring-Darstellung bewahrt die Ordnung der Schlüssel:

Für zwei Schlüssel K_i und K_i mit $K_i < K_i$ gilt:

$$(b_1^i, \dots, b_m^i) \le (b_1^j, \dots, b_m^j)$$

Dabei ist ≤ die lexikographische Ordnung auf Bitstrings

Ordnungserhaltende Hashfunktion

• Sei N die aktuelle Anzahl von Primärseiten der Datei mit

$$2^{L} \le N < 2^{L+1}$$
,

wobei $L \in N_{0}$ der *Level der Datei* ist, der angibt, wie oft sich die Datei komplett verdoppelt hat.

• Die Primärseiten seien mit {0, 1, ..., N-1} adressiert.

Die Hashfunktion h:

$$h(K,N) := \begin{cases} L+1 & \text{falls } \sum_{i=1}^{L+1} b_i \cdot 2^{i-1} \\ \sum_{i=1}^{L} b_i \cdot 2^{i-1} \\ \sum_{i=1}^{L} b_i \cdot 2^{i-1} \\ & \text{sonst} \end{cases}, \text{ sonst}$$

- h(K,N) nimmt die L bzw. L+1 Präfix-Bits des Bitstrings von K, dreht die Reihenfolge um und interpretiert das Resultat als Integer-Zahl.
- h(K,N) erfüllt die Bereichs- und Splitbedingung und ist ordnungserhaltend.

Beispiel: Domain (K) = [0, 1), N = 9, L = 3, p = 1

Länge	Datenintervall	Seitenadresse der	Bitumkehrung	Bitdarstellung
1/16	[0, 1/16)	0	0000	0000
1/16	[1/16, 1/8)	8	1000	0001
1/8	[1/8, 1/4)	4	100	001
1/8	[1/4, 3/8)	2	010	010
1/8	[3/8, 1/2)	6	110	011
1/8	[1/2, 5/8)	1	001	100
1/8	[5/8, 3/4)	5	101	101
1/8	[3/4, 7/8)	3	011	110
1/8	[7/8, 1)	7	111	111

Auch Varianten vom linearen Hashing, wie das lineare Hashing mit partiellen Erweiterungen, lassen sich einfach auf das eindimensionale Interpolationsverfahren übertragen.

4.7 Literatur

Eindimensionale dynamische Hashverfahren werden in einer Reihe von Lehrbüchern über Datenbanksysteme eingeführt (vgl. 1. Kapitel). Eine Übersichtsdarstellung findet sich auch in:

[Lar 83] Larson P.-Å.: 'Dynamische Hashverfahren', Informatik-Spektrum, Springer, Vol. 6, No. 1, 1983, pp. 7-19.

Originalliteratur

- [FNPS 79]Fagin R., Nievergelt J., Pippenger N., Strong H. R.: 'Extendible Hashing A fast Access Method for Dynamic Files', ACM Trans. on Database Systems, Vol. 4, No. 3, 1979, pp. 315-344.
- [Lar 80] Larson P. A.: 'Linear Hashing with Partial Expansions', Proc. 6th Int. Conf. on Very Large Databases, Montreal, Canada, 1980, pp. 224-232.
- [Lit 80] Litwin W.: 'Linear Hashing: A New Tool for File and Table Addressing', Proc. 6th Int. Conf. on Very Large Databases, Montreal, Canada, 1980, pp. 212-223.