Outlier Detection for High Dimensional Data

Charu C. Aggarwal
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

charu@us.ibm.com

ABSTRACT

The outlier detection problem has important applications
in the field of fraud detection, network robustness analysis,
and intrusion detection. Most such applications are high
dimensional domains in which the data can contain hun-
dreds of dimensions. Many recent algorithms use concepts
of proximity in order to find outliers based on their relation-
ship to the rest of the data. However, in high dimensional
space, the data is sparse and the notion of proximity fails
to retain its meaningfulness. In fact, the sparsity of high di-
mensional data implies that every point is an almost equally
good outlier from the perspective of proximity-based defini-
tions. Consequently, for high dimensional data, the notion
of finding meaningful outliers becomes substantially more
complex and non-obvious. In this paper, we discuss new
techniques for outlier detection which find the outliers by
studying the behavior of projections from the data set.

1. INTRODUCTION

An outlier is defined as a data point which is very differ-
ent from the rest of the data based on some measure. Such
a point often contains useful information on abnormal be-
havior of the system described by the data. The outlier
detection technique finds applications in credit card fraud,
network intrusion detection, financial applications and mar-
keting. This problem typically arises in the context of very
high dimensional data sets. Much of the recent work on find-
ing outliers use methods which make implicit assumptions
of relatively low dimensionality of the data. These methods
do not work quite as well when the dimensionality is high
and the data becomes sparse.

Many data-mining algorithms in the literature find outliers
as a side-product of clustering algorithms [2, 3, 5, 15, 18, 27].
However, these techniques define outliers as points which do
not lie in clusters. Thus, the techniques implicitly define
outliers as the background noise in which the clusters are
embedded. Another class of techniques [7, 10, 13, 22, 23,
25] defines outliers as points which are neither a part of a

Philip S. Yu
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

psyu@us.ibm.com

cluster nor a part of the background noise; rather they are
specifically points which behave very differently from the
norm. Outliers are more useful based on their diagnosis of
data characteristics which deviate significantly from aver-
age behavior. In many applications such as network intru-
sion detection, these characteristics may provide guidance
in discovering the causalities of the abnormal behavior of
the underlying application. The algorithms of this paper
determine outliers based only on their deviation value.

Many algorithms have been proposed in recent years for out-
lier detection [7, 8, 10, 22, 23, 25, 26], but they are not meth-
ods which are specifically designed in order to deal with the
curse of high dimensionality. The statistics community has
studied the concept of outliers quite extensively [8]. In these
techniques, the data points are modeled using a stochastic
distribution, and points are determined to be outliers de-
pending upon their relationship with this model. However,
with increasing dimensionality, it becomes increasingly diffi-
cult and inaccurate to estimate the multidimensional distri-
butions of the data points. Two interesting algorithms [22,
25] define outliers by using the full dimensional distances of
the points from one another. This measure is naturally sus-
ceptible to the curse of high dimensionality. For example,
consider the definition by Knorr and Ng [22]: A point p in
a data set is an outlier with respect to the parameters k and
A, if no more than k points in the data set are at a distance
A or less from p.

As pointed out in [25], this method is sensitive to the use
of the parameter A\ which is hard to figure out a-priori. In
addition, when the dimensionality increases, it becomes in-
creasingly difficult to pick A, since most of the points are
likely to lie in a thin shell about any other point [9]. Thus,
if we pick A slightly smaller than the shell radius, then all
points are outliers; if we pick A slightly larger, then no point
is an outlier. This means that a user would need to pick A to
a very high degree of accuracy in order to find a modest num-
ber of points which can then be defined as outliers. Aside
from this, the data in real applications is very noisy, and the
abnormal deviations may be embedded in some lower dimen-
sional subspace. The deviations in this embedded subspace
cannot be determined by full dimensional measures such as
the Ly-norm because of the noise effects of the other dimen-
sions. The work in [25] introduces the following definition
of an outlier: Given a k and n, a point p is an outlier if
the distance to its kth nearest neighbor is smaller than the
corresponding value for no more than n—1 other points. Al-

B%xxx
X
x X
X& *A
View 1
X X
X X
X
A
X
X oB X
View 3

X oB

View 4

Figure 1: The 2-dimensional views 1 and 4 expose outliers A and B, whereas the views 2 and 3 do not. Full
dimensional measures become increasingly susceptible to the sparsity and noise effects of high dimensionality.

though the definition in [25] has some advantages over that
provided in [22], it is also not specifically designed to work
for high dimensional problems. This is again because of the
sparse behavior of distance distributions in high dimension-
ality, in which the actual values of the distances are similar
for any pair of points.

An interesting recent technique finds outliers based on the
densities of local neighborhoods [10]. This technique has
some advantages in accounting for local levels of skews and
abnormalities in data collections. In order to compute the
outlier factor of a point o, the method in [10] computes its
local reachability density using the average smoothed dis-
tances to points in the locality of o. Unfortunately, this is
again a difficult computation to perform meaningfully in
high dimensionality, in which the concept of locality be-
comes difficult to define because of data sparsity. In order
to use the concept of local density; we need a meaningful
concept of distance for sparse high dimensional data; if this
does not exist, then the outliers found are unlikely to be
very useful.

Thus, the techniques proposed in [10, 22, 25] try to de-
fine outliers based on the distances in full dimensional space
in one way or another. The sparsity of the data in high
dimensionality [9] can be interpreted slightly differently to
infer that each point is as good as an outlier in high dimen-
sional space. This is because if all pairs of points are almost
equidistant then meaningful clusters cannot be found in the
data [2, 3, 5, 11]; similarly it is difficult to detect abnormal
deviations.

For problems such as clustering and similarity search, it has
been shown [1, 2, 3, 5, 11, 19] that by examining the behav-
ior of the data in subspaces, it is possible to design more ef-
fective algorithms. This is because different localities of the

data are dense with respect to different subsets of attributes.
The same insight is true for outliers, because in typical ap-
plications such as credit card fraud, only the subset of the
attributes which are actually affected by the abnormality of
the activity are likely to be useful in detecting the behavior.

In order to better explain our point, let us consider the ex-
ample illustrated in Figure 1. In the above example, we
have shown several 2-dimensional cross-sections of a very
high dimensional data set. It is quite likely that for high
dimensional data, many of the cross-sections may be struc-
tured, and others may be more noisy. For example, the
points A and B show abnormal behavior in views 1 and 4
of the data. In other views, the points show average behav-
ior. In the context of a credit card fraud application, both
the points A and B may correspond to different kinds of
fraudulent behavior, yet may show average behavior when
distances are measured in all the dimensions. Thus, by using
full dimensional distance measures, it would be more diffi-
cult to detect outliers effectively because of the averaging
behavior of the noisy and irrelevant dimensions. Further-
more, it is impossible to prune off specific features a-priori,
since different points (such as A and B) may show differ-
ent kinds of abnormal patterns, each of which use different
features or views.

Thus, the problem of outlier detection is similar to a large
number of other problems in the data mining literature which
lose their algorithmic effectiveness for the high dimensional
case. Previous work has not focussed on this critical prob-
lem for the high dimensional case, and has used relatively
straightforward proximity measures [10, 22, 25] which are
more applicable to low dimensional versions. On the other
hand, we note that most practical data mining applications
are likely to arise in the context of a very large number of
features. Recent work [23] has discussed the concept of in-

tensional knowledge of distance-based outliers in terms of
subsets of attributes. This technique provides excellent in-
terpretability by providing the reasoning behind why a point
may be considered an outlier. On the other hand, the tech-
nique uses a roll-up/drill-down method which tends to be
quite expensive for high dimensional data.

1.1 Desiderata for High Dimensional Outlier
Detection Algorithms

In this section, we provide further intuition on the desiderata
for effective high dimensional outlier detection algorithms.
In order to work effectively, high dimensional outlier detec-
tion algorithms should satisfy the following properties:

e They should devise techniques to handle the sparsity
problems in high dimensionality effectively.

e They should provide interpretability in terms of the
reasoning which creates the abnormality. If possible,
the probabilistic level of significance with which this
reasoning applies should be determined.

e Proper measures must be identified in order to account
for the physical significance of the definition of an out-
lier in k-dimensional subspace. For example, a dis-
tance based threshold for an outlier in a k-dimensional
subspace is not directly comparable to one in (k + 1)-
dimensional subspace.

e The outlier detection algorithms should continue to
be computationally efficient for very high dimensional
problems. If possible, algorithms should be devised
which avoid a combinatorial exploration of the search
space.

e The algorithms should provide importance to the local
data behavior while determining whether a point is an
outlier.

We note that some of the above aims have been achieved by
different methods [7, 10, 22, 23, 25] though none of them
work effectively for the high dimensional case.

In this paper, we discuss a new technique for outlier detec-
tion which finds outliers by observing the density distribu-
tions of projections from the data. Intuitively speaking, this
new definition considers a point to be an outlier, if in some
lower dimensional projection, it is present in a local region
of abnormally low density.

1.2 Defining Outliers in Lower Dimensional
Projections

The essential idea behind this technique is to define out-
liers by examining those projections of the data which have
abnormally low density. Thus, our first step is to identify
and mine those patterns for which randomness cannot jus-
tify their abnormally low presence. This is important since
we value outlier patterns not for their noise value, but their
deviation value. Once such patterns have been identified,
then the outliers are defined as those records which have
such patterns present in them. An interesting observation is
that such lower dimensional projections can be mined even

in data sets which have missing attribute values. This is
quite useful for many real applications in which feature ex-
traction is a difficult process and full feature descriptions
often do not exist.

1.3 Defining Abnormal Lower Dimensional Pro-
jections

An abnormal lower dimensional projection is one in which
the density of the data is exceptionally lower than average.
In order to define such projections, we first perform a grid
discretization of the data. Each attribute of the data is
divided into ¢ equi-depth ranges. Thus, each range contains
a fraction f = 1/¢ of the records. The reason for using
equi-depth ranges as opposed to equi-width ranges is that
different localities of the data have different densities [10].
‘We would like to take this into account while finding outliers.
These ranges form the units of locality which we will use to
define the lower dimensional regions which are unreasonably
sparse.

Let us consider a k-dimensional cube which is created by
picking grid ranges from k different dimensions. If the at-
tributes were statistically independent, then the expected
fraction of the records in that region would be equal to f*.
Of course, the data is far from statistically independent.
Therefore the actual distribution of points in a cube would
differ significantly from average behavior. It is precisely the
below-average deviations that are useful for outlier detec-
tion.

Let us assume that there are a total of N points in the
database. If the data were uniformly distributed, then the
presence or absence of any point in a k-dimensional cube is
a bernoulli random variable with probability f¥. Under this
assumption, the number of points in a cube can be approxi-
mated by a normal distribution because of the central limit
theorem. Then the expected fraction and standard devia-
tion of the points in a k-dimensional cube is given by N - f*
and /N - fk- (1 — f¥). Let n(D) be the number of points
in a k-dimensional cube D. Then, we calculate the sparsity
coefficient S(D) of the cube D as follows:
n(D) — N - f*
N-fE-(1— fF)
Only sparsity coeflicients which are negative indicate cubes
in which the presence of the points is significantly lower
than expected. Note that if n(D) is assumed to fit a normal
distribution, then the normal distribution tables can be used
to quantify the probabilistic level of significance for a point
to deviate significantly from average behavior for an a-priori
assumption of uniformly distributed data. In general, the
uniformly distributed assumption is not true. However, the

sparsity coefficient provides an intuitive idea of the level of
significance for a given projection.

S(D) =

(1)

1.4 A Note on the Nature of the Problem

At this stage we would like to make a comment on the na-
ture of the problem of finding the most sparse k-dimensional
cubes in the data. The nature of this problem is such that
there are no upward or downward-closed properties in the
set of dimensions (along with associated ranges) which are
unusually sparse. This is not unexpected: unlike problems

such as large itemset detection [6] where one is looking for
large aggregate patterns, the problem of finding subsets of
dimensions which are sparsely populated has the flavor of
finding a needle in haystack, since one is looking for patterns
which rarely exist. Furthermore, it may often be the case
that even though particular regions may be well populated
on certain sets of dimensions, they may be very sparsely pop-
ulated when such dimensions are combined together. (For
example, there may be large number of people below the age
of 20, and a large number of people with diabetes, but very
few with both.) From the perspective of an outlier detection
technique, a person below the age of 20 with diabetes is a
very interesting record. However, it is very difficult to find
such a pattern using structured search methods. Therefore
the best projections are often created by an a-priori un-
known combination of dimensions, which cannot be deter-
mined by examining any subset or superset projection. One
solution is to change the measure in order to force better
closure or pruning properties. This can however worsen the
quality of the solution substantially by forcing the choice of
the measure to be driven by algorithmic considerations. In
general, it is not possible to predict the behavior of the data
when two sets of dimensions are combined; therefore the
best qualitative option is to develop search methods which
can identify such hidden combinations of dimensions. In or-
der to search the exponentially increasing space of possible
projections, we borrow ideas from a class of evolutionary
search methods in order to create an efficient and effective
algorithm for the outlier detection problem. Such methods
have recently been used quite successfully for the problem
of high dimensional nearest neighbor search [19].

2. EVOLUTIONARY ALGORITHMS FOR
OUTLIER DETECTION

In this section, we will discuss the algorithms which are use-
ful for outlier detection in high dimensional problems. A
natural class of methods for outlier detection are the naive
brute-force techniques in which all subsets of dimensions are
examined for possible patterns which are sparse. These pat-
terns are then used in order to determine the points which
are outliers. We discuss two algorithms for outlier detection:
a naive brute force algorithm which is very slow at finding
the best patterns because of its exhaustive search of the en-
tire space, and a much faster evolutionary algorithm which
is able to quickly find hidden combinations of dimensions in
which the data is sparse. The total dimensionality of the
data is denoted by d. We assume that one of the inputs to
the algorithm is the dimensionality k of the projection which
is used in order to determine the outliers. Aside from this,
the algorithm uses as input the number m of projections to
be determined.

The brute-force algorithm is illustrated in Figure 2. The al-
gorithm works by examining all possible sets of k-dimensional
candidate projections (with corresponding grid ranges) and
retaining the m projections which have the most negative
sparsity coefficients. In order to actually determine the can-
didate projections, the method uses a bottom-up recursive
algorithm in which (¢+1)-candidate cubes are determined by
concatenating the candidate ¢-projections with all d - ¢ pos-
sible sets of 1-dimensional projections and their grid-ranges
(denoted by @1). The concatenation operation is illustrated
in Figure 2 by @. Note that for a given cube, it only makes

Algorithm BruteForce(Number: m, Dimensionality: k)
begin
R; = @1 = Set of all d- ¢ ranges;
for i =2 to k do
begin
Ri=Ri- 16 Qn;
end;
Determine sparsity coefficients of all
elements in Ry;
F = Set of m elements in Ry
with most negative sparsity coefficients;
O = Set of points covered by F;
return(F, O);

end

Figure 2: The Brute-force Technique

Algorithm EvolutionaryOutlierSearch(Number: m,
Dimensionality: k)
begin
S = Initial Seed Population of p strings;
BestSet = null;
while not(termination_criterion) do begin
S = Selection(S);
S = CrossOver(S);
S = Mutation(S, p1,p2);
Update BestSet to be the m solutions in
BestSet U S with most negative sparsity coefficients;
end;
O = Set of data points covered by BestSet;
return(BestSet, O);
end

Figure 3: The Outlier Detection Algorithm

Algorithm Selection(S)
begin
Compute the sparsity coefficient of each solution
in the population S;
Let r(i) be the rank of solution 4 in order
of sparsity coefficient (Most negative occurs first);
S’ = null;
for i =1 to p do
begin
Roll a die with the ith side proportional to p — r(i);
Add the solution corresponding to the ith side to S’;
end;
Replace S by §';
return(S);
end

Figure 4: The Selection Criterion for the Genetic
Algorithm

Algorithm Crossover(S)
begin
Match the solutions in the population pairwise;
for each pair of solutions s1, s2 thus matched do
begin
(s,s") = Recombine(s1, 52);
Replace s1 and s» in the population by s and s';
end;
return(S);
end

Algorithm Recombine(s1,s2)
begin

Q@ = Set of positions in which either s; or sg is *;

R = Set of positions in which neither s; nor ss is *;

Enumerate the 2/% possibilities for recombining the

positions in R and pick the string s with most
negative sparsity coefficient;

Extend string s greedily from @ by always picking the

position with the most negative sparsity coefficient;

Let s’ be the complementary string to s;

{ A complementary string is defined as one in which a
given position in s’ is always derived from a different
parent than s derives it; }

return(s, s');

end

Figure 5: The Crossover Algorithm

Algorithm Mutation(S, p1, p2)
begin
for each string s € S do begin
Let @ be the set of positions in s which are *;
Flip a coin with success probability p1;
if the flip is a success then begin
convert a random position in @ to a random
number between 1 and ¢;
convert a random position not in) to *;
end
Define R as the set of positions in s which are not *;
Flip a coin with success probability p2;
if the flip is a success then begin
Pick a position in R and flip it to a random
number between 1 and ¢;
end;
end;
return(S);
end

Figure 6: The Mutation Algorithm

sense to concatenate with grid ranges from dimensions not
included in the current projection in order to create a higher
dimensional projection. The candidate set of dimensionality
i is denoted by R;. At termination, the set of projections
in Ry with most negative sparsity coefficients in F are re-
tained. The set of points in the data which contain the
corresponding ranges for the projections are reported as the
final set of outliers.

As we shall see in later sections, the algorithm discussed in
Figure 2 is computationally untenable for problems of even
modest complexity. This is because of the exponentially
increasing search space of the outlier detection problem. In
order to overcome this, we will illustrate an innovative use
of evolutionary search techniques for the outlier detection
problem.

2.1 An Overview of Evolutionary Search
Evolutionary Algorithms [20] are methods which imitate the
process of organic evolution [12] in order to solve parameter
optimization problems. The fundamental idea underlying
Darwinian evolution is that in nature, resources are scarce
and this leads to a competition among the species. Conse-
quently, all the species undergo a selection mechanism, in
which only the fittest survive. Consequently, the fitter in-
dividuals tend to mate each other more often, resulting in
still better individuals. At the same time, nature occasion-
ally throws in a variant by the process of mutation, so as to
ensure sufficient amount of diversity among the species, and
hence also a greater scope for improvement. The basic idea
behind an evolutionary search technique is similar; every so-
lution to an optimization problem can be “disguised” as an
individual in an evolutionary system. The measure of fitness
of this “individual” is equal to the objective function value
of the corresponding solution, and the other species which
this individual has to compete with are a group of other
solutions to the problems; thus, unlike other optimization
methods such as hill climbing or simulated annealing [21]
they work with an entire population of current solutions
rather than a single solution. This is one of the reasons why
evolutionary algorithms are more effective as search meth-
ods than either hill-climbing, random search or simulated
annealing techniques; they use the essence of the techniques
of all these methods in conjunction with recombination of
multiple solutions in a population. Appropriate operations
are defined in order to imitate the recombination and mu-
tation processes as well, and the simulation is complete.

Each feasible solution to the problem is defined as an in-
dividual. This feasible solution is in the form of a string
and is the genetic representation of the individual. The pro-
cess of conversion of feasible solutions of the problem into
string representations is called coding. For example, a pos-
sible coding for a feasible solution to the traveling salesman
problem could be a string containing a sequence of numbers
representing the order in which he visits the cities. The ge-
netic material at each locus on the string is referred to as a
gene and the possible values that it could possibly take on
are the alleles. The measure of fitness of an individual is
evaluated by the fitness function, which has as its argu-
ment the string representation of the individual and returns
a value indicating its fitness. The fitness value of an indi-
vidual is analogous to the objective function value of the

solution; the better the objective function value, the better
the fitness value.

As the process of evolution progresses, the individuals in
the population become more and more genetically similar
to each other. This phenomenon is referred to as conver-
gence. Dejong [14] defined convergence of a gene as the
stage at which 95% of the population had the same value
for that gene. The population is said to have converged
when all genes have converged.

The application of evolutionary search procedures should
be based on a good understanding of the problem at hand.
Typically black-box GA software on straightforward string
encodings does not work very well [4], and it is often a non-
trivial task to design the recombinations, selections and mu-
tations which work well for a given problem. In the next sec-
tion, we will discuss the details of the evolutionary search
procedures which work effectively for the outlier detection
problem.

2.2 The Evolutionary Outlier Detection Algo-

rithm

In this section, we will discuss the application of the search
technique to the outlier detection problem. Let us assume
that the grid range for the ith dimension is denoted by m;.
Then, the value of m; can take on any of the values 1 through
¢, or it can take on the value *, which denotes a “don’t care”.
Thus, there are a total of ¢ + 1 values that the dimension
m; can take on. Thus, consider a 4-dimensional problem
with ¢ = 10. Then, one possible example of a solution to
the problem is given by *3*9. In this case, the ranges for
the second and fourth dimension are identified, whereas the
first and third are left as “don’t cares”. The fitness for the
corresponding solution may be computed using the sparsity
coefficient discussed earlier. The evolutionary search tech-
nique starts with a population of p random solutions and
iteratively used the processes of selection, crossover and mu-
tation in order to perform a combination of hill climbing,
solution recombination and random search over the space of
possible projections. The process was continued until the
population converged to a global optimum. We used the
De Jong [14] convergence criterion in order to determine the
termination condition. At each stage of the algorithm, the
m best projection solutions (most negative sparsity coeffi-
cients) were kept track of. At the end of the algorithm, these
solutions were reported as the best projections in the data.
The overall procedure for the genetic algorithm is illustrated
in Figure 3. The population of solutions in any given iter-
ation is denoted by S. This set S is refined in subsequent
iterations of the algorithm, and the best set of projections
found so far is always maintained by the evolutionary algo-
rithm.

e Selection: Several alternatives are possible [17] for
selection in an evolutionary algorithm; the most pop-
ularly known ones are rank selection and fitness pro-
portional selection. The idea is to replicate copies
of a solution by ordering them by rank and biasing
the population in the favor of higher ranked solutions.
This is called rank selection and is often more sta-
ble than straightforward fitness proportional methods

which sample the set of solutions in proportion to the
actual value of the objective function. This strategy
of biasing the population in favor of fitter strings in
conjunction with effective solution recombination cre-
ates newer set of children strings which are more likely
to be fit. This results in a global hill-climbing of an
entire population of solutions. For the particular case
of our implementation we used a roulette wheel mech-
anism, where the probability of sampling a string from
the population was proportional to p —r(z), where p is
the total number of strings, and r(¢) is the rank of the
ith string. Note that the strings are ordered in such a
way that the strings with the most negative sparsity
coefficients occur first. Thus, the selection mechanism
ensures that the new population is biased in such a
way that the the most abnormally sparse solutions are
likely to have a greater number of copies. The overall
selection algorithm is illustrated in Figure 4.

Crossover: Since the crossover technique is a key
method in evolutionary algorithms for finding opti-
mum combinations of solutions, it is important to im-
plement this operation effectively for making the over-
all method work effectively. We will first discuss the
natural two-point crossover mechanism used in evolu-
tionary algorithms and show how to suitably modify
it for the outlier detection problem.

Unbiased two-point Crossover: The standard pro-
cedure in evolutionary algorithms is to use uniform
two-point crossover in order to create the recombinant
children strings. The two-point crossover mechanism
works by determining a point in the string at ran-
dom called the crossover point, and exchanging the
segments to the right of this point. For example, con-
sider the strings 3*2*1 and 1*33*. If the crossover
is performed after the third position, then the two
resulting strings are 3*23* and 1*3*1. Note that in
this case, both the parent and children strings corre-
spond to 3-dimensional projections in 5-dimensional
data. However, if the crossover occurred after the
fourth position, then the two resulting children strings
would be 3*231 and 1*3**. These correspond to 2-
dimensional and 4-dimensional projections. In gen-
eral, since the evolutionary algorithm only finds pro-
jections of a given dimensionality in a run, this kind
of crossover mechanism often creates infeasible solu-
tions after the crossover process. Such solutions are
discarded in subsequent iterations, since they are as-
signed very low fitness values. In general, evolutionary
algorithms work very poorly when the recombination
process cannot create sets of solutions of high qual-
ity or those which are viable in terms of feasibility.
In order to take care of this, we create an optimized
crossover process which takes both these factors into
account.

Since it is clear that the dimensionality of the pro-
jection needs to be kept in mind while performing a
crossover operation, it is desirable that the two chil-
dren obtained after solution recombination also cor-
respond to a k-dimensional projection. In order to
achieve this goal, we need to classify the different po-
sitions in the string into three types. This classification
is specific to a given pair of strings s; and ss.

Type I: Both strings have a don’t care.

Type II: Neither has a don’t care. Let us assume that
there are k' < k positions of this type.

Type III: One has a don’t care. Since each string as ex-
actly k—k’ such positions in each string; and these po-
sitions are disjoint. Thus, there are a total of 2-(k—%')
such positions.

The crossover is designed differently for each segment
of the string. The technique is obvious for the Type
I segment, where both strings have a “don’t care”. In
this case, both offspring strings have a * in a position.

In order to perform the crossover of the Type II and
Type III positions on the children strings, we apply
the optimized crossover mechanism:

Optimized Crossover: The optimized crossover [4]
technique is a useful method for finding the best com-
binations of the features present in the two solutions.
The idea is to create at least one child string from the
two parent strings which is a fitter solution recombi-
nation than either parent. The nature of the children
strings is biased in such a way that at least one of the
two strings is likely to be an effective solution recom-
bination of the parent strings. An ideal goal would be
to find the best possible recombination from the two
parents; however this is difficult to achieve since there
are a total of 2* - ((2(::2’,“)’)) possibilities for the chil-
dren. In order to implement the crossover operation
effectively, we make the observation that k' is typically
quite small, when we are looking for low dimensional
projections of high dimensional data. Therefore, we
first search the space of the 2% possibilities for the
Type II positions for the best possible combination.
After having found the optimal combination for the
Type II positions, we use a greedy algorithm in order
to find a solution recombinant for the (k — k') Type
IIT positions. In order to find the remaining positions,
we always extend the string with the position which
results in the string with most negative sparsity co-
efficient coefficient. We keep extending the string for
an extra (k — k') positions until all & positions have
been set. This string s is a recombinant of the par-
ent strings. The idea of using such a recombination
procedure is to create a new solution which combines
the good aspects of both parent strings. The crossover
technique is a key process in evolutionary algorithms
which is not available in hill climbing or simulated an-
nealing methods; by doing so, it is possible to create
new strings in the population which combine features
of both parent solutions. It now remains to create the
second child s’ in order to replace both parent strings.
The second child is created by always picking the posi-
tions from a different parent than the one from which
the string s derives its positions. The overall crossover
algorithm is illustrated in Figure 5.

Mutation: We perform mutations of two types:

Type I: Let Q be the set of positions in the string which
are *. Then we pick a position in the string which is
not in @ and change it to *. At the same time, we
change a randomly picked position in @ to a number
between 1 and ¢. Thus, the total dimensionality of the
projection represented by a string remains unchanged

by the process of mutation.

Type II: This kind of mutation only affects a position
which is not *. The value of such a position is changed
from a value between 1 and ¢ to another value be-
tween 1 and ¢. For this purpose, we have two sets
of mutation probabilities p1 and p:. With a muta-
tion probability of pi1, we perform an interchange of
Type I. The corresponding probability to perform an
interchange of Type II is p>. For the purpose of our
implementation, we used an equal number of Type I
and Type II mutations; therefore we have p1 = po.
The mutation algorithm is illustrated in Figure 6.

2.3 Postprocessing Phase

At termination, the algorithm is followed by a postprocess-
ing phase. In the postprocessing phase, we find all the sets
of data points which contain the the abnormal projections
reported by the algorithm. (For example, a point covers the
projection *3*6 if the 2nd and 4th coordinates correspond
to grid ranges 3 and 6.) These points are the outliers and
are denoted by O in Figure 3.

2.4 Choice of Projection Parameters

An important issue in the algorithm is to be able to choose
the projection parameters k and ¢. Note that one of the
reasons that we are finding outliers by the projections based
method is the sparsity of the data. Thus, for a k-dimensional
projection out of a d-dimensional data set, each subcube rep-
resented by a k-dimensional projection contains an expected
fraction of 1/¢* of the data. Thus, if we pick ¢ = 10, then
even for a 4-dimensional projection the expected number of
points in the subcube would only be a fraction 10™* of the
whole. Thus, if the data set contains less than 10,000 points,
the k-dimensional cubes are expected to contain less than
one point. This means that it is not possible to find a cube
which has high sparsity coefficient and covers at least one
point. In general, the values of ¢ and k should be picked
small enough that the sparsity coefficient of cube contain-
ing exactly one point is reasonably negative. At the same
time ¢ should be picked high enough that there are sufficient
number of intervals on each dimension that corresponds to
a reasonable notion of locality. Once ¢ has been picked we
determine k by using the following method. We calculate
the sparsity coefficient of an empty cube. From Equation
by the choice of the data set. Now, it remains to pick &
appropriately so that it results in a high enough sparsity co-
efficient. If the data set were uniformly distributed, then the
distribution of data points in each cube could be represented
by a normal distribution; and the above sparsity coefficient
would be the number of standard deviations by which the
actual number of points differed from the expected number
of points. For such a case, a choice of sparsity coefficient
of —3 would result in 99.9% level of significance that the
given data cube contains less points than expected and is
hence an abnormally sparse projection. In general of course
the normal distribution assumption is not true; however, a
value of s = —3 is a good reference point in order to decide
the value of k. Therefore, we have:

1, this is given by — The value of N is pre-decided

N

By expressing the entire equation in terms of k£, we obtain
k= |_10g¢(N/s2 + 1)]. Note that the rounding process
often makes the effective sparsity coefficient slightly more
negative than that chosen by the user. For a real application,
a user may wish to test different values of this (intuitively
interpretable) parameter s in order to determine appropriate
values of k = k*. The value of kK = k* thus returned is the
largest value of k at which abnormally sparse projections
may be found before the effects of high dimensionality result
in sparse projections by default. The value of k = k* is also
the most informative for the purpose of outlier detection,
since it is the highest dimensional embedded space in which
useful outliers may be found.

3. EMPIRICAL RESULTS

The algorithm was implemented on a 233MHz machine run-
ning AIX 4.1.1 with 100 MB of main memory. We tested
the outlier detection on several real data sets obtained from
the UCI machine learning repository. These are data sets
which are naturally designed for classification and machine
learning applications. The data sets were picked in a way
so as to result in considerable variability in terms of the size
of the data and the number of attributes. In addition, the
data sets were cleaned in order to take care of categorical
and missing attributes.

We tested the performance of the method using both the
brute-force and the evolutionary technique. As expected,
the brute-force technique required considerably more com-
putational resources than the evolutionary search technique
for high dimensional data sets. For one of the high di-
mensional data sets (musk data set), the brute-force al-
gorithm was unable to terminate in a reasonable amount
of time because of the high dimensionality of the prob-
lem. For example, in order to find k-dimensional projec-
tions of a d-dimensional problem, there are a total of (z) o
possibilities. Even for a modestly complex problem with
d = 20,k = 4,¢ = 10, this results in 7 = 107 possibilities.
In the case of the musk data set (which has 160 dimen-
sions), the brute force algorithm was unable to find even
3-dimensional projections. Clearly, as the dimensionality
increases, the computational complexity of the problem be-
comes untenable. The goal of the evolutionary algorithm
is to provide outliers which are reasonably comparable with
the brute-force algorithm, but can be found much more ef-
ficiently.

In Table 1, we have illustrated the results for five data sets
from the UCI machine learning repository. These data sets
were picked in order to test the behavior of the method for
different dimensionalities. In each case we found the m = 20
best projections and reported the outlier points correspond-
ing to these projections. It is evident from these results
that the performance of the brute force technique quickly
becomes untenable for large data sets. In fact, for the musk
data set which had 160 dimensions, the outlier detection al-
gorithm did not terminate in a reasonable amount of time;
therefore we have been unable to report the results for this
particular case. This is an important observation, since the
utility of this technique is primarily for the high dimensional
case.

As discussed earlier we implemented two crossover mecha-

nisms. The first was a simple two-point crossover mecha-
nism which performs the crossover by exchanging segments
of the two strings. We implemented optimized crossover
mechanism which finds good recombinations of solutions in
the search space. The results with the optimized mecha-
nism have been superscripted with an °. Clearly, the op-
timized mechanism performs substantially better in terms
of the quality of the final solution found. This is because
the two-point crossover mechanism often resulted in strings
which were not in the feasible search space of k-dimensional
projections. On the other hand, the optimized crossover
solution identified combinations of dimensions which were
both feasible and of high quality. We have also reported the
average sparsity coefficients of the best 20 (non-empty) pro-
jections indicated under the column (quality). In 3 of the 5
data sets, the average quality of the best 20 best projections
was the same using either the evolutionary or the brute-
force algorithm. We have marked these cases with a “*”.
‘We note that the brute-force method provides the optimum
solution in terms of the sparsity coefficient. However in most
cases, the evolutionary algorithm is almost equally good in
finding solutions of reasonable quality. Another interesting
observation was that the optimized mechanism was signif-
icantly faster than the two-point crossover mechanism for
many data sets. Indeed the importance of effective solution
recombination which is tailored to each specific problem is
important in providing high solution quality in a reasonable
amount of running time. The results show that the evolu-
tionary algorithm works qualitatively quite well for most of
the data sets. The relatively small level of qualitative sac-
rifice by the evolutionary algorithm method is offset by the
huge performance gain over the brute force method.

3.1 An Intuitive Evaluation of Results

A qualitative evaluation of the outlier detection algorithm
provides challenges because of the subjectivity in defining
abnormal behavior. An interesting way to test for qualita-
tive behavior was to look at the actual points found by the
outlier detection algorithm and the reason that these points
were picked as outliers. One the interesting data sets in the
UCI machine learning repository is the arrythmia data set,
which has 279 attributes corresponding to different measure-
ments of physical and heart-beat characteristics which are
used in order to diagnose arrythmia. The data set contains a
total of 13 (non-empty) classes. Class 1 was the largest and
corresponds to people who do not have any kind of heart
disease. The remaining classes correspond to people with
diseases of one form or another; some less common than oth-
ers. For example, class 2 corresponds to isochemic changes
in the coronary artery; a relatively common condition. We
considered those kinds of class labels which occurred in less
than 5% of the data set as rare labels. The correspond-
ing class distribution is illustrated in Table 2. One way to
test how well the outlier detection algorithm worked was
to run the method on the data set and test the percentage
of points which belonged to one of the rare classes. If the
outlier detection works well, we expect that such abnormal
classes would be over-represented in the set of points found.
These kinds of classes are also interesting from a practical
perspective.

We ran the evolutionary algorithm in order to find all the
sparse projections in the data set which correspond to a

Table 1: Performance for different data sets

Data Set Brute Gen Gen® Brute Gen Gen®
(time) | (time) | (time) | (quality) | (quality) | (quality)

Breast Cancer (14) || 1314 35 42 -3.57 -3.07 -3.54
Ionosphere (34) 13115 301 267 -3.12 -2.12 -3.12 (%)
Segmentation (19) || 2112 | 71 43 3.11 276 | -3.11 (%)

Musk (160) - 954 721 - -2.07 -2.81
Machine (8) 11 31 12 -3.31 -3.15 -3.31 (*)

Table 2: Class Distribution of Arrythmia Data Set

[Case | Class Codes | Percentage of Instances ||
Commonly Occuring Classes (> 5%) 01, 02, 06, 10, 16 85.4%
Rare Classes (< 5%) 03, 04, 05, 07, 08, 09, 14, 15 14.6%

sparsity coefficient of -3 or less. A total of 85 points con-
tained these projections. When we examined these 85 points,
we found that 43 of them belonged to one of the rare classes.
Furthermore, many of the points which did not belong to
these 43 instances also showed interesting properties such as
errors in recording the data (see below). In contrast, when
the ran the algorithm in [25] over the data set, we found
that only 28 of 85 best outliers belonged to a rare class.
These results were obtained using the l-nearest neighbor;
the results did not change significantly (and in fact wors-
ened slightly) when the k-nearest neighbor was used. The
less effective performance of this technique was because of
the well known effects of the data getting spread out sparsely
in high dimensionality. In such cases, the sparsity effects
of the different dimensions start dominating and it becomes
difficult to meaningfully identify points as outliers, since the
small number of dimensions which show abnormal behavior
are often masked by the noise effects of all the other dimen-
sions.

We note that the algorithm in [22] defines outliers in a some-
what similar way to [25], because it uses full dimensional
nearest neighbor distances; therefore, the noise effects in
the results obtained with the algorithm of [25] are also ap-
plicable to the technique of [22].

Even more interesting knowledge was obtained by examining
the projections determined by the algorithm. By actually
looking at the projections it was possible to find the actual
patterns which correspond to abnormal behavior. In many
cases, we also found some interesting outliers which are cre-
ated by errors in recording the data; for example, on exam-
ining the patterns we found one record for which the height
was 780 cm and the weight was 6 kilograms. This is obvi-
ously not compatible with standard human measurements -
therefore it is clear that there was some error in recording
the data. The ability of the outlier detection algorithm to
mine the appropriate combination of attributes (out of 279
attributes in this case) is important, since such local pat-
terns were not discovered by distance based algorithms such
as those discussed in [22, 25].

Another interesting data set on which we tested the outlier

detection method was the housing data set, which had 14
attributes concerning housing values in suburbs of Boston.
The feature values of this data set correspond to various
factors which influenced housing prices such as crime rate,
accessibility to highways, nitric oxides concentration, dis-
tances to employment centers etc. We picked 13 of these 14
attributes (eliminating the single binary attribute). Then
we ran the outlier detection algorithm in order to find in-
teresting 3- and 4-dimensional projections. An interesting
example of an outlier was a record which had a high crime
rate (1.628) and high pupil-teacher ratio (21.20), but had
low distances (1.4394) to employment centers. The rea-
son that such a record would be an outlier is that locali-
ties with high crime rates and pupil-teacher ratios were also
typically far off from the employment centers. Another in-
teresting outlier point was a projection which correspond to
low nitric oxide concentration (0.453), high proportion of
pre-1940 houses (93.40%) and high index of accessibility to
radial highways (8). This was again because the latter two
attributes usually correspond to high nitric oxide concentra-
tion. We also found some interesting points which showed
informative trends with respect to the housing price. For
example, it was usually the case that points with high index
of accessibility to radial highways also had high crime rates.
We found an interesting outlier point which had a low crime
rate (0.04741), modest number of business acres per town
(11.93), and also a low median home price (11,900). This
was a rather contrarian point, since the first two features
values are usually indicative of high housing prices in the
rest of the data. Such data points are also useful for a clas-
sifier training algorithm since points which are contrarian to
the overall trends can confuse the training process. Thus,
these outlier detection techniques can also be used in order
to pre-screen such points from the data set before applying
a classification algorithm.

4. CONCLUSIONS

In this paper, we discussed a new technique for outlier de-
tection which is especially suited to very high dimensional
data sets. The method works by finding lower dimensional
projections which are locally sparse, and cannot be discov-
ered easily by brute force techniques because of the number
of combinations of possibilities. This technique for outlier

detection has advantages over simple distance based out-
liers which cannot overcome the effects of the dimensional-
ity curse. We also illustrated how to implement the tech-
nique effectively for high dimensional applications by us-
ing an evolutionary search technique. This implementation
works almost as well as a brute-force implementation over
the search space in terms of finding projections with very
negative sparsity coefficients, but at a much lower cost. The
techniques discussed in this paper extend the applicability of
outlier detection techniques to high dimensional problems;
such cases are most valuable from the perspective of data
mining applications.

5. REFERENCES

[1] C. C. Aggarwal. Re-designing Distance Functions and
Distance Based Applications for High Dimensional Data.
ACM SIGMOD Record, March 2001.

[2] C. C. Aggarwal et al. Fast Algorithms for Projected
Clustering. ACM SIGMOD Conference Proceedings,
1999.

[3] C. C. Aggarwal, P. Yu. Finding Generalized Projected
Clusters in High Dimensional Spaces. ACM SIGMOD
Conference Proceedings, 2000.

[4] C. C. Aggarwal, J. B. Orlin, R. P. Tai. Optimized
Crossover for the Independent Set Problem. Operations
Research 45(2), March 1997.

[6] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan.
Automatic Subspace Clustering of High Dimensional
Data for Data Mining Applications. ACM SIGMOD
Conference Proceedings, 1998.

[6] R. Agrawal, T. Imielinski, A. Swami. Mining
Association Rules Between Sets of Items in Large
Databases. ACM SIGMOD Conference Proceedings,
1993.

[7] A. Arning, R. Agrawal, P. Raghavan. A Linear Method
for Deviation Detection in Large Databases. KDD
Conference Proceedings, 1995.

[8] V. Barnett, T. Lewis. Outliers in Statistical Data. John
Wiley and Sons, NY 1994.

[9] K. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft.
When is Nearest Neighbors Meaningful? ICDT
Conference Proceedings, 1999.

[10] M. M. Breunig, H.-P. Kriegel, R. T. Ng, J. Sander.
LOF: Identifying Density-Based Local Outliers. ACM
SIGMOD Conference Proceedings, 2000.

[11] K. Chakrabarti, S. Mehrotra. Local Dimensionality
Reduction: A New Approach to Indexing High
Dimensional Spaces. VLDB Conference Proceedings,
2000.

[12] C. Darwin. The Origin of the Species by Natural

Selection. Published, 1859.

[13] D. Hawkins. Identification of Outliers, Chapman and
Hall, London, 1980.

[14] K. A. De Jong. Analysis of the Behavior of a Class of
Genetic Adaptive Systems. Ph. D. Dissertation,
University of Michigan, Ann Arbor, MI, 1975.

[15] M. Ester, H.-P. Kriegel, J. Sander, X. Xu. A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. KDD Conference
Proceedings, 1996.

[16] J. J. Grefenstette. Genesis Software Version 5.0.
Available at http://www.santafe.edu.

[17] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison Wesley,
Reading, MA, 1989.

[18] S. Guha, R. Rastogi, K. Shim. CURE: An Efficient
Clustering Algorithm for Large Databases. ACM
SIGMOD Conference Proceedings, 1998.

[19] A. Hinneburg, C. C. Aggarwal, D. A. Keim. What is
the nearest neighbor in high dimensional spaces? VLDB
Conference Proceedings, 2000.

[20] J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor MI
1975.

[21] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi.
Optimization by Simulated Annealing. Science (220)
(4589): pages 671-680, 1983.

[22] E. Knorr, R. Ng. Algorithms for Mining
Distance-based Outliers in Large Data Sets. VLDB
Conference Proceedings, September 1998.

[23] E. Knorr, R. Ng. Finding Intensional Knowledge of
Distance-based Outliers. VLDB Conference Proceedings,
1999.

[24] R. Ng, J. Han. Efficient and Effective Clustering
Methods for Spatial Data Mining. VLDB Conference
Proceedings, pages 144-155, 1994.

[25] S. Ramaswamy, R. Rastogi, K. Shim. Efficient
Algorithms for Mining Outliers from Large Data Sets.
ACM SIGMOD Conference Proceedings, 2000.

[26] S. Sarawagi, R. Agrawal, N. Meggido. Discovery
Driven Exploration of OLAP Data Cubes. EDBT
Conference Proceedings, 1998.

[27] T. Zhang, R. Ramakrishnan, M. Livny. BIRCH: An
Efficient Data Clustering Method for Very Large
Databases. ACM SIGMOD Conference Proceedings,
1996.

