

Kapitel 2: Ein abstraktes Geo-Datenmodell

Skript zur Vorlesung Geo-Informationssysteme

Wintersemester 2014/15

Ludwig-Maximilians-Universität München

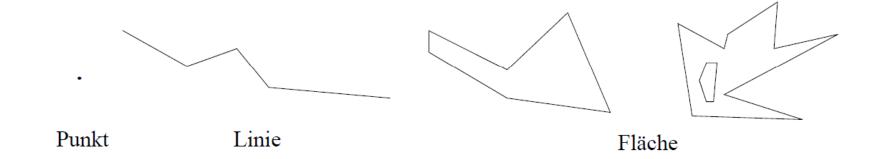
(c) Matthias Renz 2014, Peer Kröger 2011, basierend auf dem Skript von Christian Böhm aus dem SoSe 2009

2. Ein abstraktes Geo-Datenmodell

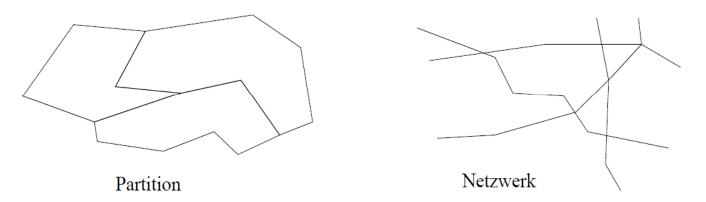
- 1. Was soll modelliert werden?
- 2. Spatial Data Types
- 3. Integration in das relationale Datenmodell

2.1 Was soll modelliert werden?

Einzelne Objekte



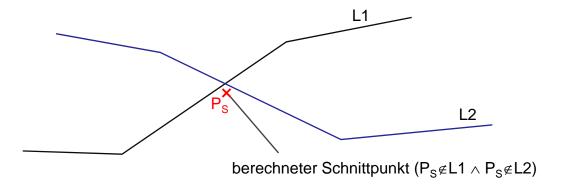
Mengen räumlich benachbarter Objekte



2.1 Was soll modelliert werden?

Probleme mit dem Euklidischen Raum

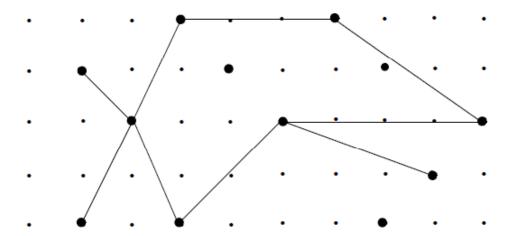
- Punkt = (r1, r2)
 - r1 und r2 sind theoretisch reelle Zahlen
 - im Rechner aber nur als Fließkommazahlen mit bestimmter Genauigkeit repräsentiert
- Problem mit Schnittpunkten zweier Linien:
 - Runden der Koordinaten des Schnittpunkts zur nächsten Fließkomma-Zahl
 - der Schnittpunkt liegt dann auf keiner der beiden Linien (Inkonsistenz)



2.1 Was soll modelliert werden?

Lösung: Realm-basierter Ansatz [Schneider, Güting 1994]

- Eine *Realm* ist eine Menge von Punkten und nicht-schneidenden Liniensegmenten über einem gegebenen Gitter
- Schnittpunkte zweier Linien <u>müssen</u> auf einem Gitterpunkt liegen



2.1 Realms

Gegeben sei ein endlicher diskreter Raum $N \times N$ mit $N = \{0, 1, ..., n-1\}$.

Robuste Geometrische Primitive

- Ein N-Punkt ist ein Paar (x,y) ∈ N × N. PN sei die Menge aller N-Punkte.
- Ein **N-Segment** ist ein Paar verschiedener N-Punkte (p,q), SN die Menge aller Segmente.

Realms

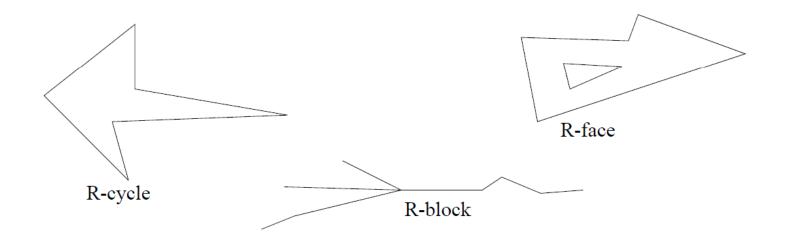
- Eine N-Realm ist eine Menge $R = P \cup S$ mit
 - (i) $P \subseteq PN$ (*R-Punkte*), $S \subseteq SN$ (*R-Segmente*)
 - (ii) $\forall s \in S : s = (p,q) \Rightarrow p \in P \land q \in P$
 - (iii) $\forall p \in P \ \forall s \in S : \neg (p \text{ in } s)$
 - (iv) \forall s, $t \in S$, $s \neq t$: \neg (s intersects t)
- Interpretation einer Realm als planarer Graph:
 - Menge der Knoten = P
 - Menge der Kanten = S

2.1 Realms

Realm Strukturen

Die folgenden Definitionen beruhen auf der Graph-Interpretation einer Realm R:

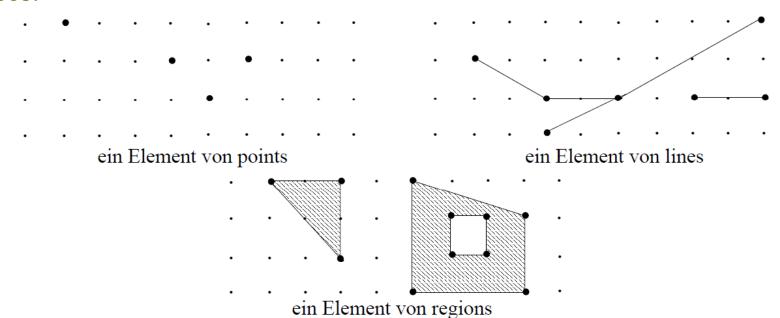
- Ein R-cycle ist ein Zyklus im Graphen von R.
- Ein *R-face* ist ein R-cycle der andere disjunkte R-cycles enthalten kann.
- Ein R-block ist eine Zusammenhangskomponente im Graphen von R.



Realm-Basierte Spatial Data Types

Gegeben sei eine Realm R.

- Der Typ points definiert Mengen von R-Punkten.
- Der Typ lines definiert Mengen von paarweise disjunkten R-blocks.
- Der Typ regions definiert Mengen von paarweise kanten-disjunkten Rfaces.



Typmengen

- EXT = { *lines, regions* }
- GEO = {*points, lines, regions* }
- OBJ = {cities, highways, . . .} (anwendungsspezifisch)
- set(OBJ) modelliert eine Datenbank
 - ⇒ Second Order Signature (Typmengen = kinds)

Arten von Operationen

- Resultat vom Typ bool (Prädikate)
- Resultat vom Typ GEO
- Resultat vom Typ int / real
- Resultat vom Typ set(GEO) (Anfragen)

Prädikate (Resultat vom Typ bool)

 $\forall geo \in GEO \ \forall ext, ext1, ext2 \in EXT$

```
geo \times geo\rightarrow bool=, \neq, "nördlich von", "dist < 100", ...</th>geo \times regions\rightarrow boolinsideregions \times regions\rightarrow boolarea_disjoint, edge_disjointpoints \times ext\rightarrow boolon_border_ofext1 \times ext2\rightarrow booldisjoint, meet, overlaps, covers, contains, covered_by, inside, equal<br/>(Topologische Prädikate)
```

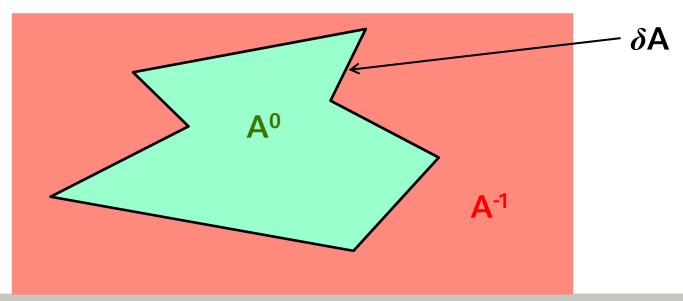
• • •

→ vollständige Menge der topologischen Prädikate

2.2 Topologische Prädikate (I)

9-Schnitt-Modell [Egenhofer 1991]

- Wir betrachten einfache Polygone ohne Löcher (R-cycles). Ein solches Polygon kann als Punktmenge im 2D (N-Punkte) angesehen werden.
- Für eine Punktmenge A bezeichnen
 - A⁰ das Innere von A,
 - δA den Rand von A,
 - A-1 das Äußere (Komplement) von A.



2.2 Topologische Prädikate (I)

9-Schnitt-Modell (Forts.)

 Um die topologische Beziehung zwischen zwei Polygonen (Punktmengen) A und B zu bestimmen, bilden wir die folgenden 9 Schnitte und notieren die Ergebnisse (Ø oder ¬Ø) in einer Matrix, genannt Durchschnittsmatrix:

$\delta A \cap \delta B$	$\deltaA\capB^0$	$\delta A \cap B^{\text{-1}}$
$A^0 \cap \delta B$	$A^0 \cap B^0$	$A^0 \cap B^{-1}$
$A^{-1} \cap \delta B$	$A^{-1} \cap B^0$	$A^{-1} \cap B^{-1}$

- Von den 512 potentiellen Matrizen können nur 8 auftreten, wenn A und B keine Löcher haben, zusammenhängend sind und nicht 1-dimensional sind.
- Jede dieser 8 Matrizen definiert eine topologische Beziehung zwischen den Polygonen A und B.

2.2 Topologische Prädikate (II)

9-Schnitt-Modell (Forts.)

Durchschnittsmatrizen für die 8 topologischen Beziehungen

$$M_{\text{disjoint}}(A, B) = \begin{pmatrix} \varnothing & \varnothing & \neg \varnothing \\ \varnothing & \varnothing & \neg \varnothing \\ \neg \varnothing & \neg \varnothing & \neg \varnothing \end{pmatrix} \qquad \qquad M_{\text{meet}}(A, B) = \begin{pmatrix} \neg \varnothing & \varnothing & \neg \varnothing \\ \varnothing & \varnothing & \neg \varnothing \\ \neg \varnothing & \neg \varnothing & \neg \varnothing \end{pmatrix}$$



$$\mathbf{M}_{\text{meet}}(\mathbf{A}, \mathbf{B}) = \begin{pmatrix} \neg \varnothing & \varnothing & \neg \varnothing \\ \varnothing & \varnothing & \neg \varnothing \\ \neg \varnothing & \neg \varnothing & \neg \varnothing \end{pmatrix}$$

$$M_{\text{overlaps}}(A, B) = \begin{pmatrix} \neg \varnothing & \neg \varnothing & \neg \varnothing \\ \neg \varnothing & \neg \varnothing & \neg \varnothing \\ \neg \varnothing & \neg \varnothing & \neg \varnothing \end{pmatrix}$$

$$M_{\text{covers}}(A, B) = \begin{pmatrix} \neg \varnothing & \varnothing & \neg \varnothing \\ \neg \varnothing & \neg \varnothing & \neg \varnothing \\ \varnothing & \varnothing & \neg \varnothing \end{pmatrix}$$

$$M_{\text{contains}}(A, B) = \begin{pmatrix} \emptyset & \emptyset & \neg \emptyset \\ \neg \emptyset & \neg \emptyset & \neg \emptyset \\ \emptyset & \emptyset & \neg \emptyset \end{pmatrix}$$

$$M_{\text{coveredby}}(A, B) = \begin{pmatrix} \neg \varnothing & \neg \varnothing & \varnothing \\ \varnothing & \neg \varnothing & \varnothing \\ \neg \varnothing & \neg \varnothing & \neg \varnothing \end{pmatrix}$$

$$\mathbf{M}_{\text{inside}}\left(\mathbf{A},\,\mathbf{B}\right) = \begin{pmatrix} \varnothing & \neg \varnothing & \varnothing \\ \varnothing & \neg \varnothing & \varnothing \\ \neg \varnothing & \neg \varnothing & \neg \varnothing \end{pmatrix}$$

$$\mathbf{M}_{\text{equal}}(\mathbf{A}, \mathbf{B}) = \begin{pmatrix} \neg \varnothing & \varnothing & \varnothing \\ \varnothing & \neg \varnothing & \varnothing \\ \varnothing & \varnothing & \neg \varnothing \end{pmatrix}$$

Operationen mit Resultat vom Typ GEO

 \forall geo \in GEO \forall ext, ext1, ext2 \in EXT

```
plus, minus
geo x geo
                                \rightarrow geo
                                \rightarrow points
                                                     vertices
ext
regions
                                \rightarrow lines
                                                     contour
                                                                          siehe Übung:
                         \rightarrow ?
points × points
                                                     intersection
lines x lines
                      \rightarrow ?
                                                     intersection
regions \times regions \rightarrow ?
                                                     intersection
                               → ?
regions × lines
                                                     intersection
```

. . .

Semantik basierend auf Realm-Operationen

Seien $R \in regions$ und $L \in lines$:

intersection(R,L):= blocks($\{s \in Segments(L) \mid \exists r \in R: s \text{ inside } r\}$)

Operationen mit Resultat vom Typ int oder real (skalar)

```
\forall geo, geo1, geo2 ∈ GEO

geo → int no_of_components

geo1 × geo2 → real dist

geo → real diameter

lines → real length

regions → real area
```

. . .

Semantik basierend auf Realm-Operationen

```
Seien G ∈ GEO und L ∈ lines:
```

```
diameter(G):= max{dist(p,q) | p, q \in vertices(G)}
length(L):= \Sigma dist(p,q)
(p,q) \in Segments(L)
```


Anfragen

```
\forall \ obj \in OBJ, \ \forall \ geo1, \ geo2 \in GEO
set(obj) \times (obj \rightarrow geo1) \times geo2 \longrightarrow set(obj) nearest_neighbor_query

Beispiel:
set(cities) \times (cities \rightarrow regions) \times points \longrightarrow set(cities)

set(obj) \times (obj \rightarrow geo1) \times regions \longrightarrow set(obj) region_query

Beispiel:
set(cities) \times (cities \rightarrow regions) \times regions \longrightarrow set(cities)
```


2.3 Integration in das rel. Datenmodell

Idee

- Geo-Objekte einer Anwendung werden als Tupel bzw. Objekte mit mindestens einem Attribut eines Spatial Data Types modelliert.
- Das Datenmodell soll neben den atomaren Datentypen wie int und string auch Spatial Data Types anbieten.

Beispiel: Relationales Schema

- relation states (sname: string; area: regions; population: int)
- relation cities (cname: string; center: points; ext: regions; population: int)
- relation rivers (rname: string; route: lines)

2.3 Integration in das rel. Datenmodell

Beispiel: Anfragen in Geo-Relationaler Algebra

- (1) cities select [center inside Bavaria]"Bavaria" sei eine Konstante des Typs *regions*
- (2) rivers select [route intersects Window]
- (3) cities select [dist(center, Hagen) < 100 and population > 500.000]
- (4) cities states join [center inside area]
- (5) cities rivers join [dist(center,route) < 50]
- (6) rivers select [route intersects Bavaria]
 extend [intersection(route,Bavaria) {part}]
 extend [length(part) {plength}]
 project [rname,part,plength]

2.3 Integration in ein Datenbanksystem

Integration der algebraischen Operationen in konkrete Anfragesprache

z.B. SQL:

(4') SELECT cname, sname FROM cities, states WHERE center inside area

Input und Output von Konstanten

- Input von Konstanten von Spatial Data Types:
 - points, lines, regions benennen (z.B. über Mapping $obj \rightarrow geo$)
 - oder graphischer Input der Konstanten
- Output von Konstanten von Spatial Data Types:
 - Graphischer Output
 - mit Legende (Namen, Typ, . . . von Objekten)