

4.4 Quadtrees

Überblick

- Klasse räumlicher Indexstrukturen, die den Datenraum rekursiv in 4 gleich große Zellen unterteilen (*Quadranten NW, NE, SW, SE*)
- Verwaltung von Punkten, Kurven, Flächen usw., häufig verwendet in kommerziellen Geo-Informationssystemen
- Weitere Anwendungen: Komprimierung von Rasterbildern, Bildverarbeitung, Computergrafik

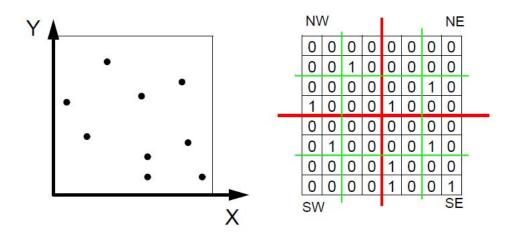
Literatur

- Samet: 'The Design and Analysis of Spatial Data Structures', Addison-Wesley, 1990
- Samet: 'Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS', Addison-Wesley, 1990

4.4 MX-Quadtrees (I)

MatriX Quadtree

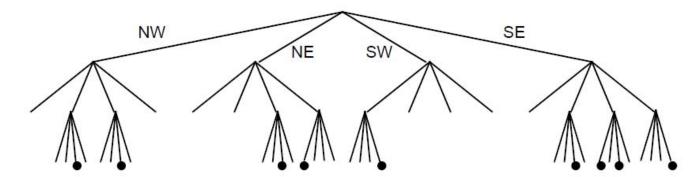
- Verwaltung 2-dimensionaler Punkte
- Punkte als 1-Elemente in einer quadratischen Matrix mit Wertebereich {0,1}
- rekursive Aufteilung des Datenraums in die Quadranten NW, NE, SW und SE
- feste Auflösung des Datenraums in 2^p · 2^p Gitterzellen



4.4 MX-Quadtrees (II)

Baumstruktur

- Interne Knoten besitzen 4 Verweise auf Söhne (NW, NE, SW, SE)
- Blattknoten enthalten 0 oder 1 Datensatz
- Datensätze befinden sich alle auf demselben Level
- Für jeden internen Knoten gibt es (mindestens) einen Teilbaum mit Datensatz
- Datenraum mit $2^p \cdot 2^p$ Gitterzellen: $p = \text{H\"{o}he}$ des MX-Quadtrees (Abstand eines Datensatzes zur Wurzel)



⇒ in jeder Gitterzelle kann sich nur ein Punkt befinden

4.4 MX-Quadtrees (III)

Gegeben

- Breite des Gitters 2 · W
- Zentrum des Gitters (W,W)

Gesucht

Quadrant eines Punkts (X,Y)

Algorithmus

```
MX_Compare (X, Y, W);

IF X < W THEN

IF Y < W THEN RETURN 'SW'

ELSE RETURN 'NW'

ELSE IF Y < W THEN RETURN 'SE'

ELSE RETURN 'NE');
```


4.4 MX-Quadtrees (IV)

Algorithmus Punktanfrage

```
Point_Query (X, Y, W, Node);

Q:=MX_Compare(X,Y,W);

Q-Son:= Reference to Quadrant Q of Node;

IF Q-Son = NULL THEN RETURN NULL

ELSE

IF W = 1 THEN RETURN Data of Q-Son of Node

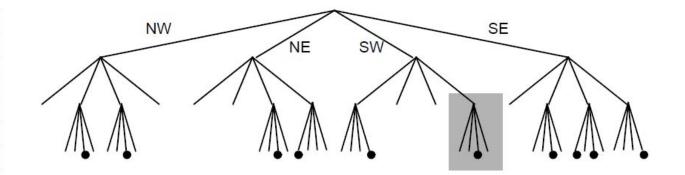
ELSE Point_Query(X MOD W,Y MOD W, W/2,Q-Son);
```

- Erster Aufruf mit Node = Wurzel des MX-Quadtrees und W = 2^{p-1} des MX-Quadtrees
- Punktanfrage ist auf einen Pfad des MX-Quadtrees beschränkt

4.4 MX-Quadtrees (V)

Einfügen

0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	0	0		1	0
1	0	0	0	1	0	0	0
0		0	0	0	0	0	0
0	1	0	0	0	0	1	0
0	0	0	0	1	0	0	0
0	0	1	0	1	0	0	1



Eigenschaften

- falls in dem Blatt schon ein Datensatz vorhanden ist, wird er durch neuen Datensatz überschrieben
- Einfügereihenfolge hat keinen Einfluß auf Datenstruktur

4.4 MX-Quadtrees (VI)

Algorithmus Einfügen

```
MX_Insert (X, Y, Data, W, Node);
IF W = 1 THFN
    Q:=MX_Compare(X,Y,W);
    Q-Son:= Reference to Quadrant Q of Node;
    IF NULL(Q-Son) THEN Create NW, NE, SW and SE-Son of Node;
    Insert (X,Y,Data) into Q-Son of Node;
ELSE
    Q:=MX_Compare(X,Y,W);
    Q-Son:= Reference to Quadrant Q of Node;
    IF NULL(Q-Son) THEN Create NW, NE, SW and SE-Son of Node;
    MX_Insert(X MOD W,Y MOD W,Data,W/2,Q-Son)
```

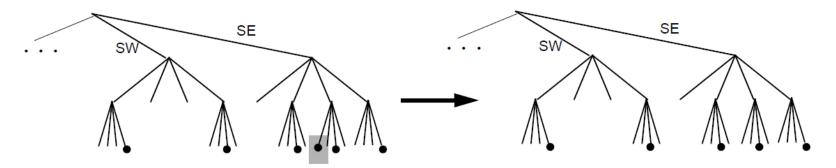

4.4 MX-Quadtrees (VII)

Algorithmus Einfügen

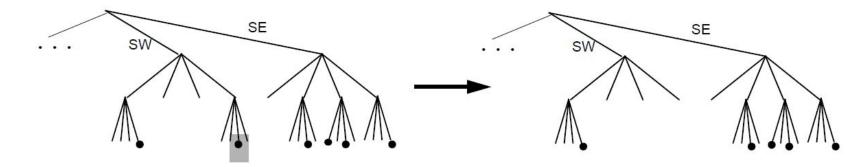
- Erster Aufruf mit Node = Wurzel des MX-Quadtrees und $W = 2^{p-1}$ des MX-Quadtrees
- Einfügen ist auf einen Pfad des MX-Quadtrees (plus die Brüder) beschränkt

4.4 MX-Quadtrees (VIII)

Löschen



Löschen mit Kollabieren

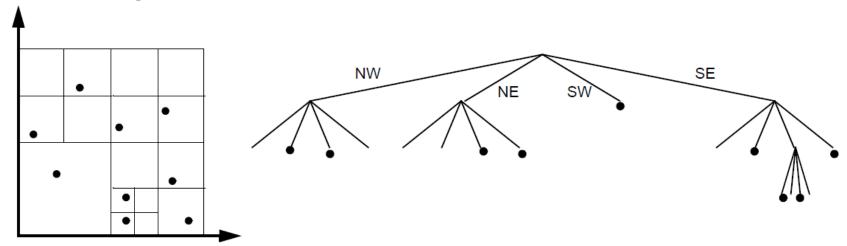


 Löschen ist auf die Knoten eines Pfades und die jeweiligen Brüder beschränkt

4.4 PR-Quadtrees (I)

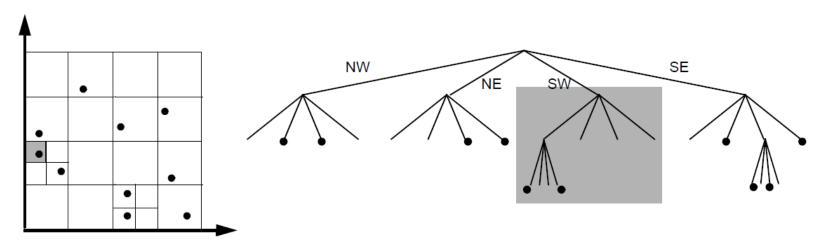
Point Region Quadtree

- variable Auflösung des Datenraums
- Komprimierung eines internen Knotens eines MX-Quadtrees, falls im Teilbaum nur ein Datensatz vorhanden
- Dann wird der Datensatz direkt in dem internen Knoten abgespeichert und dessen vier Kinderknoten werden freigegeben.
- Jeder interne Knoten besitzt mindestens zwei Punkte in den darunterliegenden Teilbäumen



4.4 PR-Quadtrees (II)

Einfügen



- Suche den Einfügeknoten N
- Falls N ein leerer Knoten, so füge den Datensatz in N ein
- Andernfalls teile den Datenraum des Teilbaums von N solange rekursiv auf, bis die beiden Punkte in unterschiedlichen Quadranten (Knoten) liegen

4.4 PR-Quadtrees (III)

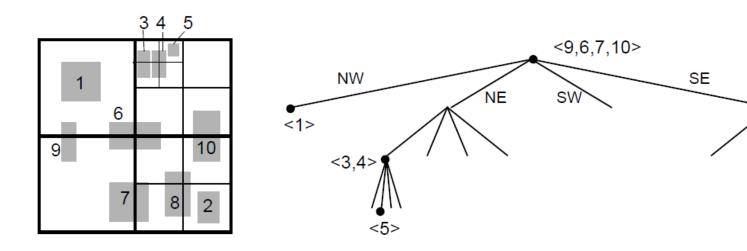
Eigenschaften

- Einfügereihenfolge hat keinen Einfluß auf Datenstruktur
- Entstammen die Punkte einem Datenraum mit $2^p \cdot 2^p$ Gitterzellen, so kann der Speicherplatzbedarf für n Punkte $O(n \cdot p)$ betragen.

4.4 Quadtrees für Rechtecke (I)

Idee 1

- Rechtecke (MURs) werden durch die minimal umgebende Zelle eines Quadtrees repräsentiert
- Speichere zu jedem Knoten eine Liste von Rechtecken, die vollständig in der dem Knoten zugeordneten Region liegen, aber nicht in der Region eines darunterliegenden Kinderknotens
- Beispiel:



4.4 Quadtrees für Rechtecke (II)

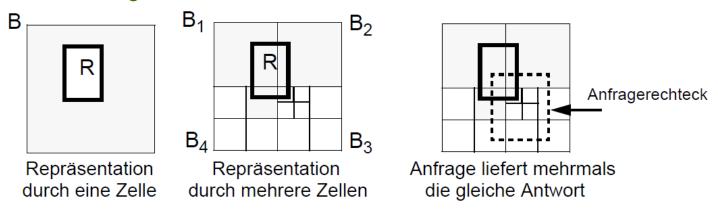
Idee 1 (cont.)

- ⇒ unbeschränkte Länge der Listen (schwierige Organisation auf Sekundärspeicher)
- ⇒ viele Geo-Objekte, die nicht die Anfrage erfüllen, aber deren minimal umgebende Quadtree-Zellen die Anfrage erfüllen (schlechte Approximation)

4.4 Quadtrees für Rechtecke (III)

Idee 2

- repräsentiere ein Rechteck durch mehrere Quadtree-Zellen
- Repräsentation eines Rechtecks R:
 - B sei die zu R gehörige minimal umgebende Quadtree-Zelle;
 - B₁, B₂, B₃ und B₄ seien die Zellen der darunterliegenden Kinderknoten.
 - Dann repräsentiere R durch die Zellen des Quadtrees, die R \cap B_i, $1 \le i \le 4$, minimal umgeben.



- + bessere Approximation des Rechtecks R, d.h. weniger Fehltreffer
- die gleiche Antwort wird ggf. mehrfach gefunden

4.4 Quadtrees für Polygone

Ziel

- Abspeicherung von Linien und Polygonen direkt in einem Quadtree
- Clustering nicht nur der MURs, sondern der EBs selbst
- Minimierung des Speicherplatzbedarfs

PM-Quadtrees

- Rekursive Aufteilung der Menge von Eckpunkten / Kanten eines Polygons in Teilmengen, die durch eine Datenstruktur fester Grösse repräsentiert werden können
- Diese Datenstrukturen werden in einem Blattknoten des Quadtrees abgespeichert

Varianten

- Repräsentierung der Eckpunkte: PM1-Quadtrees, PM₂-Quadtrees, PM₃-Quadtrees
- Repräsentierung der Kanten: PMR-Quadtrees

4.4 PM1-Quadtree (I)

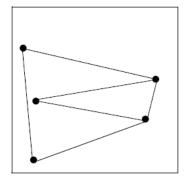
Idee

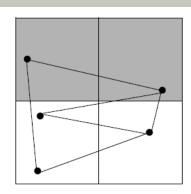
 Abspeicherung der Polygone durch ihre Eckpunkte, ohne dabei eine Approximation durch minimal umgebende Quadtree-Zellen oder minimal umgebende Rechtecke zu benutzen

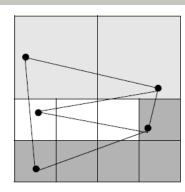
Baumstruktur

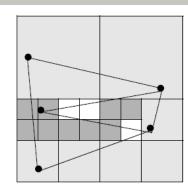
- Eine *Blattzelle* ist eine Zelle (Quadrant) des Gitters, die durch ein Blatt des Quadtrees repräsentiert wird
- Höchstens ein Eckpunkt eines Polygons liegt in der Zelle eines Blattknotens
- Falls ein Blattknoten B des PM1-Quadtrees einen Eckpunkt E enthält, so müssen alle Kanten in B den Punkt E als Eckpunkt besitzen
- Falls eine Blattzelle B keinen Eckpunkt enthält, so darf durch B nur eine Kante führen

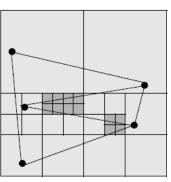
4.4 PM₁-Quadtree (II)

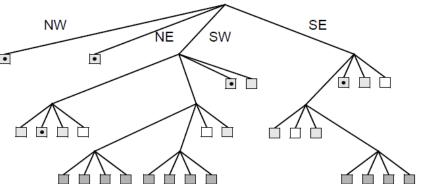










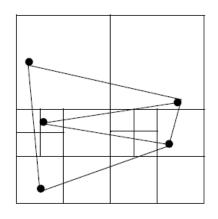


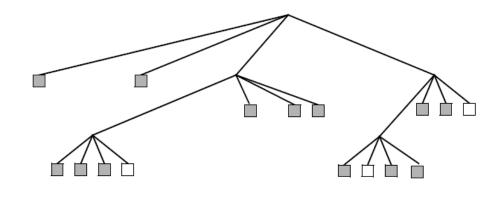
- Leistung hängt wesentlich von der Nähe zwischen Punkten und Kanten ab (Kanten in einem Eckpunkt mit kleinem Winkel ⇒ schlechtes Leistungsverhalten)
- + sehr einfache Datenstruktur für Blattknoten

4.4 PM₂-Quadtree

Baumstruktur

- wie bei PM₁-Quadtree
- Änderung: Falls ein Blattknoten B keinen Eckpunkt enthält, so dürfen durch B mehrere Kanten mit einem gemeinsamen Eckpunkt führen (anstatt nur einer Kante)



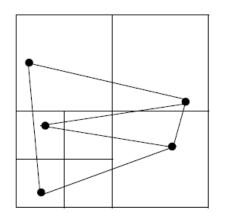


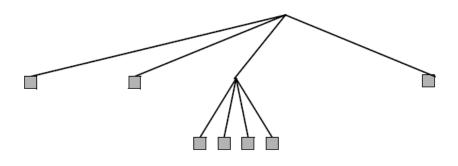
- + geringere Höhe des Quadtrees
- komplexere Datenstruktur für Blattknoten

4.4 PM₃-Quadtree

Baumstruktur

- Höchstens ein Eckpunkt eines Polygons liegt in einer Blattzelle
- Eine Blattzelle kann Kanten mit beliebigen Eckpunkten enthalten





- + noch geringere Höhe des Quadtrees
- noch komplexere Datenstruktur für Blattknoten

4.4 PMR-Quadtree (I)

Baumstruktur

- Kanten werden in alle geschnittenen Blattzellen eingefügt
- C >1 versch. Kanten können in einer Blattzelle abgespeichert werden

Einfügen

- Füge eine neue Kante in alle Blattzellen ein, die sich mit der Kante schneiden
- Falls die Zelle übergelaufen ist (mehr als c Kanten), so spalte die Zellen (ggf. rekursiv) in 4 Teile auf
- Falls es nicht möglich ist, den Überlauf zu beseitigen, dann schreibe die überzähligen Kanten in eine Überlaufzelle, die mit der ursprünglichen Blattzelle verkettet ist

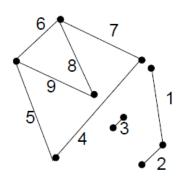
Experimentelle Untersuchung

 Der PMR-Quadtree ist den PM_x-Quadtrees bezüglich der Speicherplatzausnutzung überlegen

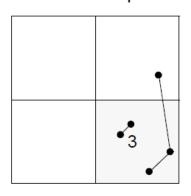
4.4 PMR-Quadtree (II)

$$c = 2$$

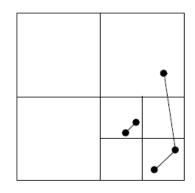
Kantenmenge



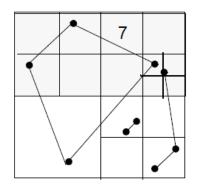
vor 1. Split

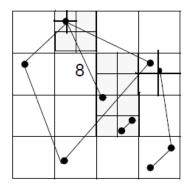


nach 1. Split

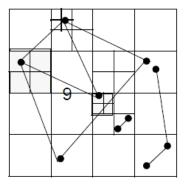


nach 2. / 3. + 4. Split





nach 4.bis 7.Split



nach 8. und 9. Split

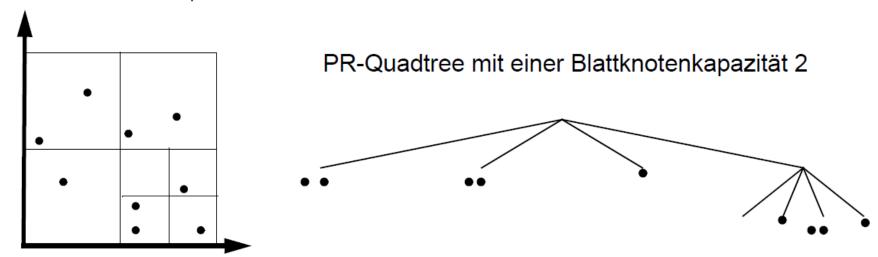
4.4 Abb. auf Sekundärspeicher (I)

Abbildung der Zugriffsstrukturen auf Sekundärspeicher

- R-Baum: Knoten = Seite
- Quadtree: ? (in einem Knoten befinden sich nur wenige Einträge)

1. Ansatz: Anpassung der Kapazität der Blattzellen

Erhöhe die Kapazität der Blattzellen



Organisation der internen Knoten bleibt problematisch

4.4 Abb. auf Sekundärspeicher (II)

2. Ansatz: Einbettung in eindimensionalen Raum

- Nur gefüllte (schwarze) Blattzellen werden betrachtet
- Eine Blattzelle entspricht einer Datenseite (höhere Kapazität)
- Jede dieser Zellen erhält eine Ordnungsnummer
- Die Zellen werden durch eine herkömmliche, eindimensionale Zugriffsstruktur (z.B. B-Baum) verwaltet

Anforderungen

- Einfache Berechnung der Ordnungsnummer
- Erhalt von räumlicher Nachbarschaft in dieser neuen Ordnung (Annahme: räumlich benachbarte Objekte werden oft gemeinsam angefragt)

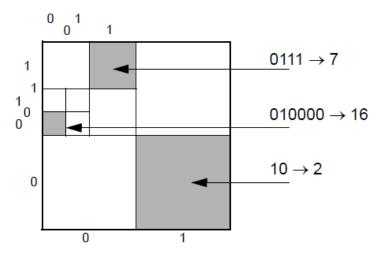
Fragestellung

Wie sieht eine geeignete Ordnung aus?

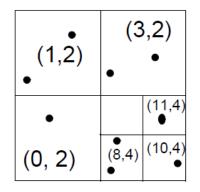
4.4 Linear Quadtree mit Z-Ordnung

(1)

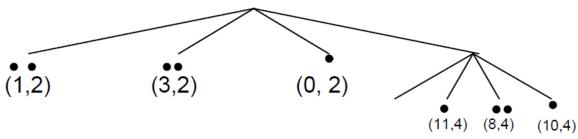
• Codierung von Quadtree-Zellen:



- 1. Mischen der beiden Bitfolgen, 2. Interpretation als Dezimalzahl
- Level eines Codes = Anzahl der Bits
- Z-Wert = (Dezimalwert des Codes, Level)



PR-Quadtree mit einer Blattknotenkapazität 2



4.4 Linear Quadtree mit Z-Ordnung **(II)**

- Lineare Ordnung zur Verwaltung im B+-Baum
 - Seien (c_1, l_1) und (c_2, l_2) zwei Z-Werte und sei $l = min \{l_1, l_2\}$.
 - Dann ist die Ordnungsrelation \leq_7 wie in 4.2 definiert:

$$(c_1, l_1) \le (c_2, l_2)$$
 falls $c_1 \text{div } 2^{l_1 - l} \le c_2 \text{div } 2^{l_2 - l}$

Beispiele:

$$(1,2) \leq_{\mathbb{Z}} (3,2)$$

$$(3,4) \leq_{\mathbb{Z}} (3,2)$$

$$(1,2) \le_{\mathbb{Z}} (3,2), \qquad (3,4) \le_{\mathbb{Z}} (3,2), \qquad (1,2) \le_{\mathbb{Z}} (10,4)$$

- Wenn eine Blattzelle (= Datenseite) des Quadtrees überläuft, die durch den Z-Wert
 - (c,l) repräsentiert wird, dann Split der Seite in 4 Seiten gemäß Quadtree-Strategie
- diese Seiten besitzen die Z-Werte

$$(4*c, I + 2), (4*c + 1, I + 2), (4*c + 2, I + 2), (4*c + 3, I + 2)$$

4.4 Quadtrees: Zusammenfassung

- Quadtrees sind die am häufigsten verwendeten räumlichen Zugriffsstrukturen in Geo-Informationssystemen
- Fülle von Varianten (siehe [Samet])
- Quadtrees werden eingesetzt für die Organisation 2-dimensionaler Punkte, Rechtecke, Streckenzüge und Polygone (für 3-dimensionale Objekte: Octtree)
- Repräsentation von Polygonen durch minimal umgebende Quadtree-Zellen (mitoder ohne Clipping), durch Eckpunkte oder durch Kanten
- Quadtrees k\u00f6nnen benutzt werden, um Anfragen wie die Punkt-Anfrage, die Fenster-Anfrage und den Spatial Join zu beantworten
- Quadtrees sind ursprünglich als eine Datenstruktur für den Hauptspeicher entworfen worden, können aber durch Verwendung raumfüllender Kurven auch für Sekundärspeicher genutzt werden