

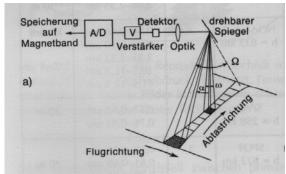
Kapitel 7: Grundlagen von Rasterdaten

Skript zur Vorlesung Geo-Informationssysteme

Wintersemester 2011/12
Ludwig-Maximilians-Universität München
(c) Peer Kröger 2011, basierend auf dem Skript von Christian Böhm aus dem SoSe 2009

7. Grundlagen von Rasterdaten

- 1. Einführung
- 2. Speicherung von Rasterdaten
- 3. Eigenschaften von Rasterdaten



7.1 Einführung (I)

Definitionen

- Rasterdaten beschreiben die Geometrie einer Vorlage in dem Zeilenund Spaltensystem eines Abtastvorgangs. Die Rasterelemente werden auch *Pixel* (Abk. für *picture element*) genannt.
- Jedem Pixel wird ein Zahlenwert (*Grauwert*) zugeordnet, der reflektierte oder emittierte Strahlungswerte repräsentiert, die in einem bestimmten Spektralbereich aufgezeichnet wurden.
- Passive Abtastsysteme können Strahlungsinformation nur empfangen,
 z.B. die meisten Fernerkundungssatelliten.
- Aktive Abtastsysteme benutzen die Vorlage als Reflektor für die von ihnen ausgesendete und wiederempfangene Strahlung, z.B. Radar.

Geo-Informationssysteme

_

7.1 Einführung (II)

Ausgewählte passive Fernerkundungssysteme

Gerät	Hersteller	Plattform	Anzahl der Kanäle	Spektralbereich	Bodenelement
MSS	NASA, USA	Landsat 1-2, h = 915 km Landsat 3-4, h = 705 km	4	0.5 - 0.6 μm 0.6 - 0.7 μm 0.7 - 0.8 μm 0.8 - 1.1 μm	79 m
AVHRR	NOAA, USA	NOAA 6-8, h = 833 km	5	0.58 - 0.68 μm 0.72 - 1.10 μm 3.55 - 3.93 μm 10.5 - 11.3 μm 11.5 - 12.5 μm	1.1 km
MOMS	MBB, BRD	SPAS, h = 250 km	2	0.57 - 0.62 μm 0.76 - 0.95 μm	20 m

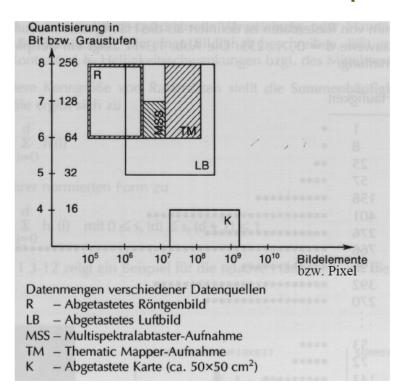
7.1 Einführung (III)

Parameter von Rasterdaten

- Anzahl der Pixel (Auflösung)
- Anzahl der Grauwertstufen (Quantisierungsstufen)

Anzahl der Pixel

Geo-Informationssysteme


5

7.1 Einführung (IV)

Typische Parameter verschiedener Datenquellen

7.2 Speicherung von Rasterdaten (I)

Logisches Format

- Die Rasterdaten d(x,y) werden zeilenweise abgespeichert.
- N = Zahl der Zeilen
- M = Zahl der Pixel pro Zeile

Pixelnummer y

d _{1M}	d _{2M}	 d _{NM}
d ₁₂	d ₂₂	 d _{N2}
d ₁₁	d ₂₁	 d _{N1}

Zeilennummer x

Speicherplatzbedarf

N * M * Anzahl Bytes pro Pixel

z.B. Luftbild 104 * 104 * 7 Bytes = 700 MB

⇒ sehr hoher Speicherplatzbedarf

Geo-Informationssysteme

7

7.2 Speicherung von Rasterdaten (II)

Physisches Format

- Kennsatz
 Datenherkunft, Maximaler Grauwert, Koordinatensystem, Anzahl der Seiten
- Datenseiten
 Folge von c Pixeln,

c = | Anzahl Bytes einer Seite / Anzahl Bytes pro Pixel |

zeilenweise abgespeichert

Beispiel:

M = 3500

N = 3000

512 Bytes pro Seite1 Byte pro Pixel

Seitennummer	Inhalt der Seite	
1	Kennsatz	
2	Pixel 1 - 512	
3	Pixel 513 - 1024	
4	Pixel 1025 - 1536	
		1
8	Pixel 3073 - 3500	
9	Pixel 1 - 512	
		1
21001	Pixel 3073 - 3500	L

Zeile 1

Zeile 2

Zeile 3000

7.2 Komprimierung von Rasterdaten (I)

Lauflängen-Kodierung (Run Length Coding)

- · Häufig treten Folgen desselben Grauwerts auf.
- Es werden nicht mehr alle M Pixel einer Zeile abgespeichert, sondern Läufe, d.h. Paare (Lauflänge, Grauwert).

Beispiel (Logisches Format)

- Zeile x = 5, 256 Grauwertstufen, komprimiert

08 FC 03 7C 08 FC 06 7C . . . 10 FC

Zeilentabelle:

Zeilen	Х	Anzahl Läufe	Start-Adresse
	5	14	A ₅

⇒ maximale Lauflänge 256 (Speicherung der Paare/Läufe in 2 Byte)

Geo-Informationssysteme

_

7.2 Komprimierung von Rasterdaten (II)

Beispiel (Physisches Format)

M = 3500

N = 3000

512 Bytes pro Seite1 Byte pro Pixel

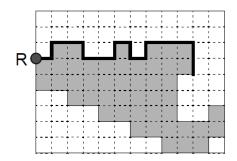
Seitennummer	Inhalt der Seite
1	Kennsatz
2	Zeileneinträge
70	Zeileneinträge
71	70 Läufe
72	68 Läufe
4278	256 Läufe
4279	55 Läufe

Zeilentabelle

Zeile 1 Zeile 2

Zeile 3000

- + geringerer Speicherplatzbedarf gegenüber der unkomprimierten Darstellung (bei Binärbildern ca. 10 %; bei 8 Graustufen ca. 30%)
- Indirektion beim wahlfreien Zugriff auf eine Zeile (Zeilentabelle)
- höherer Berechnungsaufwand bei Operationen wie z.B. Map Overlay



7.2 Komprimierung von Rasterdaten (III)

Rand-Kodierung (Chain Coding)

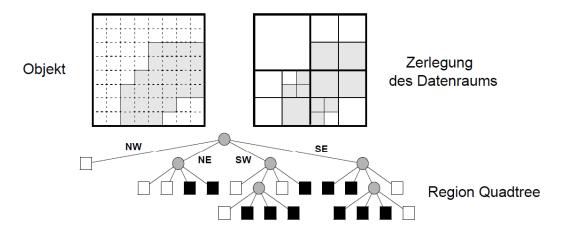
- Diese Kodierung ist anwendbar, wenn Rasterdaten nicht zeilenweise sondern objektweise abgespeichert werden.
- Ausgehend von einem Randpunkt R geht man entlang des Randes eines Objekts und codiert die Richtung der verfolgten Kanten.
- rechts = 0, oben = 1, links = 2, unten = 3

Rand-Codierung 0, 1, 0², 3, 0², 1, 0, 3, 0,1, 0³, 3²,...

- + Kompakte Speicherung von Linienzügen und Flächen
- Operationen (Map Overlay) erfordern Konvertierung ins unkomprimierte Format

Geo-Informationssysteme

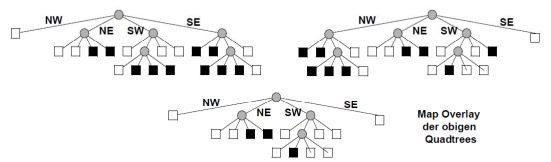
11



7.2 Komprimierung von Rasterdaten (IV)

Kodierung mit Region Quadtree

- Diese Kodierung ist ebenfalls anwendbar, wenn Rasterdaten nicht zeilenweise sondern objektweise abgespeichert werden.
- Ein Objekt wird durch einen Region Quadtree kodiert.
- Der Datenraum wird rekursiv in Quadranten zerlegt, bis das Objekt exakt überdeckt ist oder max. Auflösung erreicht ist.



7.2 Komprimierung von Rasterdaten (V)

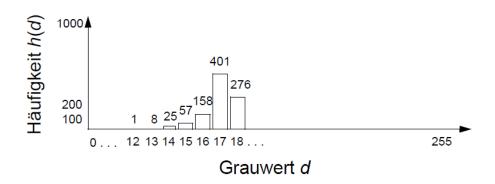
Operationen auf den Kodierungen

- · Jeder Knoten des Region Quadtree ist durch 2 Bits repräsentiert.
- Operationen auf zwei als Region Quadtree kodierten Rasterbildern werden durch parallelen Durchlauf der Quadtrees realisiert.
- Z. B. Map Overlay: schwarzer Knoten * beliebiger Teilbaum T --> T weisser Knoten * beliebiger Teilbaum T --> weisser Knoten

- + geringer Speicherplatzbedarf
- + variable Auflösung
- + Operationen (z.B. Map Overlay) sind einfach und schnell auszuführen

Geo-Informationssysteme

13



7.3 Eigenschaften von Rasterdaten (I)

Histogramme und davon abgeleitete Eigenschaften

- Der maximale Grauwert d_{max} eines gegebenen Rasterbildes ist definiert als der größte auftretende Grauwert. Häufig ist $d_{max} = 255$, so daß ein Pixel in einem Byte abgespeichert werden kann.
- Das Histogramm eines Rasterbilds ist definiert als die Häufigkeitsverteilung h(d) der einzelnen Grauwerte d, 0 ≤ d ≤ d_{max}.

7.3 Eigenschaften von Rasterdaten (II)

Der mittlere Grauwert d_{mean} ist definiert als:

$$d_{mean} = \frac{1}{MN} \cdot \sum_{d=0}^{d_{max}} h(d)d$$

Er ist ein Mass für die "Helligkeit" des Bildes

Die Varianz der Grauwerte d_{var} ist definiert als

$$d_{var} = \frac{1}{MN} \cdot \sum_{d=0}^{d_{max}} h(d)(d - d_{mean})^2$$

Die Varianz lässt Rückschlüsse über den "Kontrast" eines Bildes zu.

• Der Median d_{med} ist der mittlere Wert in der aufsteigend sortierten Folge d_i , $1 \le i \le n$ aller auftretenden Grauwerte, d.h.

$$d_{med} = \begin{cases} \frac{d_{n+1}}{2} & \text{wenn n ungerade} \\ \left(\frac{d_n + d_n}{2} + 1\right)/2 & \text{sonst} \end{cases}$$

Geo-Informationssysteme

15