
DBS

Lecture Notes © 2019 Matthias Schubert

Lecture Notes for
Deep Learning and Artificial Intelligence

Winter Term 2018/2019

Value Function Approximation

Short Comings of the methods so far

So far: All methods work on a discrete state space S.

⇒ A policy 𝜋𝜋 is a table of the form 𝑠𝑠1,𝑎𝑎1 , . . , 𝑠𝑠|𝑆𝑆|,𝑎𝑎|𝑆𝑆|

⇒ If we encounter a new state, we do not know what to do.
⇒ No matter how similar two states are, we learn Q(s,a)

independently.
⇒ If |S| is very large:

– We need a lot of memory to store the policy.

– We need enormous amounts of samples to estimate Q(s,a) for all state-action
pairs.

⇒ Previous models for MDPs and Reinforcement learning become infeasible

Deep Learning and Artificial Intelligence 2

Some examples

• Number of states for some problems
– Backgammon: 1020

– Computer Go: 10170

– Flying an RC Helicopter: continuous state space

Deep Learning and Artificial Intelligence 3

Working with continuous State Spaces

Idea: What if we do not distinguish states but state descriptions, e.g.,
feature vectors?
• Depending on the feature space we can describe an infinite set of

states. But some states might have the same description.
=> c.f. we often work on observations not states anyway

• A policy can be described as a function f of the state space
⇒ f(x,a) = Q(s,a) or f(x) = a

⇒ Mathematical functions are much more space efficient than tables

• State descriptions can be related to each other => if we do not have
encountered a particular state description so far, we can derive a
proper action from similar situations. (generalization)

Generally: Working on state descriptions allows for flexible agents
being able to cope with unknown situations.

Deep Learning and Artificial Intelligence 4

Overview on continuous State Spaces

• Value function approximation (this lecture)
– Learn a function f to predict U(xs) or Q(xs,a)

(generally f is a regression function of some kind)

• Policy gradient methods: (next lecture)
– Directly learn a function f(xs) predicting the best action a for xs

• Actor Critic methods: (next lecture)
– combine policy functions and value function approximation

Deep Learning and Artificial Intelligence 5

Value function approximation

Given: A mapping x(s) describing s in IRd.
Idea: Learn a function that either describes the utility U(S) or the
state-value function Q(S,A).
Options to learn the f 𝑠𝑠,𝜃𝜃 ≈ 𝑈𝑈(𝑆𝑆)or f 𝑠𝑠,𝑎𝑎,𝜃𝜃 ≈ 𝑄𝑄(𝑆𝑆,𝐴𝐴) :
• Approximate U(S)

• Approximate Q(S,A)

Deep Learning and Artificial Intelligence 6

x(s)

a f(s,a,θ)
x(s) f(s,a1,θ)

:
f(s, al,θ)

θ θ

x(s)
f(s,θ)θ

or

Value Function Approximation
and Partial Observability

A side-effect of using value function approximation is that we can
work on a factor space representing the exact state S or just an
observation O.

• factor spaces: often the state can be coded as a set of (independent)
parameters:

Example: position of the agent + state variables of the environment, Stockmarket:
recent course development for all traded stocks, …

• Observation spaces: a set of parameters giving us hints about the
state.

Examples: video buffer of a camera, sensor data, player view in a video game,.

⇒ Since f(x(s),a, θ) is an approximation function works for both
settings (f(x(s),a, θ) can learn to consider belief states)

⇒ Caution: Make sure that x(s) is Markov !!!

Deep Learning and Artificial Intelligence 7

Mean Squared Value Error

Regardless of how we built our approximation function
𝑓𝑓(𝑆𝑆,𝜃𝜃), we need a measure for the quality of an
approximation:

𝑉𝑉𝑉𝑉𝜋𝜋 𝜃𝜃 = 𝔼𝔼𝜋𝜋,𝑠𝑠~𝜇𝜇 𝑈𝑈𝜋𝜋 𝑆𝑆 − 𝑓𝑓(𝑆𝑆,𝜃𝜃) 2

= �
𝑠𝑠∈𝑆𝑆

𝜇𝜇 𝑆𝑆 𝑈𝑈𝜋𝜋 𝑆𝑆 − 𝑓𝑓(𝑆𝑆,𝜃𝜃) 2

where 𝜇𝜇 is the importance distribution over the state
descriptions with ∑𝑠𝑠∈𝑆𝑆 𝜇𝜇 𝑆𝑆 .
For example, we can take 𝜇𝜇 𝑆𝑆 as the likelihood of being in
state s when following 𝜋𝜋.

Deep Learning and Artificial Intelligence 8

Common types of function approximators

• Generally any regression/prediction function can be used
(usually we will require a continuous return to model the Utility)

• Common methods:
– Linear predictors

– Neural networks

– Decision trees

– Regression with Fourier/Wavelet bases

– ..

• However: Reinforcement learning is tricky because:
– experience is non-stationary (e.g. the label Q(S,A) might change when using TD

learning)

– experience is usually non-iid the observation from a single episode is usually
highly correlated

Deep Learning and Artificial Intelligence 9

Value Function Approx. with SGD

Goal: Given policy π and 𝑈𝑈𝜋𝜋 𝑆𝑆 find 𝜃𝜃 minimizing a loss function
𝐿𝐿𝜋𝜋 𝜃𝜃 .
Note: We won’t have 𝑈𝑈𝜋𝜋 𝑆𝑆 but only R(S) later on.

For example, consider LX,Y(𝜃𝜃) is mean square loss:
𝐿𝐿𝜋𝜋 𝜃𝜃 = 𝔼𝔼𝜋𝜋 𝑈𝑈𝜋𝜋 𝑆𝑆 − 𝑓𝑓(𝑆𝑆,𝜃𝜃) 2

Computing the gradient we get

∆𝜃𝜃 = −1
2
𝛼𝛼𝛻𝛻𝜃𝜃𝐿𝐿𝜋𝜋 𝜃𝜃 = 𝛼𝛼𝔼𝔼𝜋𝜋 𝑈𝑈𝜋𝜋 𝑆𝑆 − 𝑓𝑓 𝑆𝑆,𝜃𝜃 𝛻𝛻𝜃𝜃𝐿𝐿(𝑆𝑆,𝜃𝜃)

• With SGD we sample the gradient:
∆𝜃𝜃 = 𝛼𝛼 𝑈𝑈𝜋𝜋 𝑆𝑆 − 𝑓𝑓 𝑆𝑆,𝜃𝜃 𝛻𝛻𝜃𝜃𝐿𝐿(𝑆𝑆,𝜃𝜃)

• the expected update is equal to the full gradient update

Deep Learning and Artificial Intelligence 10

Linear Prediction Functions

A simple function approximation might be linear.

• Linear Functions over x(S)∈ℝd where 𝜃𝜃is a weight vector w:

𝑓𝑓 𝑥𝑥(𝑆𝑆), W =x(S)TW=∑𝑗𝑗=1𝑛𝑛 𝑥𝑥(𝑆𝑆)𝑗𝑗𝑇𝑇𝑤𝑤𝑗𝑗
• Loss function:

𝐿𝐿 𝑊𝑊 = 𝑉𝑉 𝑈𝑈 𝑠𝑠 − x(s)TW 2

• Stochastic Gradient Descent on L(w):
𝛻𝛻𝑊𝑊 𝑓𝑓 𝑥𝑥(𝑠𝑠), W = x(s)

−
1
2
𝛻𝛻𝐿𝐿 𝜃𝜃 = 𝑈𝑈 𝑠𝑠 − 𝑓𝑓 𝑥𝑥(𝑠𝑠),𝜃𝜃 𝑥𝑥(s)

Δ𝜃𝜃 = 𝛼𝛼 𝑈𝑈 𝑠𝑠 − 𝑓𝑓 𝑥𝑥(𝑠𝑠),𝜃𝜃 𝑥𝑥(s)

update = ste𝑝𝑝 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝 𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑓𝑓𝑠𝑠𝑎𝑎𝑝𝑝𝑓𝑓𝑝𝑝𝑠𝑠 𝑣𝑣𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Deep Learning and Artificial Intelligence 11

Table Lookup Features

• Table lookups can be considered as a special case of
linear value function approximation

• Use a lookup table of the of the following form:

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆 =
1 𝑆𝑆 = 𝑠𝑠1

⋮
1 𝑆𝑆 = 𝑠𝑠𝑛𝑛

• Parameter vector w gives us the value of each state:

𝑓𝑓 𝑥𝑥(𝑆𝑆),𝑤𝑤 =
1 𝑆𝑆 = 𝑠𝑠1

⋮
1 𝑆𝑆 = 𝑠𝑠𝑛𝑛

𝑇𝑇

�
𝑤𝑤1
⋮
𝑤𝑤𝑛𝑛

Deep Learning and Artificial Intelligence 12

Incremental Prediction algorithms

• In practice we do not have the utility 𝑈𝑈𝜋𝜋 𝑆𝑆 but only R(S)
⇒ We have to employ a target for 𝑈𝑈𝜋𝜋 𝑆𝑆 as in the last lecture

Prediction based on value function approximation:
• For MC, the target is the complete return 𝐺𝐺𝑡𝑡

∆𝜃𝜃 = 𝛼𝛼 𝐺𝐺𝑡𝑡 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 𝛻𝛻𝜃𝜃𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃
• For TD, the target is the TD target 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡+1 ,𝜃𝜃

∆𝜃𝜃 = 𝛼𝛼 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡+1 ,𝜃𝜃 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 𝛻𝛻𝜃𝜃𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃
• For TD(λ), the target is the λ-return 𝐺𝐺𝑡𝑡𝜆𝜆

∆𝜃𝜃 = 𝛼𝛼 𝐺𝐺𝑡𝑡𝜆𝜆 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 𝛻𝛻𝜃𝜃𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃
Caution: For TD and TD(λ) the target depends on 𝜃𝜃
⇒ TD and TD(λ) are semi-gradient methods because the gradient is

only computed w.r.t. 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 , but the for the target functions.

Deep Learning and Artificial Intelligence 13

MC with value function approximation

• Return 𝐺𝐺𝑡𝑡 is an unbiased, noisy sample of true value 𝑈𝑈 𝑆𝑆
• Applying supervised learning to known experience is viable:

𝑥𝑥(𝑆𝑆1),𝐺𝐺1 , 𝑥𝑥(𝑆𝑆2),𝐺𝐺2 ,… 𝑥𝑥(𝑆𝑆𝑇𝑇),𝐺𝐺𝑇𝑇

• For example, linear Monte-Carlo policy evaluation:
∆𝜃𝜃 = 𝛼𝛼 𝐺𝐺𝑡𝑡 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 𝛻𝛻𝜃𝜃𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃

= 𝛼𝛼 𝐺𝐺𝑡𝑡 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 � 𝑥𝑥 𝑆𝑆𝑡𝑡

• Monte-Carlo evaluation converges to a local optimum

• Even when using non-linear value function approximation

Deep Learning and Artificial Intelligence 14

TD with value function approximation

• The TD-target is a biased sample sample of true value 𝑈𝑈 𝑆𝑆
• Applying supervised learning is still possible but training data looks

like:
𝑥𝑥(𝑆𝑆1),𝑅𝑅1 + 𝛾𝛾𝑓𝑓 𝑥𝑥 𝑆𝑆2 ,𝜃𝜃 , 𝑥𝑥(𝑆𝑆1),𝑅𝑅2 + 𝛾𝛾𝑓𝑓 𝑥𝑥 𝑆𝑆3 ,𝜃𝜃 ,… 𝑥𝑥(𝑆𝑆𝑇𝑇−1),𝑅𝑅𝑇𝑇

• For example, linear TD(0) policy evaluation:
∆𝜃𝜃 = 𝛼𝛼 𝑅𝑅𝑡𝑡 + 𝛾𝛾𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡+1 ,𝜃𝜃 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 𝛻𝛻𝜃𝜃𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃

= 𝛼𝛼 𝑅𝑅𝑡𝑡 + 𝛾𝛾𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡+1 ,𝜃𝜃 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 � 𝑥𝑥 𝑆𝑆𝑡𝑡
= 𝛼𝛼𝛼𝛼 � 𝑥𝑥 𝑆𝑆𝑡𝑡

• Linear TD(0) converges (close) to global optimum

Deep Learning and Artificial Intelligence 15

TD(λ) with value function approximation

• The λ-return is also a biased sample sample of true value 𝑈𝑈 𝑆𝑆
• Applying supervised learning is to training data of the form:

𝑥𝑥 𝑆𝑆1 ,𝐺𝐺1𝜆𝜆 , 𝑥𝑥 𝑆𝑆2 ,𝐺𝐺2𝜆𝜆 , .. , 𝑥𝑥 𝑆𝑆𝑇𝑇−1 ,𝐺𝐺𝑇𝑇−1𝜆𝜆

• Forward view of linear TD(λ):

∆𝜃𝜃 = 𝛼𝛼 𝐺𝐺1𝜆𝜆 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 𝛻𝛻𝜃𝜃𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃

= 𝛼𝛼 𝐺𝐺1𝜆𝜆 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 � 𝑥𝑥 𝑆𝑆𝑡𝑡

• Backward view of linear TD(λ):
𝛼𝛼𝑡𝑡 = 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡+1 ,𝜃𝜃 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃
𝑉𝑉𝑡𝑡 = 𝛾𝛾𝛾𝛾𝑉𝑉𝑡𝑡−1 + 𝑥𝑥 𝑆𝑆𝑡𝑡
= 𝛼𝛼𝛼𝛼 � 𝑉𝑉𝑡𝑡

Deep Learning and Artificial Intelligence 16

Convergence of Prediction Methods

Deep Learning and Artificial Intelligence 17

On/Off
policy

Algorithm Table
Lookup

Linear Non-Linear

On-Policy MC ✔ ✔ ✔

On-Policy TD ✔ ✔ ✘

On-Policy TD(λ) ✔ ✔ ✘

Off-Policy MC ✔ ✔ ✔

Off-Policy TS ✔ ✘ ✘

Off-Policy TD(λ) ✔ ✘ ✘

Control and Value Function Approximation

• To apply policy iteration, we again have to switch to state-value
functions Q(S,A)

• Basic idea for on-policy learning:
– approximate 𝑞𝑞𝜋𝜋 with a function q(x(S),a,𝜃𝜃):

�𝑞𝑞(𝑆𝑆,𝐴𝐴,𝜃𝜃) ≈ 𝑞𝑞𝜋𝜋(𝑆𝑆,𝐴𝐴)
– employ 𝜀𝜀 − 𝑔𝑔𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑔𝑔 policy improvement

Caution:
• It is not necessary to approximate 𝑞𝑞𝜋𝜋 𝑆𝑆,𝐴𝐴 very accurately. Instead,

we take a step into improving �𝑞𝑞(𝑆𝑆,𝐴𝐴,𝜃𝜃) and then adjust the policy.
• Using function approximation is not guaranteed to converge

against 𝑞𝑞𝜋𝜋 𝑆𝑆,𝐴𝐴 . Since �𝑞𝑞(𝑆𝑆,𝐴𝐴,𝜃𝜃) is a regression function it is not
guaranteed that the model can describe the real 𝑞𝑞𝜋𝜋 𝑆𝑆,𝐴𝐴 for all
(S,A).

Deep Learning and Artificial Intelligence 18

Control and Value Function Approximation

To learn a reasonable close �𝑞𝑞 𝑆𝑆,𝐴𝐴, 𝜃𝜃 , we can:
• Minimize the mean square error between the approximation

�𝑞𝑞(𝑆𝑆,𝐴𝐴,𝜃𝜃) and the true action value 𝑞𝑞𝜋𝜋(𝑆𝑆,𝐴𝐴):

𝐿𝐿 𝜃𝜃 = 𝔼𝔼𝜋𝜋,𝑠𝑠~𝜇𝜇 𝑞𝑞𝜋𝜋(𝑠𝑠,𝑎𝑎) − �𝑞𝑞 𝑠𝑠,𝑎𝑎,𝜃𝜃 2

• Optimization via SGD:
−1

2
𝛻𝛻𝜃𝜃𝐿𝐿 𝜃𝜃 = 𝑞𝑞𝜋𝜋(𝑆𝑆,𝐴𝐴) − �𝑞𝑞 𝑆𝑆,𝐴𝐴, 𝜃𝜃 𝛻𝛻𝜃𝜃 �𝑞𝑞 𝑆𝑆,𝐴𝐴,𝜃𝜃

∆𝜃𝜃 = 𝛼𝛼 𝑞𝑞𝜋𝜋(𝑆𝑆,𝐴𝐴) − �𝑞𝑞 𝑆𝑆,𝐴𝐴,𝜃𝜃 𝛻𝛻𝜃𝜃 �𝑞𝑞 𝑆𝑆,𝐴𝐴,𝜃𝜃

Deep Learning and Artificial Intelligence 19

Control with Linear Value Functions

• State-action are modelled as a feature vector:

𝑥𝑥 𝑆𝑆,𝐴𝐴 =
𝑥𝑥1 𝑆𝑆,𝐴𝐴

⋮
𝑥𝑥𝑛𝑛 𝑆𝑆,𝐴𝐴

• Represent action-value function by linear combination of features

�𝑞𝑞 𝑆𝑆 ,𝐴𝐴,𝑤𝑤 = �
𝑗𝑗=1

𝑛𝑛

𝑥𝑥𝑗𝑗 𝑆𝑆,𝐴𝐴 𝑤𝑤𝑗𝑗

• With the SGD update:

−1
2
𝛻𝛻𝑤𝑤𝐿𝐿 𝑤𝑤 = 𝑞𝑞𝜋𝜋(𝑆𝑆,𝐴𝐴) − 𝑥𝑥 𝑆𝑆,𝐴𝐴 𝑇𝑇𝑤𝑤 𝛻𝛻𝑤𝑤 𝑥𝑥 𝑆𝑆,𝐴𝐴 𝑇𝑇𝑤𝑤

= 𝑞𝑞𝜋𝜋(𝑆𝑆,𝐴𝐴) − 𝑥𝑥 𝑆𝑆,𝐴𝐴 𝑇𝑇𝑤𝑤 𝑤𝑤

∆𝑤𝑤 = 𝛼𝛼 𝑞𝑞𝜋𝜋(𝑆𝑆,𝐴𝐴) − �𝑞𝑞 𝑆𝑆,𝐴𝐴,𝑤𝑤 𝑥𝑥 𝑆𝑆,𝐴𝐴

Deep Learning and Artificial Intelligence 20

Incremental Control Algorithms

similar to prediction but substitute 𝑞𝑞𝜋𝜋(𝑆𝑆,𝐴𝐴) :
• For MC, the target is the complete return 𝐺𝐺𝑡𝑡

∆𝜃𝜃 = 𝛼𝛼 𝐺𝐺𝑡𝑡 − �𝑞𝑞 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡 ,𝜃𝜃 𝛻𝛻𝜃𝜃 �𝑞𝑞 𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡 ,𝜃𝜃
• For TD, the target is the TD target 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾 �𝑞𝑞 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡,𝜃𝜃

∆𝜃𝜃 = 𝛼𝛼 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾 �𝑞𝑞 𝑆𝑆𝑡𝑡+1,𝐴𝐴𝑡𝑡+1,𝜃𝜃 − �𝑞𝑞 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡 ,𝜃𝜃 𝛻𝛻𝜃𝜃 �𝑞𝑞 𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡,𝜃𝜃
• For TD(λ), the target is the action-value λ-return 𝑞𝑞𝑡𝑡𝜆𝜆:

– Forward view

∆𝜃𝜃 = 𝛼𝛼 𝑞𝑞𝑡𝑡𝜆𝜆 − �𝑞𝑞 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡,𝜃𝜃 𝛻𝛻𝜃𝜃 �𝑞𝑞 𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡 ,𝜃𝜃

– Backward view:
𝛼𝛼𝑡𝑡 = 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾 �𝑞𝑞 𝑆𝑆𝑡𝑡+1,𝐴𝐴𝑡𝑡+1,𝜃𝜃 − �𝑞𝑞 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡,𝜃𝜃
𝑉𝑉𝑡𝑡 = 𝛾𝛾𝛾𝛾𝑉𝑉𝑡𝑡−1 + 𝛻𝛻𝜃𝜃 �𝑞𝑞 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡 ,𝜃𝜃
∆𝜃𝜃 = 𝛼𝛼𝛼𝛼𝑡𝑡𝑉𝑉𝑡𝑡

Deep Learning and Artificial Intelligence 21

Example: Mountain Car

Deep Learning and Artificial Intelligence 22

Step 428

Goal

4

0
0

2 7

0

120

0

104

0

4 6

Episode 12

Episode 104 Episode 1000 Episode 9000

MOUNTAIN CAR

R. S. Sutton, A. G. Barto: Reinforcement Learning: An Introduction (Adaptive Computation and
Machine Learning), The MIT Press; Auflage: 2., 2018, page 245, Fig 10.1

Semi-gradient Sarsa method with tile-coding

Deep Learning and Artificial Intelligence 23

Mountain Car
Steps per episode

log scale
averaged over 100 runs

Figure 10.2: Mountain Car learning curves for the semi-gradient Sarsa method with t ile-coding
funct ion approximat ion and "-greedy act ion select ion.

100

200

400

1000

0 500

α=0.5/8

α=0.1/8
α=0.2/8

Episode

Control and Convergence

• Convergence to the minimal error between Q(S,A,θ) and 𝑞𝑞𝜋𝜋 𝑆𝑆,𝐴𝐴
is problematic.

• Generally convergence is problematic if we employ:
• Value Function Approximation

• Bootstraping

• Off-Policy Learning

(Deadly Triad)

=> For these cases, updates might even increase the error.

Deep Learning and Artificial Intelligence 24

Baird’s Counterexample

• episodic MDP with 7 states
and 2 actions:

– Dashed: go to any of the upper
states with 1/6

– Solid: go to lower state 100 %

• reward is always 0
⇒ true value functions = 0

• γ=0.999

• behavioural policy b:
– b(𝑝𝑝𝑎𝑎𝑠𝑠𝑑𝑠𝑠𝑝𝑝| �) =6/7

– b 𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝 � =1/7

• target policy:
– 𝜋𝜋(𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝| �) =1.0

feature vectors:

x(1)=(2,0,0,0,0,0,0,1)T

x(2)=(0,2,0,0,0,0,0,1)T

…

x(7)=(0,0,0,0,0,0,1,2)T

Deep Learning and Artificial Intelligence 25

2𝑤𝑤1 +𝑤𝑤8 2𝑤𝑤2 +𝑤𝑤8 2𝑤𝑤3 +𝑤𝑤8 2𝑤𝑤4 +𝑤𝑤8 2𝑤𝑤5 +𝑤𝑤8 2𝑤𝑤6 +𝑤𝑤8

𝑤𝑤7 +2𝑤𝑤8

Applying semi-gradient TD(0) makes the weights diverge into
infinity but switching to on-policy makes the TD(0) converge.

Making gradient methods converge

• TD is not a full GD approach

• Idea: Compute the complete gradient over.
– Straight-forward the error function is smoothed rather then optimized

– Gradient TD follows the true gradient of projected Bellman error and therefore
does not diverge

Deep Learning and Artificial Intelligence 26

On/Off
policy

Algorithm Table
Lookup

Linear Non-Linear

On-Policy MC ✔ ✔ ✔
On-Policy TD ✔ ✔ ✘
On-Policy Gradient TD ✔ ✔ ✔
Off-Policy MC ✔ ✔ ✔
Off-Policy TS ✔ ✘ ✘
Off-Policy Gradient TD ✔ ✔ ✔

Convergence of Control Methods

Deep Learning and Artificial Intelligence 27

Algorithm Table Lookup Linear Non-Linear

MC Control ✔ (✔) ✘
Sarsa ✔ (✔) ✘
Q-Learning ✔ ✘ ✘
Gradient Q-
Learning

✔ ✔ ✘

(✔)= jumps around the near optimal value function

Batch Methods

Utilization of experience is rather bad with GD methods.

⇒Batch Reinforcement Learning: Find the best fitting
value function for the given experience
(“training data”)

⇒Using an example only once for making one step might
be a waste of experience

Deep Learning and Artificial Intelligence 28

Least Squares Prediction

• Given the value function approximation f 𝑠𝑠,𝜃𝜃 ≈ 𝑈𝑈(𝑆𝑆)
• The experience 𝒟𝒟 is given by a set of state-value pairs

𝒟𝒟 = 𝑠𝑠1,𝑈𝑈𝜋𝜋(𝑆𝑆1) , . . , 𝑠𝑠𝑇𝑇 ,𝑈𝑈𝜋𝜋(𝑠𝑠𝑇𝑇)

We want to find the parameters 𝜃𝜃 to provide the value
function approximation f 𝑠𝑠,𝜃𝜃 with the best fit on 𝒟𝒟.

⇒The least squares method fits the 𝜃𝜃 to minimize the
sum-squared error between f 𝑠𝑠,𝜃𝜃 and 𝑈𝑈 𝑆𝑆 .

𝐿𝐿𝑆𝑆𝒟𝒟 𝜃𝜃 = ∑𝑡𝑡=1𝑇𝑇 𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 − 𝑓𝑓(𝑠𝑠,𝜃𝜃) 2

≅ 𝔼𝔼𝒟𝒟 𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 − 𝑓𝑓(𝑠𝑠,𝜃𝜃) 2

Deep Learning and Artificial Intelligence 29

SGD with Experience Replay

Given experience 𝒟𝒟 is given by a set of state-value pairs

𝒟𝒟 = 𝑠𝑠1,𝑈𝑈𝜋𝜋(𝑆𝑆1) , . . , 𝑠𝑠𝑇𝑇 ,𝑈𝑈𝜋𝜋(𝑠𝑠𝑇𝑇)

Repeat:

• Smple state-value pair from 𝒟𝒟 :

𝑠𝑠,𝑈𝑈𝜋𝜋(𝑠𝑠) ~𝒟𝒟
• Apply SGD update on the parameters 𝜃𝜃:

∆𝜃𝜃 = 𝛼𝛼 𝑈𝑈𝜋𝜋 𝑠𝑠 − 𝑓𝑓 𝑠𝑠,𝜃𝜃 𝛻𝛻𝜃𝜃𝑓𝑓 𝑠𝑠,𝜃𝜃

⇒Converges to least squares solution
𝜃𝜃𝜋𝜋 = 𝑎𝑎𝑝𝑝𝑔𝑔max

𝜃𝜃
𝐿𝐿𝑆𝑆𝒟𝒟 (𝜃𝜃)

Deep Learning and Artificial Intelligence 30

Experience Replay in Deep Q-Networks (DQN)

• DQN applies deep learning to off-policy, non-linear, TD-target
reinforcement learning. (danger of instability)

• by using experience replay and fixed Q-targets can be trained in a
stable way.

• Experience:
– observed transitions 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑝𝑝𝑡𝑡+1, 𝑠𝑠𝑡𝑡+1 in replay memory 𝒟𝒟.
– By sampling independently from 𝒟𝒟 episodes are decoupled

• Idea of fixed Q-targets:
– Q-learning targets in the experience replay are all generated

w.r.t. “old”, fixed parameters 𝜃𝜃 −.
– Thus, Q-targets are independent from 𝜃𝜃 in f(s, 𝜃𝜃) which are

updated

Deep Learning and Artificial Intelligence 31

DQN Algorithm

Repeat:

• Take action at according to ε-greedy policy

• Store transition 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑝𝑝𝑡𝑡+1, 𝑠𝑠𝑡𝑡+1 in replay buffer 𝒟𝒟
• Sample random mini-batch of transition (s,a,r,s’) from 𝒟𝒟
• Compute the Q-learning targets w.r.t. fixed 𝜃𝜃 −

• Optimize MSE between Q-network and Q-learning
targets:

ℒ𝑖𝑖 𝜃𝜃𝑖𝑖 = 𝔼𝔼𝑠𝑠,𝑡𝑡,𝑟𝑟,𝑠𝑠𝑠~𝒟𝒟 𝑝𝑝 + 𝛾𝛾max
𝑡𝑡𝑠

𝑓𝑓 𝑠𝑠𝑠,𝑎𝑎𝑠;𝜃𝜃 − − 𝑓𝑓 𝑠𝑠,𝑎𝑎,𝜃𝜃
2

by SGD

Deep Learning and Artificial Intelligence 32

Example: DQN on Atari games

Deep Learning and Artificial Intelligence 33

https://gym.openai.com/envs/#atari

DQN in Atari

Idea: Use one network architecture to learn multiple
computer games on the video buffer as input.

• End-to-end learning of Q(s,a) from pixels s

• Input state s is stack of raw pixels from last 4 frames
(a single fram is not Markov!!)

• Actions: 18 Joystik/button combnation (9 directions + 2
button states)

• Reward change in score for the step (most Atari games
had general scores constantly rewarding actions)

Deep Learning and Artificial Intelligence 34

DQN on Atari Games Network Architecture

Deep Learning and Artificial Intelligence 35

https://media.nature.com/lw926/nature-assets/nature/journal/v518/n7540/images/nature14236-f1.jpg

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S. & Hassabis,
D. (2015). Human-level control through deep reinforcement learning. Nature, 518, 529--533.

DQN Results in Atari

Deep Learning and Artificial Intelligence 36

Advantages replay buffer and fixed targets

Deep Learning and Artificial Intelligence 37

Replay
Fixed-Q

Replay Q-
learning

No replay
Fixed-Q

No replay Q-
learning

Breakout 316.81 240.73 10.16 3.17
Enduro 1006.3 831.25 141.89 29.1
River Raid 7446.62 4102.81 2867.66 1453.02
Seaquest 2894.4 822.55 1003 275.81
Space Invaders 1088.94 826.33 373.22 301.99

Lecture notes D. Silver: Introduction to Reinforcement Learning
(http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)
Lecture 6: Function Approximation (Slide 41)

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Linear Least Squares Prediction

• Experience replay finds the least-squares solutions by
sampling and using SGD on mini-batches

• If we use linear value function approximation, we can
analytically solve for a solution minimizing 𝐿𝐿𝑆𝑆𝒟𝒟 𝜃𝜃 :

𝐿𝐿𝑆𝑆𝒟𝒟 𝑤𝑤 = �
𝑡𝑡=1

𝑇𝑇

𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 − 𝑥𝑥𝑡𝑡𝑇𝑇𝑤𝑤 2

• For a quadratic loss the derivative is linear and to find a
local minimum we have to compute its zero

Deep Learning and Artificial Intelligence 38

Linear Least Squares Prediction

• At minimum 𝐿𝐿𝑆𝑆𝒟𝒟 𝑤𝑤 = 0,i.e., the expected update is zero as well.
𝔼𝔼𝒟𝒟 ∆𝑤𝑤 = 0

𝛼𝛼�
𝑡𝑡=1

𝑇𝑇

𝑥𝑥 𝑠𝑠𝑡𝑡 𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 − 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑇𝑇𝑤𝑤 = 0

∑𝑡𝑡=1𝑇𝑇 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 = ∑𝑡𝑡=1𝑇𝑇 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑇𝑇𝑤𝑤

w = �
𝑡𝑡=1

𝑇𝑇

𝑥𝑥 𝑠𝑠𝑡𝑡 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑇𝑇

−1

�
𝑡𝑡=1

𝑇𝑇

𝑥𝑥 𝑠𝑠𝑡𝑡 𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡

• For N features, direct solution 𝑂𝑂 𝑁𝑁3 (matrix inversion)
• Incremental solution time 𝑂𝑂 𝑁𝑁2 using Sherman-Morrision
• Usability depends on the ratio between the number of features N

and the number of samples T

Deep Learning and Artificial Intelligence 39

Linear Least Squares Prediction Algorithms

• Again: in practice 𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 is yet unknown

⇒ Use noisy or biased samples of 𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡

• LMSC - Least Squares Monte-Carlo

𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 ≈ 𝐺𝐺𝑡𝑡
• LSTD – Least Squares Temporal Difference Learning

𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 ≈ 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑓𝑓 𝑠𝑠𝑡𝑡 ,𝑤𝑤
• LSTD(λ) – Least Squares with TD(λ)

𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 ≈ 𝐺𝐺𝑡𝑡𝜆𝜆

⇒ For each target we can solve directly for the fixed point of
MC/TD/ TD(λ) because the targets are considered as fixed

Deep Learning and Artificial Intelligence 40

Linear Least Squares Prediction Algorithms (2)

LMSC: 0 = 𝛼𝛼∑𝑡𝑡=1𝑇𝑇 𝐺𝐺𝑡𝑡 − 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑇𝑇𝑤𝑤 𝑥𝑥 𝑠𝑠𝑡𝑡
𝑤𝑤 = ∑𝑡𝑡=1𝑇𝑇 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑇𝑇 −1 ∑𝑡𝑡=1𝑇𝑇 𝑥𝑥 𝑠𝑠𝑡𝑡 𝐺𝐺𝑡𝑡

LSTD: 0 = 𝛼𝛼∑𝑡𝑡=1𝑇𝑇 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑥𝑥 𝑠𝑠𝑡𝑡+1 𝑇𝑇𝑤𝑤 − 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑇𝑇𝑤𝑤 𝑥𝑥 𝑠𝑠𝑡𝑡

𝑤𝑤 = ∑𝑡𝑡=1𝑇𝑇 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑥𝑥 𝑠𝑠𝑡𝑡 − 𝛾𝛾𝑥𝑥 𝑠𝑠𝑡𝑡+1
𝑇𝑇 −1

∑𝑡𝑡=1𝑇𝑇 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑅𝑅𝑡𝑡+1
LSTD(λ): 0 = ∑𝑡𝑡=1𝑇𝑇 𝛼𝛼𝛼𝛼𝑡𝑡𝑉𝑉𝑡𝑡

𝑤𝑤 = ∑𝑡𝑡=1𝑇𝑇 𝑉𝑉𝑡𝑡 𝑥𝑥 𝑠𝑠𝑡𝑡 − 𝛾𝛾𝑥𝑥 𝑠𝑠𝑡𝑡+1
𝑇𝑇 −1

∑𝑡𝑡=1𝑇𝑇 𝑉𝑉𝑡𝑡𝑅𝑅𝑡𝑡+1

Deep Learning and Artificial Intelligence 41

Convergence of Linear Least Square Prediction

Deep Learning and Artificial Intelligence 42

On/Off
policy

Algorithm Table
Lookup

Linear Non-Linear

On-Policy MC ✔ ✔ ✔
LSMC ✔ ✔ -

TD ✔ ✔ ✘
LSTD ✔ ✔ -

Off-Policy MC ✔ ✔ ✔
LSMC ✔ ✔ -

TD ✔ ✘ ✘
Gradient TD ✔ ✔ -

Least Squares Control Algorithms

• Policy evaluation: Policy evaluation by least squares Q-Learning
• Policy improvement: Greedy policy improvement
• We want to make use of all experience in 𝒟𝒟 to:

– Efficienty evaluate the policy
– Improve the policy

But: The experience is drawn from different policies from various
stages of training.
⇒ To evaluate 𝑞𝑞𝜋𝜋 𝑆𝑆,𝐴𝐴 we must learn off-policy
⇒ Use the same idea as on Q-learning:

• Use experience generated by old policy: 𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡,𝑅𝑅𝑡𝑡+1,𝑆𝑆𝑡𝑡+1~𝜋𝜋𝑜𝑜𝑡𝑡𝑜𝑜
• Consider alternative successor action A’=𝜋𝜋𝑛𝑛𝑡𝑡𝑤𝑤(𝑆𝑆𝑡𝑡+1)
• Update f(𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡,w) towards value of alternative action:

𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑓𝑓 𝑆𝑆𝑡𝑡+1,𝐴𝐴𝑠,𝑤𝑤

Deep Learning and Artificial Intelligence 43

Least Squares Q-Learning

• Given the following Q-learning update

𝛼𝛼 = 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾 𝑓𝑓 𝑆𝑆𝑡𝑡+1,𝜋𝜋 𝑆𝑆𝑡𝑡+1 ,𝑤𝑤 − 𝑓𝑓 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡 ,𝑤𝑤
∆𝑤𝑤 = 𝛼𝛼𝛼𝛼𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡

• LSTDQ algorithm: solve for total update = zero

0 = �
𝑡𝑡=1

𝑇𝑇

𝛼𝛼 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾 𝑓𝑓 𝑆𝑆𝑡𝑡+1,𝜋𝜋 𝑆𝑆𝑡𝑡+1 ,𝑤𝑤 − 𝑓𝑓 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡,𝑤𝑤 − 𝑓𝑓 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡,𝑤𝑤 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡

𝑤𝑤 = �
𝑡𝑡=1

𝑇𝑇

𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡 − 𝛾𝛾𝑥𝑥 𝑆𝑆𝑡𝑡+1,𝜋𝜋 𝑆𝑆𝑡𝑡+1
𝑇𝑇

−1

�
𝑡𝑡=1

𝑇𝑇

𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡 𝑅𝑅𝑡𝑡+1

Deep Learning and Artificial Intelligence 44

Least Squares Policy Iteration Algorithm
• Pseudocode Policy Iteration using LSTDQ
• Experience 𝒟𝒟 is re-evaluated with different

policies

function LSPI-TD(𝒟𝒟, π0)
π′ ← π𝟎𝟎
repeat

π ← π′
Q ← LSTDQ(π, D)
for all s ∈ S do

π′(s) ← arg max
𝑡𝑡∈𝐴𝐴

Q(s, a)
end for

until (π ≈ π′)
return π

End function

Deep Learning and Artificial Intelligence 45

Convergence of Control Algorithms

Deep Learning and Artificial Intelligence 46

Algorithm Table Lookup Linear Non-Linear

MC Control ✔ (✔) ✘
Sarsa ✔ (✔) ✘
Q-Learning ✔ ✘ ✘
LSPI ✔ (✔) -

(✔)= jumps around the near optimal value function

Literature

• Lecture notes D. Silver: Introduction to Reinforcement Learning
(http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)

• S. Russel, P. Norvig: Artificial Intelligence: A modern Approach,
Pearson, 3rd edition, 2016

• R. S. Sutton, A. G. Barto: Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning), The MIT Press;
Auflage: 2., 2018

• Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King,
H., Kumaran, D., Wierstra, D., Legg, S. & Hassabis, D. (2015). Human-
level control through deep reinforcement learning. Nature, 518, 529--
533.

Deep Learning and Artificial Intelligence 47

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

	Lecture Notes for�Deep Learning and Artificial Intelligence�Winter Term 2018/2019
	Short Comings of the methods so far
	Some examples
	Working with continuous State Spaces
	Overview on continuous State Spaces
	Value function approximation
	Value Function Approximation� and Partial Observability
	Mean Squared Value Error
	Common types of function approximators
	Value Function Approx. with SGD
	Linear Prediction Functions
	Table Lookup Features
	Incremental Prediction algorithms
	MC with value function approximation
	TD with value function approximation
	TD() with value function approximation
	Convergence of Prediction Methods
	Control and Value Function Approximation
	Control and Value Function Approximation
	Control with Linear Value Functions
	Incremental Control Algorithms
	Example: Mountain Car
	Semi-gradient Sarsa method with tile-coding
	Control and Convergence
	Baird’s Counterexample
	Making gradient methods converge
	Convergence of Control Methods
	Batch Methods
	Least Squares Prediction
	SGD with Experience Replay
	Experience Replay in Deep Q-Networks (DQN)
	DQN Algorithm
	Example: DQN on Atari games
	DQN in Atari
	DQN on Atari Games Network Architecture
	DQN Results in Atari
	Advantages replay buffer and fixed targets
	Linear Least Squares Prediction
	Linear Least Squares Prediction
	Linear Least Squares Prediction Algorithms
	Linear Least Squares Prediction Algorithms (2)
	Convergence of Linear Least Square Prediction
	Least Squares Control Algorithms
	Least Squares Q-Learning
	Least Squares Policy Iteration Algorithm
	Convergence of Control Algorithms
	Foliennummer 47

