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Policy-Based Reinforcement Learning

So far: We approximated the utility or the state-value 
function using parameters θ:

f 𝑠𝑠,𝜃𝜃 ≈ 𝑈𝑈(𝑆𝑆)
or f 𝑠𝑠,𝑎𝑎,𝜃𝜃 ≈ 𝑄𝑄 𝑆𝑆,𝐴𝐴

Policy was generated by taking the action with the highest 
value. (e.g. ε-greedy)

Idea: Directly learn what to do, i.e., learn a policy:
𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 = ℙ 𝑎𝑎|𝑠𝑠,𝜃𝜃

where 𝜃𝜃 optimizes some performance measure J(𝜃𝜃)
(again we still work on model-free reinforcement learning)
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Value-Based and Policy Based RL

• Value Based
– Learn value function

– Implicit policy (e.g. ε-greedy)

• Policy-Based
– no value function

– Learnt policy

• Actor-Critic
– Learnt value function

– Learnt policy
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Advantages and Disadvantages

• Advantages of Policy Gradient methods
– Better convergence properties

– Effective in high-dimensional or continuous action spaces

– Can learn stochastic policies

– Constraints on parameters allow to include prior knowledge

• Disadvantages
– Often converge to local rather than global optimum

– Evaluating a policy is inefficient and high variance
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Stochastic Policies

Example: Rock-Scissors-Paper

Rules: Each players picks one.

• Rock shatters scissors

• Paper covers rock

• Scissors cut paper

• Both players picking the same => draw

⇒ Playing a deterministic policy makes you predictable

⇒ Given that your opponents adapts to your actions, the best policy is pick a 
random action with a uniform distribution (Nash equilibrium)

(What is the optimal policy if you add a fourth action (e.g. well with scissors 
and rock fall into the well, but paper covers the well)

Deep Learning and Artificial Intelligence 5

✊ ✌ ✋



Example: Aliased Gridworld

• Partial observability: features describe whether there is a wall in 
N,E,S,W. =>  agent does not know in which blue state it is.

• A deterministic policy would either:

always go right or always go left
⇒ depending on the start state the agent might get stuck

• a stochastic policy sometimes would take the other direction

⇒ at some time it would escape and go back to the middle

(What would ε–greedy do?)
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Advantages of stochastic policies

• Allows for better convergence
– If optimal policy is deterministic, the stochastic policy may 

converge against it.

– Whereas greedy policies may jump due to the max functions, 
stochastic policies learnt with policy gradient smoothly 
converge into each other.

– Stochastic policies naturally explore all options until you derive 
a zero likelihood for some (s,a)

• If the same state description should not always we 
handled in the same way:
– antagonistic environments

– partial observability: if the right action for an observation is 
ambivalent, switching actions might be better
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How to train Policy Functions

• 𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 describes a policy, i.e., all describable policies depend on 𝜃𝜃
• To find the best parameters 𝜃𝜃*, we need a way to compare policies
• Idea: We can still measure the overall return of following a policy.
⇒ Define objective function 𝐽𝐽 𝜃𝜃 measuring the expected return of 

following 𝜋𝜋𝜃𝜃 𝑆𝑆,𝐴𝐴 .

Depends on the type of Environment:
• Episodic - Use the expected return of the start state 𝑠𝑠1:

𝐽𝐽1 𝜃𝜃 = 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠1 = 𝔼𝔼𝜋𝜋𝜃𝜃 𝑈𝑈 𝑠𝑠1
• Continuing - Use average return: 

𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃 = ∑𝑠𝑠 𝜇𝜇𝜋𝜋𝜃𝜃(𝑠𝑠)𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠

or average reward per time-step:
𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃 = ∑𝑠𝑠 𝜇𝜇𝜋𝜋𝜃𝜃(𝑠𝑠)∑𝑎𝑎 𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 𝑅𝑅𝑠𝑠𝑎𝑎

where 𝜇𝜇𝜋𝜋𝜃𝜃(𝑠𝑠) is the stationary distribution of the Markov chain for 𝜋𝜋𝜃𝜃.
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Optimizing the policy

• Finding the best 𝜃𝜃 is the optimization problem maximizing J 𝜃𝜃 .
⇒ Any optimization method is applicable

Non-gradient methods:
• Hill climbing
• Simplex algorithms
• Genetic algorithms

Gradient based methods:
• Gradient descent /ascent
• Conjugate gradient 
• Quasi-Newton

We will stick to gradient descent/ascent for the lecture.
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Score Function

• Assume that the policy function 𝜋𝜋𝜃𝜃(𝑠𝑠,𝑎𝑎) is differentiable 
whenever it is non-zero and we can compute the 
gradient 𝛻𝛻𝜃𝜃𝜋𝜋𝜃𝜃(𝑠𝑠,𝑎𝑎).

• e.g. 𝜋𝜋𝜃𝜃(𝑠𝑠,𝑎𝑎) is a neural network

• We will exploit the following reformulation to define 
likelihood ratios: 

𝛻𝛻𝜃𝜃𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 = 𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎
𝛻𝛻𝜃𝜃𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎
𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎

= 𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 𝛻𝛻𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎

• 𝛻𝛻𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 is called score function
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Softmax Policy

• If we have a discrete action set (e.g. Atari), we need to predict a 
multinomial distribution over the actions

⇒ We can use a softmax function over |A| outputs.

• We weight the action using a linear combination 𝜙𝜙 𝑠𝑠, 𝑎𝑎 𝑇𝑇𝜃𝜃

• The probability of action a is proportional to the exponential 
weight: 

𝜋𝜋𝜃𝜃 𝑠𝑠, 𝑎𝑎 ∝ 𝑒𝑒 𝜙𝜙 𝑠𝑠,𝑎𝑎 𝑇𝑇𝜃𝜃

• The score function is

𝛻𝛻𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃 𝑠𝑠, 𝑎𝑎 = 𝜙𝜙 𝑠𝑠, 𝑎𝑎 − 𝔼𝔼𝜋𝜋𝜃𝜃 𝜙𝜙 𝑠𝑠,�
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Gaussian Policy

• For continuous action spaces, we can employ a Gaussian policy

• Assuming the mean is a linear combination of state features

𝜇𝜇 𝑠𝑠 = 𝜙𝜙 𝑠𝑠 𝑇𝑇𝜃𝜃
• Variance 𝜎𝜎2can be assumed as either fixed or also a weighted 

combination as well

• A Gaussian Policy samples action a from a Gaussian over the action 
space:

𝑎𝑎~𝒩𝒩 𝜇𝜇 𝑠𝑠 ,𝜎𝜎2

• The corresponding score function looks like:

𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 = 𝑎𝑎−𝜇𝜇(𝑠𝑠) 𝜙𝜙 𝑠𝑠
𝜎𝜎2
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Motivation: One-Step  MDP

Before we will generally optimize policies, we examine an easier case:

• Consider a one-step MDP where:
– Starting state is samples from 𝑠𝑠~𝜇𝜇 𝑠𝑠
– Episode ends after taking on step with reward r = Rs,a

• Use the likelihood ratios to compute the policy gradient

𝐽𝐽 𝜃𝜃 = 𝔼𝔼𝜋𝜋𝜃𝜃 𝑟𝑟
= ∑𝑠𝑠∈𝑆𝑆 𝜇𝜇 𝑠𝑠 ∑𝑎𝑎∈𝐴𝐴 𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 𝑅𝑅𝑠𝑠,𝑎𝑎

𝛻𝛻𝜃𝜃 𝐽𝐽 𝜃𝜃 = ∑𝑠𝑠∈𝑆𝑆 𝜇𝜇 𝑠𝑠 ∑𝑎𝑎∈𝐴𝐴 𝜋𝜋𝜃𝜃 𝑠𝑠, 𝑎𝑎 𝛻𝛻𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 𝑅𝑅𝑠𝑠,𝑎𝑎

= 𝔼𝔼𝜋𝜋𝜃𝜃 𝛻𝛻𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 𝑟𝑟
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Policy Gradient Theorem

• We now turn to the general multi-step MDPs

• The policy gradient theorem generalizes our observation on the 
one-step case to multiple steps

⇒ We have to replace the immediate reward Rs,a with action-value 
complete return 𝑄𝑄𝜋𝜋 𝑠𝑠,𝑎𝑎

• The policy gradient theorem holds for all three cases:

start state objective, average reward, average reward per time step

Theorem:

For any differentiable policy 𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 and for any of the policy objective 
function 𝐽𝐽 = 𝐽𝐽1, 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎, or 

1
1−𝛾𝛾

𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎 the policy gradient is 

𝛻𝛻𝜃𝜃𝐽𝐽 𝜃𝜃 = 𝔼𝔼𝜋𝜋𝜃𝜃 𝛻𝛻𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 𝑄𝑄𝜋𝜋 𝑠𝑠,𝑎𝑎
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Monte-Carlo Policy Gradient (REINFORCE)

• Update parameters by stochastic gradient ascent
using the policy gradient theorem

• Using return Gt as an unbiased sample of 𝑄𝑄𝜋𝜋 𝑠𝑠,𝑎𝑎
∆𝜃𝜃𝑡𝑡 = 𝛼𝛼𝛻𝛻𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃 𝑠𝑠, 𝑎𝑎 Gt

function REINFORCE
Initialise θ

for each episode{s1,a1,r2,...,sT −1,aT −1,rT}∼πθ do 
for t = 1 to T − 1 do

θ ← θ + α∇θ log πθ (st, at )Gt
end for

end for
return θ

end function
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Discussion Monte-Carlo Policy Gradient

• Tackles some short-comings of value function 
approximation:
– Learns stochastic policies

– Can cope with continouos action spaces

• But suffers from the common problems of MC methods:
– have to see the return before updating

– might suffer from high variance

– slow convergence
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Reducing Variance using a Baseline

Idea: Do not compute the expected return of following 𝜋𝜋𝜃𝜃 but the change 
compared to a baseline utility?

Example: Consider stochastic routing and the direct path as the baseline.
⇒ gradient increases with the distance to the target because Gt is multiplied
⇒ a choice reducing the distance to the target by 100m generated different 

gradients depending on the distance to the target
⇒ subtracting a measure for the remaining distance to the target reduces the 

variance of the gradients for difference states

• Formally: Compare performance relative to a baseline performance B(s) which 
is not dependent on any action a.

𝛻𝛻𝐽𝐽 𝜃𝜃 ∝ ∑𝑠𝑠 𝜇𝜇 ∑𝑎𝑎 𝑞𝑞𝜋𝜋 𝑠𝑠,𝑎𝑎 − 𝑏𝑏 𝑠𝑠 𝛻𝛻𝜋𝜋 𝑎𝑎|𝑠𝑠,𝜃𝜃

• The equations remain valid because the subtracted quantity is zero:

�
𝑎𝑎

𝑏𝑏 𝑠𝑠 𝛻𝛻𝜋𝜋 𝑎𝑎|𝑠𝑠,𝜃𝜃 = 𝑏𝑏 𝑠𝑠 �
𝑎𝑎

𝛻𝛻𝜋𝜋 𝑎𝑎|𝑠𝑠,𝜃𝜃 = 𝑏𝑏 𝑠𝑠 𝛻𝛻1 = 0
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General Baseline Function

• the baseline B(s) is an estimate of the U(s)

• In most applications there is not natural baseline

Idea: We can employ a value-function approximation as in 
the last lecture to learn a baseline.

• Since we have episodic experience in REINFORCE, we 
can integrate MC Control to learn a baseline during 
policy optimization

• For every episode we can improve the baseline 
simultanously with the episode

• Errors in the baseline do not add to the policy because it 
only influence the impact of the gradient but not its 
direction (see previous slide)
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REINFORCE with Baseline

for an episodic MDPs,  a differentiable policy function 𝜋𝜋 𝑎𝑎|𝑠𝑠,𝜃𝜃 , a 
differentiable state-value function U(s,ω) and learning rates 𝛼𝛼𝜃𝜃and 𝛼𝛼𝜗𝜗

function REINFORCEwithBaseline
Initialise θ, 𝜗𝜗

for each episode{s1,a1,r2,...,sT −1,aT −1,rT}∼πθ do 
for t = 1 to T − 1 do

𝑮𝑮 ← ∑𝒋𝒋=𝒕𝒕𝑻𝑻 𝜸𝜸𝒋𝒋−𝒕𝒕𝑹𝑹𝒋𝒋
𝛿𝛿 ← 𝐺𝐺 − U(s, 𝜗𝜗)
𝜔𝜔 ← 𝜔𝜔 + α𝜗𝜗∇𝜗𝜗U(st, 𝜗𝜗)
θ ← θ + αθ ∇θ log πθ (st, at )𝛿𝛿

end for
end for
return θ

end function
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Actor-Critic Learning

Can we avoid MC learning and employ Boostraping?
• We need an estimate of the future to bootstrap
• Directly learning the policy does not provide such an estimate

Idea: Use value function approximation to learn such an estimate.
The value function estimate is called Critic: 𝑄𝑄𝜔𝜔 𝑠𝑠,𝑎𝑎 ≈ 𝑄𝑄𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎

Actor-critic algorithms maintain two sets of parameters:
critic: learn an action-value function to predict future rewards. 

(we will name critic parameters 𝜔𝜔)
actor: learns a stochastic policy, based on the estimates of the 

critic. (we will name actor parameters 𝜃𝜃)
Actor-critic algorithm follow the approximate policy gradient

𝛻𝛻𝜃𝜃𝐽𝐽 𝜃𝜃 = 𝔼𝔼𝜋𝜋𝜃𝜃 𝛻𝛻𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 𝑄𝑄𝜔𝜔 𝑠𝑠,𝑎𝑎
∆𝜃𝜃 = 𝛼𝛼𝛻𝛻𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 𝑄𝑄𝜔𝜔 𝑠𝑠,𝑎𝑎
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Action-Value Function approximation

• To evaluate 𝜃𝜃 we can use the methods for value-function 
approximation from the last lecture:

– Monte-Carlo policy evaluation

– Temporal-Difference Learning

– TD(λ)

• Optimization of the critic, e.g. with least squares policy evaluation

• What makes Actor-Critic algorithm different from value-function 
approximation?

– No greedy/ε-greedy policy 
– Instead policy is learned based on the action-value function approximation
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Action-Value Actor-Critic

• Basic actor-critic algorithm based on action-value critic
• Uses linear value function approx. 𝑄𝑄𝜔𝜔 𝑠𝑠,𝑎𝑎 = 𝜙𝜙 𝑠𝑠,𝑎𝑎 𝑇𝑇𝜔𝜔

Critic: Updates 𝜔𝜔 by linear TD(0)
Actor: Updates θ by policy gradient

Function QAC
init s,θ
sample 𝑎𝑎~𝜋𝜋𝜃𝜃
for each step do

sample reward 𝑟𝑟 = ℛ𝑠𝑠
𝑎𝑎; sample transition s′~𝑃𝑃𝑠𝑠𝑎𝑎.

sample action 𝑎𝑎′ = 𝜋𝜋𝜃𝜃 𝑠𝑠′,𝑎𝑎′
𝛿𝛿 = 𝑟𝑟 + 𝛾𝛾𝑄𝑄𝜔𝜔 𝑠𝑠′,𝑎𝑎′ -𝑄𝑄𝜔𝜔 𝑠𝑠,𝑎𝑎
𝜃𝜃 = 𝜃𝜃 + 𝛼𝛼𝛻𝛻𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝜃𝜃 𝑠𝑠, 𝑎𝑎 𝑄𝑄𝜔𝜔 𝑠𝑠,𝑎𝑎
𝜔𝜔 ← 𝜔𝜔 + 𝛽𝛽𝛿𝛿𝜙𝜙 𝑠𝑠,𝑎𝑎
a ← 𝑎𝑎′, 𝑠𝑠 ← 𝑠𝑠′

end for
end function
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Discussion Actor-Critic

• Using approximations to score return reduces variance 
but increases bias

• A biased policy gradient might not find a good policy

⇒Value function has to be chosen carefully

⇒Bias can be avoid, i.e., we follow the exact gradient

⇒Absolute value of the gradient is again increasing the 
gradient for states with larger expectations
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Compatible Function Approximation

Theorem (Compatible Function Approximation Theorem)
If the following two conditions hold,

1. Value function approximator is compatible to the policy
𝛻𝛻𝜔𝜔𝑄𝑄𝜔𝜔 𝑠𝑠,𝑎𝑎 = 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎

2. Value function parameters minimize the mean-squared 
error

ϵ = 𝔼𝔼 𝑄𝑄𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 − 𝑄𝑄𝜔𝜔 𝑠𝑠,𝑎𝑎 2

then the policy gradient is exact,

𝛻𝛻𝜃𝜃𝐽𝐽 𝜃𝜃 = 𝔼𝔼 𝜋𝜋𝜃𝜃 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 𝑄𝑄𝜔𝜔 𝑠𝑠,𝑎𝑎
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Proof Compatibility Theorem

If ω is chosen to minimize the mean-squared error 𝜖𝜖 then 
the gradient of 𝜖𝜖, 𝛻𝛻ω𝜖𝜖 = 0.

𝛻𝛻ω𝜖𝜖 = 0

𝛻𝛻ω𝔼𝔼 𝑄𝑄𝜃𝜃 𝑠𝑠,𝑎𝑎 − 𝑄𝑄𝜔𝜔 𝑠𝑠,𝑎𝑎
2

= 0 (cond.2)

𝔼𝔼 𝑄𝑄𝜃𝜃 𝑠𝑠,𝑎𝑎 − 𝑄𝑄𝜔𝜔 𝑠𝑠,𝑎𝑎 𝛻𝛻ω𝑄𝑄𝜔𝜔 𝑠𝑠,𝑎𝑎 = 0

𝔼𝔼 𝑄𝑄𝜃𝜃 𝑠𝑠,𝑎𝑎 − 𝑄𝑄𝜔𝜔 𝑠𝑠,𝑎𝑎 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 = 0 (cond.1)

𝔼𝔼 𝑄𝑄𝜃𝜃 𝑠𝑠,𝑎𝑎 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 = 𝔼𝔼 𝑄𝑄𝜔𝜔 𝑠𝑠,𝑎𝑎 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎
Thus, in this case the gradient of J(𝜃𝜃) is exactly:

𝛻𝛻𝜃𝜃𝐽𝐽 𝜃𝜃 = 𝔼𝔼 𝜋𝜋𝜃𝜃 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 𝑄𝑄𝜔𝜔 𝑠𝑠,𝑎𝑎
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Baseline Functions and Actor-Critic

• in reinforce with baseline we tried to minimize the impact of a state 
to the relative improvement of an action

• We learned a  state-value function to find a generic baseline

Can we integrate the baseline into the actor critic framework?

• We learn a state-value function 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠
• in addition to the critic 𝑄𝑄𝜋𝜋𝜃𝜃 𝑠𝑠, 𝑎𝑎
• Which allows us  to define the advantage function:

𝐴𝐴𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 = 𝑄𝑄𝜋𝜋𝜃𝜃 𝑠𝑠, 𝑎𝑎 -𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠
• And optimize :

𝛻𝛻𝜃𝜃𝐽𝐽 𝜃𝜃 = 𝔼𝔼𝜋𝜋𝜃𝜃 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠, 𝑎𝑎 𝐴𝐴𝜋𝜋𝜃𝜃 𝑠𝑠, 𝑎𝑎
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Optimizing the Advantage function

• Using an advantage function can significantly reduce the variance 
in the policy gradient

• So the critic should rather learn the advantage function

• In a basic case, we estimate both 𝑄𝑄𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 and 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠
• By two function approximators and with different parameter sets 

𝑈𝑈𝜗𝜗 𝑠𝑠 ≈ 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠
𝑄𝑄𝜔𝜔 𝑠𝑠,𝑎𝑎 ≈ 𝑄𝑄𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎
𝐴𝐴𝜗𝜗,𝜔𝜔 𝑠𝑠,𝑎𝑎 = 𝑄𝑄𝜔𝜔 𝑠𝑠,𝑎𝑎 − 𝑈𝑈𝜗𝜗 𝑠𝑠

• To optimize, we can build the gradients on both and learn based on 
,e.g. , TD learning
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TD Targets for estimating  A(s,a)

• Given the true utility 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠 , the TD error:
𝛿𝛿𝜋𝜋𝜃𝜃 = 𝑟𝑟 + 𝛾𝛾𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠′ -𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠

• is an unbiased estimate of the advantage function 
𝔼𝔼𝜋𝜋𝜃𝜃 𝛿𝛿

𝜋𝜋𝜃𝜃|𝑠𝑠,𝑎𝑎 = 𝔼𝔼𝜋𝜋𝜃𝜃 𝑟𝑟 + 𝛾𝛾𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠′ |𝑠𝑠,𝑎𝑎 − 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠
= 𝑄𝑄𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 − 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠
= 𝐴𝐴𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎

⇒ We can use the TD error to compute the policy gradient

𝛻𝛻𝜃𝜃𝐽𝐽 𝜃𝜃 = 𝔼𝔼 𝜋𝜋𝜃𝜃 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 𝛿𝛿𝜋𝜋𝜃𝜃

Without knowing 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠 we have to approximate the TD error by

𝛿𝛿𝜗𝜗 = 𝑟𝑟 + 𝛾𝛾𝑈𝑈𝜗𝜗 𝑠𝑠′ -𝑈𝑈𝜗𝜗 𝑠𝑠
⇒ We do not need to explicitely learn 𝑄𝑄𝜔𝜔 𝑠𝑠, 𝑎𝑎 and only need to

optmize 𝛿𝛿𝜗𝜗 by SGD on 𝜗𝜗
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Critics at Different Time-Scales

• Critic can estimate value functions 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠 based on 
various target functions with different time scales..
– For MC, the target is the return Gt

∆𝜃𝜃 = 𝛼𝛼 𝐺𝐺𝑡𝑡 − 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠 𝜙𝜙 𝑠𝑠
– For TD(0), the target is the TD target r+𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠′

∆𝜃𝜃 = 𝛼𝛼 𝑟𝑟 + 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠′ − 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠 𝜙𝜙 𝑠𝑠

– For the forward view of TD(λ), the target is the λ–return 

∆𝜃𝜃 = 𝛼𝛼 𝐺𝐺𝑡𝑡𝜆𝜆 − 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠 𝜙𝜙 𝑠𝑠

– For the backward view of TD(), we can employ eligibility traces

𝛿𝛿𝑡𝑡 = 𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠𝑡𝑡+1 − 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠𝑡𝑡
𝑒𝑒𝑡𝑡 = 𝛾𝛾𝛾𝛾𝑒𝑒𝑡𝑡−1 + 𝜙𝜙 𝑠𝑠
∆𝜃𝜃 = 𝛼𝛼𝛿𝛿𝑡𝑡𝑒𝑒𝑡𝑡
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Actors at Different Time-Scale

• The policy gradient can also be estimated at many time-scales

𝛻𝛻𝜃𝜃𝐽𝐽 𝜃𝜃 = 𝔼𝔼 𝜋𝜋𝜃𝜃 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 𝐴𝐴𝜋𝜋𝜃𝜃 𝑠𝑠, 𝑎𝑎

• MC policy gradient uses the error from the complete return

∆𝜃𝜃 = 𝛼𝛼 𝐺𝐺𝑡𝑡 − 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠𝑡𝑡 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡

• Actor-critic policy gradient uses the one-step TD-error

∆𝜃𝜃 = 𝛼𝛼 𝑟𝑟 + 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠𝑡𝑡+1 − 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠𝑡𝑡 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡

• Using the forward view of TD(λ), is straight forward

∆𝜃𝜃 = 𝛼𝛼 𝐺𝐺𝑡𝑡𝜆𝜆 − 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠𝑡𝑡 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡
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Policy Gradient with Eligibility Traces

• As before we want to use eligibility traces to implement the 
backward view.

• By equivalence with TD(λ), we can substitute 𝜙𝜙 𝑠𝑠 = 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎

𝛿𝛿 = 𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠𝑡𝑡+1 − 𝑈𝑈𝜋𝜋𝜃𝜃 𝑠𝑠𝑡𝑡
𝑒𝑒𝑡𝑡+1 = 𝛾𝛾𝑒𝑒𝑡𝑡 + 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎
∆𝜃𝜃 = 𝛼𝛼𝛿𝛿𝑒𝑒𝑡𝑡

• Applying this update can be done online and on incomplete 
sequences 
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Alternative Policy Gradient Directions

• Gradient ascent can follow any ascending direction

• Finding a “good” direction can significantly speed up 
training (c.f. GD with individual learning rates)

• A policy might be reparametrized without changing the 
action probabilities. (multiple 𝜃𝜃’s might lead to the same 
vector of 𝜋𝜋𝜃𝜃)
(e.g. increasing all values by the same amount in softmax policy)

⇒The vanilla gradient is sensitive to this 
reparametrisations

Deep Learning and Artificial Intelligence 32



Natural Policy Gradient

Idea: To make the gradient more parameter independent, we examine 
the relative size of gradients to each other.

⇒ The Fisher information matrix is the covariance of the score-
function: 𝐺𝐺𝜃𝜃 = 𝔼𝔼𝜋𝜋𝜃𝜃 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 𝑇𝑇

⇒ i.e. it measures the uncertainty of our estimate and can be used to 
decorrelate the parameter space:

𝛻𝛻𝜃𝜃
𝑛𝑛𝑎𝑎𝑡𝑡𝜋𝜋𝜃𝜃 𝑠𝑠, 𝑎𝑎 = 𝐺𝐺𝜃𝜃−1𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎
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Natural Actor-Critic

Using compatible function approximations,

𝛻𝛻𝜔𝜔𝐴𝐴𝜔𝜔 𝑠𝑠,𝑎𝑎 = 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎

the natural policy gradient simplifies to,
𝛻𝛻𝜃𝜃𝐽𝐽 𝜃𝜃 = 𝔼𝔼𝜋𝜋𝜃𝜃 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 𝐴𝐴𝜔𝜔 𝑠𝑠,𝑎𝑎

= 𝔼𝔼𝜋𝜋𝜃𝜃 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 𝛻𝛻𝜃𝜃 log𝜋𝜋𝜃𝜃 𝑠𝑠,𝑎𝑎 𝑇𝑇𝜔𝜔
= 𝐺𝐺𝜃𝜃 𝜔𝜔

⇒ 𝛻𝛻𝜃𝜃
𝑛𝑛𝑎𝑎𝑡𝑡𝐽𝐽 𝜃𝜃 = 𝜔𝜔

⇒ In this case we only need to update the actor 
parameters in direction of the critic parameters
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Summary Policy Gradient Methods

• Policy gradient methods learns a function 𝜋𝜋𝜃𝜃 which 
provides a stochastic policy

⇒𝜋𝜋𝜃𝜃 can be continuously differentiable in 𝜃𝜃 in  and thus, 
shows better convergence than ε-greedy policies

• to optimize 𝜋𝜋𝜃𝜃 we maximize the objective function J(θ)
• J(θ) can be directed by observed rewards (REINFORCE)
• to apply the idea of bootstraping, we need am estimate 

of the  remaining future
⇒Learn a critic using a method of value function 

approximation like MC,TD, TD(λ) to guide the actor 𝜋𝜋𝜃𝜃
⇒ to assure convergence actor and critics must be 

compatible (Compatible Function Approximation 
Theorem)
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Further Directions in RL 

Reinforcement learning is an currently active field of 
research because many of the applications of AI required 
the machine to act on its own.

Topics not covered in this lecture:

• integrating learning and planning

• inverse reinforcement learning

• imitation learning
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Integrating Learning and Planning

General setting in RL applications:

• often no queryable environment available or physical 
interaction to slow or dangerous.

⇒build simulation based on real observation

• What is the difference between the MDP and a 
simulation?

⇒we can learn an MDP based on available experience and 
“physical” background knowledge

⇒use the MDP to simulate new experience

⇒ learn the MDP and use planning to optimize the policy
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Integrating Learning and Planning

Methods in this direction include:

• DynaQ: Combines sampled and real experience
– learns Q(S,A) and a MDP Model (s,a)

– updates Q-values and the model based on real experience

– additionally, generate samples from Model and further optimize 
Q-values (“imaginary experience”)

• Monte-Carlo Tree Search:
– generates a forward search tree for the current state

– applies different policies to generated complete episodes

– tries to find good estimates for the next actions to take

– particularly useful for games with high branching factors such 
as GO
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Inverse Reinforcement Learning

• in the setting so far, we observe an “suboptimal” policy 
and the reward the agent receives

• Inverse Reinforcement Learning: We have assume some 
optimality in the agents actions but do not see the 
reward. Thus, we want to estimate the reward function 
for the observed agent.

• only usable if the agent acts somewhat consistent to 
optimize a certain reward

• directed into understanding real agents instead of 
optimizing a known goal
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Imitation Learning

• often we do not want to model an optimal agent but an 
agent behaving as human as possible

⇒ reward is based on acting like an observed agent
• applications: Sports-Games build agents acting like 

particular players, build more human like chat-bots

• Task can be considered supervised learning predicting 
the next action of the teacher

• interesting in combination to inverse reinforcement 
learning but not the same.

⇒ If I can predict the next action based on the observed 
state observation, I can reason about the the variables 
being maximized

Deep Learning and Artificial Intelligence 40



Literature

• Lecture notes D. Silver: Introduction to Reinforcement Learning
(http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)

• S. Russel, P. Norvig: Artificial Intelligence: A modern Approach, 
Pearson, 3rd edition, 2016

• R. S. Sutton, A. G. Barto: Reinforcement Learning: An Introduction 
(Adaptive Computation and Machine Learning), The MIT Press; 
Auflage: 2., 2018

Deep Learning and Artificial Intelligence 41

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

	Lecture Notes for�Deep Learning and Artificial Intelligence�Winter Term 2018/2019
	Policy-Based Reinforcement Learning
	Value-Based and Policy Based RL
	Advantages and Disadvantages
	Stochastic Policies
	Example: Aliased Gridworld
	Advantages of stochastic policies		
	How to train Policy Functions
	Optimizing the policy
	Score Function
	Softmax Policy
	Gaussian Policy	
	Motivation: One-Step  MDP
	Policy Gradient Theorem
	Monte-Carlo Policy Gradient (REINFORCE)
	Discussion Monte-Carlo Policy Gradient
	Reducing Variance using a Baseline
	General Baseline Function
	REINFORCE with Baseline
	Actor-Critic Learning
	Action-Value Function approximation	
	Action-Value Actor-Critic
	Discussion Actor-Critic	
	Compatible Function Approximation	
	Proof Compatibility Theorem
	Baseline Functions and Actor-Critic
	Optimizing the Advantage function
	TD Targets for estimating  A(s,a)
	Critics at Different Time-Scales
	Actors at Different Time-Scale
	Policy Gradient with Eligibility Traces
	Alternative Policy Gradient Directions
	Natural Policy Gradient
	Natural Actor-Critic	
	Summary Policy Gradient Methods
	Further Directions in RL 
	Integrating Learning and Planning
	Integrating Learning and Planning
	Inverse Reinforcement Learning
	Imitation Learning
	Foliennummer 41

