

Algorithmen und Datenstrukturen

Kapitel 1: Algorithmen und ihre Analyse

Skript zur Vorlesung Algorithmen und Datenstrukturen

Sommersemester 2015

Ludwig-Maximilians-Universität München

(c) PD Dr. Matthias Renz 2015,
basierend auf dem Skript von Prof. Dr. Martin Ester, Prof. Dr. Daniel A. Keim, Dr.

Michael Schiwietz und Prof. Dr. Thomas Seidl

Der Begriff des Algorithmus I

- Algorithmus (Definition):
 - präzise, endliche Verarbeitungsvorschrift
 - Elementaroperationen werden von einer mechanisch oder elektronisch arbeitenden Maschine durchgeführt.
- Abfolge der einzelnen Verarbeitungsschritte müssen eindeutig hervorgehen.
- Wahlmöglichkeiten sind zugelassen, deren Auswahl jedoch genau festliegen muss.
- Ausführung eines Algorithmus (Prozess) geschieht durch ein Ausführungsorgan (Prozessor)
- Abarbeitung der spezifizierten Elementaroperationen werden in der festgelegten Reihenfolge abgearbeitet.

Beispiele für "Alltagsalgorithmen"

Prozess	Algorithmus	Typische Schritte im Algorithmus
Pullover stricken	Strickmuster	Stricke Rechtsmasche, stricke Linksmasche
Modellflugzeug bauen	Montageanleitung	Leime Teil A an den Flügel B
Kuchen backen	Rezept	Nimm 3 Eier, schaumig schlagen
Kleider nähen	Schnittmuster	Nähe seitlichen Saum
Beethovensonate spielen	Notenblatt	תותוותותו

- Ähneln Algorithmen, sind aber selten exakt ausformuliert.
- Häufig sind Teile enthalten, die mehrdeutig interpretiert werden können.

Hier in der Vorlesung:

- nur Computer-Algorithmen
- Verwendung von Java zur Notation

Der Begriff des Algorithmus II

- Durch einen Algorithmus werden mittels einer Reihe von Anweisungen Objekte manipuliert, um von einer spezifischen Eingabe eine spezifische Ausgabe zu erhalten.
- Formal: Ein Algorithmus beschreibt eine Abbildung

$$f: E \to A$$

E: Menge der zulässigen Eingabedaten

A: Menge der Ausgabedaten.

• **aber:** Nicht jede Abbildung $f: E \to A$ lässt sich durch einen Algorithmus realisieren (Berechenbarkeit!)

Typische Eigenschaften von Algorithmen I

Abstrahierung:

- Ein Algorithmus löst eine Klasse von Problemen
- Wahl eines konkreten, aktuell zu lösenden Problems aus dieser Klasse erfolgt über geeignete Wahl von Parametern

Finitheit:

- Statische Finitheit: Beschreibung eines Algorithmus besitzt eine endliche Länge.
- Dynamische Finitheit: Algorithmus darf zu jedem Zeitpunkt nur endlich viel Platz belegen.
- → endliche Datenstrukturen und Zwischenergebnisse

Typische Eigenschaften von Algorithmen II

Terminierung:

- Algorithmen sind terminierend, die für jede Eingabe nach endlich vielen Schritten ein Resultat liefern und anhalten, ansonsten sind sie nicht-terminierend.
- Beispiele für nicht-terminierende Algorithmen: Betriebssysteme, Überwachung von Anlagen, Verkehrsampeln, Befehlsholezyklus in CPU

Determinismus:

 Algorithmen sind deterministisch, wenn zu jedem Zeitpunkt ihrer Ausführung höchstens eine Möglichkeit der Fortsetzung besteht, ansonsten sind sie nichtdeterministisch.

Typische Eigenschaften von Algorithmen III

Determiniertheit:

- Normalerweise liefert ein Algorithmus stets das gleiche Ergebnis, wenn er mit den gleichen Eingabewerten und Startbedingungen wiederholt wird.
- Nicht-determinierte Algorithmen können nützlich sein, wenn exakte Lösungsalgorithmen eine hohe Komplexität haben → heuristische Methoden (Verzicht auf erschöpfende Bearbeitung aller Fälle)
- Ein terminierender, deterministischer Algorithmus ist immer determiniert.
- Ein terminierender, nicht-deterministischer Algorithmus kann determiniert oder nicht-determiniert sein.

Motivation

- Algorithmen als Problemlösung: Entwicklung neuer Algorithmen zur Behebung ungelöster Probleme/Aufgaben
- Steigerung der Effizienz von Algorithmen: Entwicklung möglichst guter Algorithmen.
- · Fragestellungen der Informatik bei Algorithmen:
 - Man kann beweisen, dass es zu jedem Algorithmus unendlich viele, äquivalente Algorithmen gibt, die die gleiche Aufgabe lösen.
 - Dabei interessant für Informatiker:
 - Suche nach schnelleren oder kompakteren Algorithmen
 - Beweis, dass es solche nicht geben kann

Grundlegende Bestandteile von Algorithmen I

Zur Ausführung eines Algorithmus benötigt man verschiedene Arten von Kontrollstrukturen:

Sequenz (Folge von Anweisungen)

- Zu einem Zeitpunkt wird nur ein Schritt ausgeführt
- Jeder Schritt wird genau einmal ausgeführt
- Die Schritte werden nacheinander ausgeführt
- Mit der Beendigung des letzten Schrittes endet der gesamte Algorithmus
- In Java:
 {<Anweisung>; <Anweisung>; ...; <Anweisung>;}

Grundlegende Bestandteile von Algorithmen II

Selektion (Auswahl, bedingte Anweisung)

Einfache Form:

Pseudo-Code:	Java:
Falls Bedingung dann Sequenz	<pre>if (<bedingung>)</bedingung></pre>

Bedingte Anweisung mit Alternative (allgemeine Form)

Pseudo-Code:	Java:
Falls Bedingung	<pre>if (<bedingung>)</bedingung></pre>
dann Sequenz 1	<sequenz 1=""></sequenz>
sonst Sequenz 2	<pre>else <sequenz 2=""></sequenz></pre>

Anmerkung:

Einfache Form ist Spezialfall der allgemeinen Form

Grundlegende Bestandteile von Algorithmen III

Mehrfachauswahl:

Pseudo-Code:	Falls Bedingung 1 dann Anweisung(en) Bedingung 2 dann Anweisung(en)
	Bedingung n dann Anweisung(en) sonst Anweisung(en)

Grundlegende Bestandteile von Algorithmen IV

Iteration (Wiederholung, Schleife)

Erste Form der Iteration:

Pseudo-Code:		Java:
Wiederhole		do <sequenz></sequenz>
Sequenz		<pre>while (!<bedingung>)</bedingung></pre>
bis Bedingung	{Abbruchbedingung}	

Zweite Form der Iteration:

Pseudo-Code:		Java:
Solange Bedingu	ıng	<pre>while (<bedingung>)</bedingung></pre>
Sequenz	{Rumpf der Schleife}	<sequenz></sequenz>

Unterschiede: Bei der zweiten Form wird die Bedingung vor der Ausführung des Rumpfes geprüft (wichtig, falls Bedingung vor dem Eintritt in die Schleife geprüft werden soll)

Grundlegende Bestandteile von Algorithmen V

Iteration (Wiederholung, Schleife)

Spezialfall: Endlosschleife

Pseudo-Code:	Java:
Wiederhole Sequenz	<pre>while (true) <sequenz></sequenz></pre>
immer	

Anmerkungen:

- Unbeabsichtigte Endlosschleifen entstehen häufig, weil die Abbruchbedingung nicht korrekt formuliert wurde.
- Sequenz, Selektion und Iteration genügen, um jeden Algorithmus auszudrücken!

Effizienz und Komplexität

- **Effizienz** als wichtiges Kriterium zum Vergleich verschiedener Algorithmen zur Lösung ein und desselben Problems.
- Wird bestimmt durch den benötigten Aufwand des Algorithmus (seine Komplexität) in Abhängigkeit einer speziellen Eingabesituation
- Wesentliche Effizienzkriterien:
 - Die Laufzeit des Algorithmus
 - Der benötigte Speicherplatz
- · Laufzeit ist in der Regel das wichtigste Kriterium

Häufig: "Trade-Off" bei der Optimierung eines dieser beiden Kriterien dahingehend, dass das andere Kriterium verschlechtert wird.

Laufzeitanalyse I

- 1. Ansatz: Direktes Messen der Laufzeit (z.B. Millisekunden)
 - abhängig von vielen Parametern (Rechenkonfiguration, Rechnerlast, Compiler, Betriebssystem, Programmiertricks, u.a.)
 - Daher kaum übertragbar und ungenau
- 2. Ansatz: Zählen der benötigten Elementaroperationen in Abhängigkeit von der jeweiligen Größe der Eingabe
 - Algorithmische Verhalten wird als Funktion der benötigten Elementaroperationen dargestellt
 - Charakterisierung ist abhängig von der jeweiligen Problemstellung und dem zugrundliegenden Algorithmus
 - Beispiele für Elementaroperationen: Zuweisungen, Vergleiche,
 arithmetische Operationen, Zeigerdereferenzierungen, Arrayzugriffe

Laufzeitanalyse II

 Maß für die Größe der Eingabe ist abhängig von der Problemstellung

Beispiel:

Problem:	Größe der Eingabe:
Suche eines Elementes in einer Liste	Anzahl der Elemente
Multiplikation zweiter Matrizen	Dimension der Matrizen
Sortierung einer Liste von Zahlen	Anzahl der Zahlen

Beispiel: Laufzeitanalyse I


```
13 7 5 23 8 18 17 31 3 11 9 30 24 27 21 19
```

```
int seqsearch(int[] a, int x) {
   int i = 0, high = a.length - 1;
   while ((i <= high) && (a[i] != x))
        i++;
   if (i <= high) return i; else return -1;
}</pre>
```

→ Wesentliche Operationen (Grundoperationen): Ausführungen der while-Schleife

Diese Anzahl ist abhängig von:

- Größe des Arrays (n; fest vorgegeben)
- Position des gesuchten Elementes im Array (variabel)

Laufzeitanalyse III

Wir unterscheiden daher zwischen:

- dem durchschnittlichen Zeitbedarf $T_{\emptyset}(n)$ eines Algorithmus, charakterisiert durch die durchschnittliche Anzahl $A_{\emptyset}(n)$ benötigter Grundoperationen für alle Eingaben der Größe n.
- Den Zeitbedarf im schlechtesten Fall $T_{worst}(n)$, charakterisiert durch $A_{worst}(n)$, die Anzahl benötigter Grundoperationen im schlechtesten Fall aller Eingaben der Größe n.

Laufzeitanalyse VI

Sei E_n die Menge aller möglichen Eingaben der Größe n und $a(e), e \in E_n$, die Anzahl von Grundoperationen, die ein gegebener Algorithmus bei Eingabe von e ausführt.

Sei weiterhin p(e) die Wahrscheinlichkeit, mit der die Eingabe e auftritt ($\sum_{e \in E_n} p(e) = 1$).

Dann gilt:

$$A_{\emptyset}(n) = \sum_{e \in E_n} p(e) \cdot a(e)$$
$$A_{worst}(n) = \max(a(e))$$

Beispiel: Laufzeitanalyse II

- Sei q die Wahrscheinlichkeit, dass x im Array vorhanden ist und sei jede Position für x gleichwahrscheinlich.
- Bezeichne weiterhin e_i , $0 \le i \le n-1$, die Menge aller Eingaben mit x = A[i] und entsprechend e_n die Menge aller Eingaben, die x nicht enthalten.
- Dann gilt: $p(e_i) = \frac{q}{n}, \ 0 \le i \le n-1 \text{ und } p(e_n) = 1-q$

Beispiel: Laufzeitanalyse III

Hieraus ergibt sich:

$$A_{\emptyset}(n) = \sum_{e \in E_n} p(e) \cdot a(e) = \sum_{i=0}^n p(e_i) \cdot a(e_i) = \left(\sum_{i=0}^{n-1} \frac{q}{n} \cdot (i+1)\right) + (1-q) \cdot n =$$

$$= \frac{q}{n} \cdot \left(\sum_{i=1}^n i\right) + (1-q) \cdot n = \frac{q}{n} \cdot \frac{n \cdot (n+1)}{2} + (1-q) \cdot n =$$

$$= q \cdot \frac{n+1}{2} + (1-q) \cdot n$$

Im Fall
$$q = 1$$
: $A_{\emptyset}(n) = \frac{n+1}{2}$
Im Fall $q = \frac{1}{2}$: $A_{\emptyset}(n) = \frac{n+1}{4} + \frac{n}{2} \approx \frac{3}{4} \cdot n$

$$A_{worst}(n) = \underbrace{\max(a(e_i))}_{0 \le i \le n} = n$$

Landau-Symbole

- Durch Weglassen multiplikativer und additiver Konstanten wird allein das **Wachstum der Laufzeitfunktion** T(n) betrachtet.
- Man erhält eine von der Programmumgebung und anderen äußeren Einflussgrößen unabhängige Charakterisierung der (asymptotischen) Komplexität des Algorithmus.
- Die Komplexität kann durch asymptotische obere und untere Schranken definiert werden.

→ Landau-Symbole

Definition Landau-Symbol 9

Sei $g: \Re \to \Re$ eine Funktion.

Das Landau-Symbol $\Theta(g)$ ist definiert als die Menge

$$\Theta(g) \coloneqq \{ f \colon \Re \to \Re \mid \exists \ c_1 > 0, c_2 > 0, n_0 \in \mathbb{N}, \text{ so dass } \forall \ n \ge n_0 \colon 0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \}$$

Gebräuchliche Schreibweise:

$$f = \Theta(g)$$
 oder $f(n) = \Theta(g(n))$ statt $f \in \Theta(g)$

g ist die asymptotische obere **und** untere Schranke von f. Oft ist jedoch nur die obere Schranke interessant.

Definition Landau-Symbol O

Sei $g: \Re \to \Re$ eine Funktion.

Das Landau-Symbol O(g) ist definiert als die Menge

$$O(g) \coloneqq \{ f : \Re \to \Re \mid \exists \ c > 0, \ n_0 \in \mathbb{N}, \text{ so dass } \forall \ n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

Gebräuchliche Schreibweise:

$$f = O(g)$$
 oder $f(n) = O(g(n))$ statt $f \in O(g)$

g ist die asymptotische obere Schranke von f. (" f wächst **höchstens** so schnell wie g")

$$\rightarrow$$
 aus $f = \Theta(g)$ folgt $f = O(g)$.

Definition Landau-Symbol Ω

Analog lässt sich die untere Schranke (Landau-Symbol Ω) definieren. Ferner existieren die Landau-Symbole o und ω , welche hier nicht weiter vorgestellt werden.

Beispiele für $f = \Theta(g)$, f = O(g) und $f = \Omega(g)$:

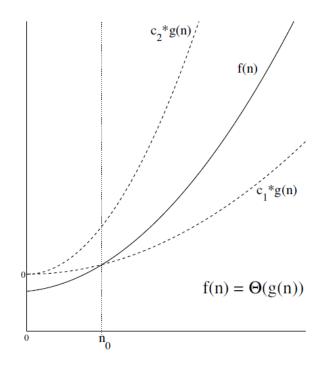
Mit dieser Notation gilt:

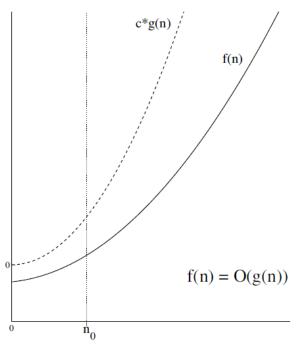
$$T_{\emptyset}(n) = O(A_{\emptyset}(n))$$
 sowie $T_{worst}(n) = O(A_{worst}(n))$

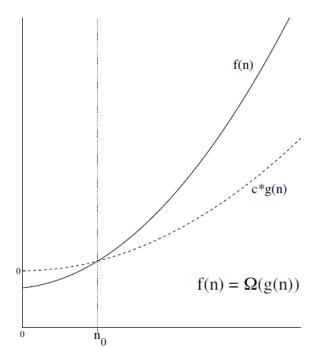
Im Beispiel ist also:

$$T_{\emptyset}(n) = O\left(q \cdot \frac{n+1}{2} + (1-q) \cdot n\right) = O(n)$$
 und $T_{worst}(n) = O(n)$

Vergleich der Landau-Symbole







Alternative Definition Landau-Symbol *O*

- Obere Schranke (Landau Symbol 0) über die Existenz von Grenzwerten definierbar:
- Funktionen bei der Laufzeitanalyse meist
 - monoton wachsend
 - von 0 verschieden
- Betrachtung des Quotienten $\frac{f(n)}{g(n)}$.
- Nach Definition gilt für $f = O(g) : \frac{f(n)}{g(n)} \le c$, $n \ge n_0$.
- Existiert Grenzwert $\lim_{n\to\infty}\frac{f(n)}{g(n)}$ (d.h. $<\infty$) \Rightarrow f = O(g).

Rechnen mit der O-Notation

Optimalität von Algorithmen:

• Ein Algorithmus *A* ist eine (worst-case) optimale Lösung eines gegebenen Problems, falls für jeden Lösungsalgorithmus *B* aus der Algorithmenklasse von *B* gilt:

$$T^{A}_{worst} = O(T^{B}_{worst})$$

Rechnen mit der O-Notation:

Elimination von Konstanten:

$$2 \cdot n = O(n), \qquad \frac{n}{2} + 1 = O(n)$$

Bilden oberer Schranken:

$$2 \cdot n = O(n^2), \qquad 3 = O(\log n)$$

Wichtige Klassen von Funktionen

	Sprechweise	Typische Algorithmen
0(1)	Konstant	
$O(\log n)$	Logarithmisch	Suchen auf einer Menge
O(n)	Linear	Bearbeiten jedes Elementes einer Menge
$O(n \cdot \log n)$		Gute Sortierverfahren, z.B. Heapsort
$O(n \cdot \log^2 n)$		
•••		
$O(n^2)$	Quadratisch	Primitive Sortierverfahren
$O(n^k), k \ge 2$	Polynomiell	
$O(2^n)$	Exponentiell	Backtracking-Algorithmen