Bitte nicht Drucken!

Dies ist Daumenkino, für die Betrachtung am PC. Es auszudrucken wäre Papierverschwendung.

Beispiel Hashfunktion: $h_L(k) = k \mod (N \cdot 2^L)$ Splitbedingung:

$$h_{L+1}(k) = h_L(k)$$
 oder $h_{L+1}(k) = h_L(k) + N \cdot 2^L$

Beispiel Hashfunktion: $h_L(k) = k \mod (N \cdot 2^L)$ Splitbedingung:

$$h_{L+1}(k) = h_L(k)$$
 oder $h_{L+1}(k) = h_L(k) + N \cdot 2^L$

Sei $M_L := N \cdot 2^L$ (Tabellengröße bei letzter Verdoppelung)

$$h_{L+1}(k) = h_L(k)$$
 oder $h_{L+1}(k) = h_L(k) + M_L$

Mit $M_L := N \cdot 2^L$ (Tabellengröße bei letzter Verdoppelung) Gilt die Splitbedingung?

$$h_{L+1}(k) = h_L(k)$$
 oder $h_{L+1}(k) = h_L(k) + M_L$

$$h_{L+1}(k) = h_L(k)$$
 oder $h_{L+1}(k) = h_L(k) + M_L$

$$h_{L+1}(k) = k \mod 2M$$

$$h_{L+1}(k) = h_L(k)$$
 oder $h_{L+1}(k) = h_L(k) + M_L$

Mit $M_L:=N\cdot 2^L$ (Tabellengröße bei letzter Verdoppelung) Modulo: Rest bei Division: $a=h_L(k)=k\mod M$ Liefert eine Zerlegung von k in: $k=b\cdot M+a$

$$h_{L+1}(k) = (b \cdot M + a) \mod 2M$$

mit:

$$bM \mod 2M = (b \mod 2) \cdot M$$

$$h_{L+1}(k) = h_L(k)$$
 oder $h_{L+1}(k) = h_L(k) + M_L$

Mit $M_L:=N\cdot 2^L$ (Tabellengröße bei letzter Verdoppelung) Modulo: Rest bei Division: $a=h_L(k)=k\mod M$ Liefert eine Zerlegung von k in: $k=b\cdot M+a$

$$h_{L+1}(k) = (b \cdot M + a) \mod 2M$$

mit:

$$bM \mod 2M = (b \mod 2) \cdot M \in \{0, M\}$$

$$h_{L+1}(k) = h_L(k)$$
 oder $h_{L+1}(k) = h_L(k) + M_L$

Mit $M_L:=N\cdot 2^L$ (Tabellengröße bei letzter Verdoppelung) Modulo: Rest bei Division: $a=h_L(k)=k\mod M$ Liefert eine Zerlegung von k in: $k=b\cdot M+a$

$$h_{L+1}(k) = (b \cdot M + a) \mod 2M$$

mit:

$$bM \mod 2M = (b \mod 2) \cdot M \in \{0, M\}$$
$$a \mod 2M = a \qquad (\operatorname{da} a \in \{0, \dots, M-1\})$$

$$h_{L+1}(k) = h_L(k)$$
 oder $h_{L+1}(k) = h_L(k) + M_L$

$$h_{L+1}(k) = (\underbrace{b \cdot M}_{=0 \text{ oder } M} + \underbrace{a}_{< M}) \mod 2M$$

$$h_{L+1}(k) = h_L(k)$$
 oder $h_{L+1}(k) = h_L(k) + M_L$

$$h_{L+1}(k) = (\underbrace{b \cdot M}_{=0 \text{ oder } M} + \underbrace{a}_{< M}) \mod 2M$$

$$> 0 \text{ und } < 2M$$

$$h_{L+1}(k) = h_L(k)$$
 oder $h_{L+1}(k) = h_L(k) + M_L$

$$h_{L+1}(k) = (b \mod 2) \cdot M + a$$

$$h_{L+1}(k) = h_L(k)$$
 oder $h_{L+1}(k) = h_L(k) + M_L$

Mit $M_L:=N\cdot 2^L$ (Tabellengröße bei letzter Verdoppelung) Modulo: Rest bei Division: $a=h_L(k)=k\mod M$ Liefert eine Zerlegung von k in: $k=b\cdot M+a$

$$h_{L+1}(k) = (b \mod 2) \cdot M + a$$

Also ist $h_{L+1}(k) = h_L(k)$ (für b gerade) oder $h_{L+1}(k) = h_L(k) + M$ Die Splitbedingung ist erfüllt!

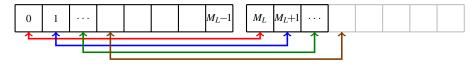
Macht keinen Unterschied – Splitbedingung gilt immernoch!

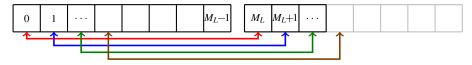
Macht keinen Unterschied – Splitbedingung gilt immernoch!

Aber: \mathcal{H} kann eine komplexe Funktion sein, um eine möglichst gleichmäßige Verteilung der Daten zu erreichen!

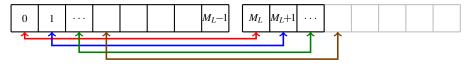
Macht keinen Unterschied – Splitbedingung gilt immernoch!

Aber: ${\cal H}$ kann eine komplexe Funktion sein, um eine möglichst gleichmäßige Verteilung der Daten zu erreichen!

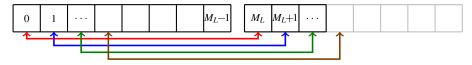

Beispiel:

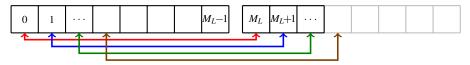

$$\mathcal{H}(x) := (p_1 \cdot x + p_2) \mod 2^{32}$$

mit zwei großen Primzahlen p_1 und p_2 .

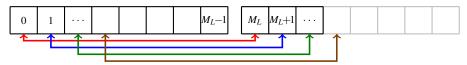

Oder: $\mathcal{H} \in FNV-1$, FNV-1a, MurmurHash, Jenkins hash function, . . .

|--|



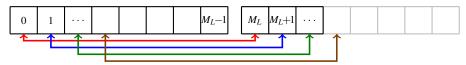

Seite 0 wird gesplittet nach M_L .

Seite 1 wird gesplittet nach $M_L + 1$.



Seite 2 wird gesplittet nach $M_L + 2$.

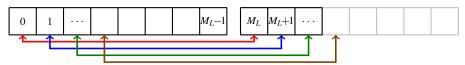
Seite p wird gesplittet nach $p + M_L$.


(c)

Seite p wird gesplittet nach $p + M_L$. (c)

Der Abstand ist *immer* M_L .

Genau das sagt die Splitbedingung: aus p wird $\{p, p + M_L\}$ (d)

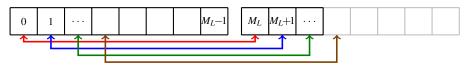


Seite
$$p$$
 wird gesplittet nach $p + M_L$. (c)

Der Abstand ist *immer* M_L .

Genau das sagt die Splitbedingung: aus
$$p$$
 wird $\{p, p + M_L\}$ (d)

Expansionszeiger $p = n\ddot{a}chste$ zu splittende Seite.


Seite
$$p$$
 wird gesplittet nach $p + M_L$. (c)

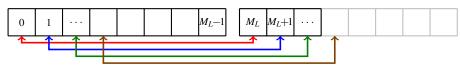
Der Abstand ist *immer* M_L .

Genau das sagt die Splitbedingung: aus
$$p$$
 wird $\{p, p + M_L\}$ (d)

Expansionszeiger $p = n\ddot{a}chste$ zu splittende Seite.

Daraus folgt: Seiten
$$< p$$
 sind gesplittet, p, \ldots, M_L nicht! (e)

Seite
$$p$$
 wird gesplittet nach $p + M_L$. (c)


Der Abstand ist *immer* M_L .

Genau das sagt die Splitbedingung: aus
$$p$$
 wird $\{p, p + M_L\}$ (d)

Expansionszeiger $p = n\ddot{a}chste$ zu splittende Seite.

Daraus folgt: Seiten
$$< p$$
 sind gesplittet, p, \ldots, M_L nicht! (e)

Wenn wir M_L-1 gesplittet haben, haben wir jede Seite ein mal gesplittet. Daher wieder von vorne anfangen, p=0! (f)

Seite
$$p$$
 wird gesplittet nach $p + M_L$. (c)

Der Abstand ist *immer* M_L .

Genau das sagt die Splitbedingung: aus
$$p$$
 wird $\{p, p + M_L\}$ (d)

Expansionszeiger $p = n\ddot{a}chste$ zu splittende Seite.

Daraus folgt: Seiten
$$< p$$
 sind gesplittet, p, \dots, M_L nicht! (e)

Wenn wir M_L-1 gesplittet haben, haben wir jede Seite ein mal gesplittet. Daher wieder von vorne anfangen, p=0! (f)

Vorsicht: wenn wir blind immer p weiterschieben, wird die erste Seite nie wieder gesplittet \Rightarrow läuft über + behält alte Hashfunktion!

Eleganter (aber so nicht in der Literatur):

Welche Seite wollen wir erzeugen (und aus welcher Seite)

Seite
$$p$$
 wird gesplittet nach $p + M_L$. (c)

Der Abstand ist *immer* M_L .

Genau das sagt die Splitbedingung: aus
$$p$$
 wird $\{p, p + M_L\}$ (d)

Expansionszeiger $p = n\ddot{a}chste$ zu splittende Seite.

Daraus folgt: Seiten
$$< p$$
 sind gesplittet, p, \dots, M_L nicht! (e)

Wenn wir $M_L - 1$ gesplittet haben, haben wir jede Seite ein mal gesplittet. Daher wieder von vorne anfangen, p = 0!

In Seite $N\cdot 2^{L+1}-2=2M-1$ wird *nur* geschrieben, wenn die Seite p=M-1 bereits gesplittet wurde. Dabei wurde aber genau diese Seite angelegt! (g)

(f)

Seite
$$p$$
 wird gesplittet nach $p + M_L$. (c)

Der Abstand ist *immer* M_L .

Genau das sagt die Splitbedingung: aus
$$p$$
 wird $\{p, p + M_L\}$ (d)

Expansionszeiger $p = n\ddot{a}chste$ zu splittende Seite.

Daraus folgt: Seiten
$$< p$$
 sind gesplittet, p, \dots, M_L nicht! (e)

Wenn wir
$$M_L - 1$$
 gesplittet haben, haben wir jede Seite ein mal gesplittet. Daher wieder von vorne anfangen, $p = 0$!

Falls jemals ein Schlüssel in eine andere Seite als
$$p$$
 oder $p+M_L$ verschoben wird, wurde eine Hashfunktion falsch berechnet! (h) (Ggf. war der Fehler aber in einem vorherigen Schritt – korrigieren!)

(f)

Hashfunktionen – Beispiel mit N=2.

$$h_L(k) = k \mod (N \cdot 2^L)$$

Hashfunktionen – Beispiel mit N=2.

$$h_L(k) = k \mod (N \cdot 2^L)$$

$$L = 0$$
 $h_0(k) = k \mod (N \cdot 2^0) = k \mod 2$

Hashfunktionen – Beispiel mit N=2.

$$h_L(k) = k \mod (N \cdot 2^L)$$

$$L = 0$$
 $h_0(k) = k \mod (N \cdot 2^0) = k \mod 2$
 $L = 1$ $h_1(k) = k \mod (N \cdot 2^1) = k \mod 4$

Hashfunktionen – Beispiel mit N = 2.

$$h_L(k) = k \mod (N \cdot 2^L)$$

$$L = 0$$
 $h_0(k) = k \mod (N \cdot 2^0) = k \mod 2$
 $L = 1$ $h_1(k) = k \mod (N \cdot 2^1) = k \mod 4$
 $L = 2$ $h_2(k) = k \mod (N \cdot 2^2) = k \mod 8$
 $L = 3$ $h_3(k) = k \mod (N \cdot 2^3) = k \mod 16$
 $L = 4$ $h_4(k) = k \mod (N \cdot 2^4) = k \mod 32$

Meistens: N eine Zweierpotenz.

Im Dezimalsystem einfacher: N = 5, N = 10 (Vorlesung!)

Tabellenparameter: Hashfunktion: $h_L(k) := k \mod (2 \cdot 2^L)$ Anfangsgröße: 2, Seitengröße: 2, Overflowseitegröße: 1

Belegungsfaktor maximal: 0.800000

Einzufügen: 7, 5, 13, 19, 34, 3, 30, 21, 2, 14, 15, 22, 27, 29, 10

Tabellenparameter: Hashfunktion: $h_L(k):=k \mod (2\cdot 2^L)$ Anfangsgröße: 2, Seitengröße: 2, Overflowseitegröße: 1

Belegungsfaktor maximal: 0.800000

Einzufügen: 7, 5, 13, 19, 34, 3, 30, 21, 2, 14, 15, 22, 27, 29, 10

Hashfunktionen:

$$h_0(k) := k \mod (2 \cdot 2^0) = k \mod 2$$

 $h_1(k) := k \mod (2 \cdot 2^1) = k \mod 4$
 $h_2(k) := k \mod (2 \cdot 2^2) = k \mod 8$
 $h_3(k) := k \mod (2 \cdot 2^3) = k \mod 16$

Bereichsbedingung und Splitbedingung erfüllt!

Initiale Tabelle.

Belegungsfaktor: $\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = 0 \leq 0.80$

 h_0 h_0

Initiale Tabelle.

 $\mbox{Belegungsfaktor: } \begin{subarray}{l} \#\mbox{Einträge insgesamt} \\ \hline \mbox{Platz in Primärseiten} \end{subarray} = 0 \le 0.80$

 h_0 h_0

$$h_0(7) = 7 \mod 2 = 1 \ge p$$

Nach Einfügen von Schlüssel 7. Belegungsfaktor: $\frac{\# Einträge\ insgesamt}{Platz\ in\ Primärseiten} = \frac{1}{4} = 0.25 \le 0.80$

 h_0 h_0

Nach Einfügen von Schlüssel 7.

Belegungsfaktor: $\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{1}{4} = 0.25 \leq 0.80$

 h_0 h_0

$$h_0(5) = 5 \mod 2 = 1 \ge p$$

Nach Einfügen von Schlüssel 5. Belegungsfaktor: $\frac{\# Einträge\ insgesamt}{Platz\ in\ Primärseiten} = \frac{2}{4} = 0.50 \leq 0.80$

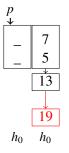
 h_0 h_0

Nach Einfügen von Schlüssel 5.

Belegungsfaktor: $\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{2}{4} = 0.50 \leq 0.80$

 h_0 h_0

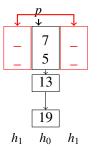
$$h_0(13) = 13 \mod 2 = 1 \ge p$$


Nach Einfügen von Schlüssel 13. Belegungsfaktor: $\frac{\# Einträge\ insgesamt}{Platz\ in\ Primärseiten} = \frac{3}{4} = 0.75 \le 0.80$

 h_0 h_0

Nach Einfügen von Schlüssel 13.

Belegungsfaktor: $\frac{\#\text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{4}{4} = 1.00 > 0.80$

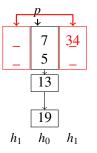

Einzufügen: 7, 5, 13, 19, 34, 3, 30, 21, 2, 14, 15, 22, 27, 29, 10

$$h_0(19) = 19 \mod 2 = 1 \ge p$$

Einfügen von 19: BF steigt auf 1.00 > 0.80: Expandieren!

Nach Einfügen von Schlüssel 19 + Expansion.

Belegungsfaktor: $\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{4}{6} = 0.67 \le 0.80$

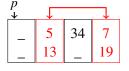


Einzufügen: 7, 5, 13, 19, 34, 3, 30, 21, 2, 14, 15, 22, 27, 29, 10

Pech bei der Expansion: leerer Bucket wird gesplittet!

Nach Einfügen von Schlüssel 19 + Expansion.

Belegungsfaktor: $\frac{\text{\#Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{5}{6} = 0.83 > 0.80$

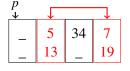

Einzufügen: 7, 5, 13, 19, 34, 3, 30, 21, 2, 14, 15, 22, 27, 29, 10

Pech bei der Expansion: leerer Bucket wird gesplittet!

$$h_0(34) = 34 \mod 2 = 0 < p, h_1(34) = 34 \mod 4 = 2$$

Nach Einfügen von Schlüssel 34 + Expansion.

Belegungsfaktor: $\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{5}{8} = 0.625 \le 0.80$


$$h_1$$
 h_1 h_1 h_1

Einzufügen: 7, 5, 13, 19, 34, 3, 30, 21, 2, 14, 15, 22, 27, 29, 10

Tabelle hat sich verdoppelt! Level jetzt L = 1.

Nach Einfügen von Schlüssel 34 + Expansion.

Belegungsfaktor: $\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{5}{8} = 0.625 \le 0.80$

$$h_1$$
 h_1 h_1 h_1

Einzufügen: 7, 5, 13, 19, 34, 3, 30, 21, 2, 14, 15, 22, 27, 29, 10

Tabelle hat sich verdoppelt! Level jetzt L = 1.

$$h_1(3) = 3 \mod 4 = 3 \ge p$$

Nach Einfügen von Schlüssel 3.

Belegungsfaktor: $\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{6}{8} = 0.75 \le 0.80$

<i>p</i>			
_	5	34	7
_	13	_	19
			3

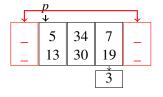
n

$$h_1$$
 h_1 h_1 h_1

Nach Einfügen von Schlüssel 3.

Belegungsfaktor: $\frac{\text{\#Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{7}{8} = 0.88 > 0.80$

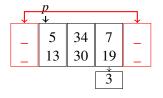
<i>p</i> <u>↓</u>			
_	5	34	7
_	13	<u>30</u>	19
			3


$$h_1$$
 h_1 h_1 h_1

Einzufügen: 7, 5, 13, 19, 34, 3, 30, 21, 2, 14, 15, 22, 27, 29, 10

$$h_1(30) = 30 \mod 4 = 2 \ge p$$

Nach Einfügen von Schlüssel 30 + Expansion.


Belegungsfaktor: $\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{7}{10} = 0.70 \leq 0.80$

$$h_2$$
 h_1 h_1 h_1 h_2

Nach Einfügen von Schlüssel 30 + Expansion.

Belegungsfaktor: $\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{7}{10} = 0.70 \le 0.80$

$$h_2$$
 h_1 h_1 h_1 h_2

Einzufügen: 7, 5, 13, 19, 34, 3, 30, 21, 2, 14, 15, 22, 27, 29, 10

$$h_1(21) = 21 \mod 4 = 1 \ge p$$

Nach Einfügen von Schlüssel 21.

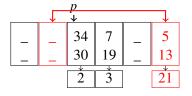
Belegungsfaktor: $\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{8}{10} = 0.80 \leq 0.80$

	p \downarrow			
	5	34	7	
_	13	34 30	19	_
	21		3	

$$h_2$$
 h_1 h_1 h_1 h_2

Nach Einfügen von Schlüssel 21.

Belegungsfaktor: $\frac{\text{\#Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{9}{10} = 0.90 > 0.80$

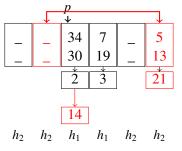

	p \downarrow			
	5	34	7	
_	13	34 30	19	_
	21	$\overset{\star}{2}$	3	

$$h_2$$
 h_1 h_1 h_1 h_2

$$h_1(2) = 2 \mod 4 = 2 \ge p$$

Nach Einfügen von Schlüssel 2 + Expansion.

Belegungsfaktor: $\frac{\text{\#Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{9}{12} = 0.75 \le 0.80$

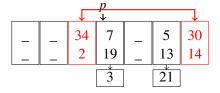

$$h_2$$
 h_2 h_1 h_1 h_2 h_2

Einzufügen: 7, 5, 13, 19, 34, 3, 30, 21, 2, 14, 15, 22, 27, 29, 10

Es kann passieren, dass alle umgespeichert werden.

Nach Einfügen von Schlüssel 2 + Expansion.

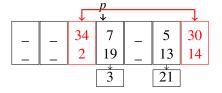
Belegungsfaktor: $\frac{\text{\#Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{10}{12} = 0.83 > 0.80$


Einzufügen: 7, 5, 13, 19, 34, 3, 30, 21, 2, 14, 15, 22, 27, 29, 10

Es kann passieren, dass alle umgespeichert werden.

$$h_1(14) = 14 \mod 4 = 2 \ge p$$

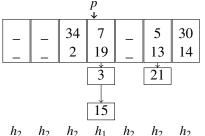
Nach Einfügen von Schlüssel 14 + Expansion.


Belegungsfaktor: $\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{10}{14} = 0.71 \leq 0.80$

$$h_2$$
 h_2 h_2 h_1 h_2 h_2 h_2

Nach Einfügen von Schlüssel 14 + Expansion.

Belegungsfaktor: $\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{\dot{10}}{14} = 0.71 \leq 0.80$


$$h_2$$
 h_2 h_2 h_1 h_2 h_2 h_2

Einzufügen: 7, 5, 13, 19, 34, 3, 30, 21, 2, 14, 15, 22, 27, 29, 10

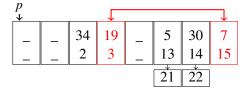
$$h_1(15) = 15 \mod 4 = 3 \ge p$$

Nach Einfügen von Schlüssel 15.

Belegungsfaktor: $\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{11}{14} = 0.79 \leq 0.80$

Nach Einfügen von Schlüssel 15.

Belegungsfaktor: $\frac{\text{\#Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{12}{14} = 0.86 > 0.80$

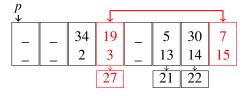

$$h_2$$
 h_2 h_2 h_1 h_2 h_2 h_2

Einzufügen: 7, 5, 13, 19, 34, 3, 30, 21, 2, 14, 15, 22, 27, 29, 10

$$h_1(22) = 22 \mod 4 = 2 < p, h_2(22) = 22 \mod 8 = 6$$

Nach Einfügen von Schlüssel 22 + Expansion.

Belegungsfaktor: $\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{12}{16} = 0.75 \le 0.80$


$$h_2$$
 h_2 h_2 h_2 h_2 h_2 h_2

Einzufügen: 7, 5, 13, 19, 34, 3, 30, 21, 2, 14, 15, 22, 27, 29, 10

Tabelle hat sich verdoppelt! Level jetzt L = 2.

Nach Einfügen von Schlüssel 22 + Expansion.

Belegungsfaktor: $\frac{\#\text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{13}{16} = 0.81 > 0.80$

$$h_2$$
 h_2 h_2 h_2 h_2 h_2 h_2

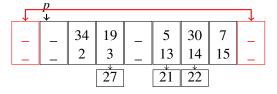
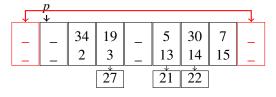

Einzufügen: 7, 5, 13, 19, 34, 3, 30, 21, 2, 14, 15, 22, 27, 29, 10

Tabelle hat sich verdoppelt! Level jetzt L = 2.

$$h_2(27) = 27 \mod 8 = 3 \ge p$$

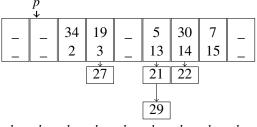
Nach Einfügen von Schlüssel 27.


Belegungsfaktor:
$$\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{13}{18} = 0.72 < 0.80$$

$$h_3$$
 h_2 h_2 h_2 h_2 h_2 h_2 h_3

Nach Einfügen von Schlüssel 27.

Belegungsfaktor: $\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{13}{18} = 0.72 < 0.80$



$$h_3$$
 h_2 h_2 h_2 h_2 h_2 h_2 h_3

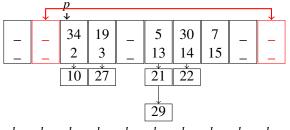
$$h_2(29) = 29 \mod 8 = 5 \ge p$$

Nach Einfügen von Schlüssel 29.

Belegungsfaktor:
$$\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{14}{18} = 0.78 < 0.80$$

$$h_3$$
 h_2 h_2 h_2 h_2 h_2 h_2 h_3

Nach Einfügen von Schlüssel 29.


Belegungsfaktor: $\frac{\text{\#Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{15}{18} = 0.83 > 0.80$

$$h_3$$
 h_2 h_2 h_2 h_2 h_2 h_2 h_2 h_3

$$h_2(10) = 2 \mod 8 = 2 \ge p$$

Nach Einfügen von Schlüssel 10 + Expansion:

Belegungsfaktor: $\frac{\# \text{Einträge insgesamt}}{\text{Platz in Primärseiten}} = \frac{15}{20} = 0.75 < 0.80$

 h_3 h_3 h_2 h_2 h_2 h_2 h_2 h_3 h_3