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Short Comings of the methods so far

So far: All methods work on a discrete state space S.

⇒ A policy 𝜋𝜋 is a table  of the form 𝑠𝑠1,𝑎𝑎1 , . . , 𝑠𝑠|𝑆𝑆|,𝑎𝑎|𝑆𝑆|

⇒ If we encounter a new state, we do not know what to do.
⇒ No matter how similar two states are, we learn Q(s,a) 

independently.
⇒ If |S| is very large:

– We need a lot of memory to store the policy.

– We need enormous amounts of samples to estimate Q(s,a) for all state-action 
pairs.

⇒ Previous models for MDPs and Reinforcement learning become infeasible
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Some examples

• Number of states for some problems
– Backgammon: 1020

– Computer Go: 10170

– Flying an RC Helicopter: continuous state space
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Working with continuous State Spaces

Idea: What if we do not distinguish states but state descriptions, e.g., 
feature vectors?
• Depending on the feature space we can describe an infinite set of 

states. But some states might have the same description.
=> c.f. we often work on observations not states anyway

• A policy can be described as a function f of the state space
⇒ f(x,a) = Q(s,a)  or f(x) = a 

⇒ Mathematical functions are much more space efficient than tables

• State descriptions can be related to each other => if we do not have 
encountered a particular state description so far, we can derive a 
proper action from similar situations. (generalization) 

Generally: Working on state descriptions allows for flexible agents 
being able to cope with unknown situations. 
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Overview on continuous State Spaces

• Value function approximation (this lecture)
– Learn a function f to predict U(xs) or Q(xs,a)

(generally f is a regression function of some kind)

• Policy gradient methods:  (next lecture)
– Directly learn a function f(xs) predicting the best action a for xs

• Actor Critic methods: (next lecture)
– combine policy functions and value function approximation
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Value function approximation

Given: A mapping x(s) describing s in IRd. 
Idea: Learn a function that either describes  the utility U(S) or the 
state-value function Q(S,A).
Options to learn the f 𝑠𝑠,𝜃𝜃 ≈ 𝑈𝑈(𝑆𝑆)or f 𝑠𝑠,𝑎𝑎,𝜃𝜃 ≈ 𝑄𝑄(𝑆𝑆,𝐴𝐴) :
• Approximate U(S)

• Approximate Q(S,A)
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Value Function Approximation
and Partial Observability

A side-effect of using value function approximation is that we can 
work on a factor space representing the exact state S or just an 
observation O. 

• factor spaces: often the state can be coded as a set of (independent) 
parameters:

Example: position of the agent + state variables of the environment, Stockmarket: 
recent course development for all traded stocks, …

• Observation spaces: a set of parameters giving us hints about the 
state.

Examples: video buffer of a camera, sensor data, player view in a video game,.

⇒ Since f(x(s),a, θ) is an approximation function works for both 
settings (f(x(s),a, θ) can learn to consider belief states)

⇒ Caution: Make sure that x(s) is Markov !!!
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Mean Squared Value Error

Regardless of how we built our approximation function 
𝑓𝑓(𝑆𝑆,𝜃𝜃), we need a measure for the quality of an 
approximation:

𝑉𝑉𝑉𝑉𝜋𝜋 𝜃𝜃 = 𝔼𝔼𝜋𝜋,𝑠𝑠~𝜇𝜇 𝑈𝑈𝜋𝜋 𝑆𝑆 − 𝑓𝑓(𝑆𝑆,𝜃𝜃) 2

= �
𝑠𝑠∈𝑆𝑆

𝜇𝜇 𝑆𝑆 𝑈𝑈𝜋𝜋 𝑆𝑆 − 𝑓𝑓(𝑆𝑆,𝜃𝜃) 2

where 𝜇𝜇 is the importance distribution over the state
descriptions with ∑𝑠𝑠∈𝑆𝑆 𝜇𝜇 𝑆𝑆 .
For example, we can take 𝜇𝜇 𝑆𝑆 as the likelihood of being in 
state s when following 𝜋𝜋.

Deep Learning and Artificial Intelligence 8



Common types of function approximators

• Generally any regression/prediction function can be used
(usually we will require a continuous return to model the Utility)

• Common methods:
– Linear predictors

– Neural networks

– Decision trees

– Regression with Fourier/Wavelet bases

– ..

• However: Reinforcement learning is tricky because:
– experience is non-stationary (e.g. the label Q(S,A) might change when using TD 

learning)

– experience is usually non-iid the observation from a single episode is usually 
highly correlated
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Value Function Approx. with SGD

Goal: Given policy π and 𝑈𝑈𝜋𝜋 𝑆𝑆 find 𝜃𝜃 minimizing a loss function 
𝐿𝐿𝜋𝜋 𝜃𝜃 .
Note: We won’t have 𝑈𝑈𝜋𝜋 𝑆𝑆 but only R(S) later on.

For example, consider LX,Y(𝜃𝜃) is mean square loss:
𝐿𝐿𝜋𝜋 𝜃𝜃 = 𝔼𝔼𝜋𝜋 𝑈𝑈𝜋𝜋 𝑆𝑆 − 𝑓𝑓(𝑆𝑆,𝜃𝜃) 2

Computing the gradient we get 

∆𝜃𝜃 = −1
2
𝛼𝛼𝛻𝛻𝜃𝜃𝐿𝐿𝜋𝜋 𝜃𝜃 = 𝛼𝛼𝔼𝔼𝜋𝜋 𝑈𝑈𝜋𝜋 𝑆𝑆 − 𝑓𝑓 𝑆𝑆,𝜃𝜃 𝛻𝛻𝜃𝜃𝐿𝐿(𝑆𝑆,𝜃𝜃)

• With SGD we sample the gradient:
∆𝜃𝜃 = 𝛼𝛼 𝑈𝑈𝜋𝜋 𝑆𝑆 − 𝑓𝑓 𝑆𝑆,𝜃𝜃 𝛻𝛻𝜃𝜃𝐿𝐿(𝑆𝑆,𝜃𝜃)

• the expected update is equal to the full gradient update
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Linear Prediction Functions

A simple function approximation might be linear.

• Linear Functions over x(S)∈ℝd where 𝜃𝜃is a weight vector w:

𝑓𝑓 𝑥𝑥(𝑆𝑆), W =x(S)TW=∑𝑗𝑗=1𝑛𝑛 𝑥𝑥(𝑆𝑆)𝑗𝑗𝑇𝑇𝑤𝑤𝑗𝑗
• Loss function:

𝐿𝐿 𝑊𝑊 = 𝑉𝑉 𝑈𝑈 𝑠𝑠 − x(s)TW 2

• Stochastic Gradient Descent on L(w):
𝛻𝛻𝑊𝑊 𝑓𝑓 𝑥𝑥(𝑠𝑠), W = x(s)

−
1
2
𝛻𝛻𝐿𝐿 𝜃𝜃 = 𝑈𝑈 𝑠𝑠 − 𝑓𝑓 𝑥𝑥(𝑠𝑠),𝜃𝜃 𝑥𝑥(s)

Δ𝜃𝜃 = 𝛼𝛼 𝑈𝑈 𝑠𝑠 − 𝑓𝑓 𝑥𝑥(𝑠𝑠),𝜃𝜃 𝑥𝑥(s)

update = ste𝑝𝑝 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝 𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑓𝑓𝑠𝑠𝑎𝑎𝑝𝑝𝑓𝑓𝑝𝑝𝑠𝑠 𝑣𝑣𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
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Table Lookup Features

• Table lookups can be considered as a special case of 
linear value function approximation

• Use a lookup table of the of the following form:

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆 =
1 𝑆𝑆 = 𝑠𝑠1

⋮
1 𝑆𝑆 = 𝑠𝑠𝑛𝑛

• Parameter vector w gives us the value of each state:

𝑓𝑓 𝑥𝑥(𝑆𝑆),𝑤𝑤 =
1 𝑆𝑆 = 𝑠𝑠1

⋮
1 𝑆𝑆 = 𝑠𝑠𝑛𝑛

𝑇𝑇

�
𝑤𝑤1
⋮
𝑤𝑤𝑛𝑛
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Incremental Prediction algorithms

• In practice we do not have the utility 𝑈𝑈𝜋𝜋 𝑆𝑆 but only R(S)
⇒ We have to employ  a target for 𝑈𝑈𝜋𝜋 𝑆𝑆 as in the last lecture

Prediction based on value function approximation:
• For MC, the target is the complete return 𝐺𝐺𝑡𝑡

∆𝜃𝜃 = 𝛼𝛼 𝐺𝐺𝑡𝑡 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 𝛻𝛻𝜃𝜃𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃
• For TD, the target is the TD target 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡+1 ,𝜃𝜃

∆𝜃𝜃 = 𝛼𝛼 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡+1 ,𝜃𝜃 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 𝛻𝛻𝜃𝜃𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃
• For TD(λ), the target is the λ-return 𝐺𝐺𝑡𝑡𝜆𝜆

∆𝜃𝜃 = 𝛼𝛼 𝐺𝐺𝑡𝑡𝜆𝜆 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 𝛻𝛻𝜃𝜃𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃
Caution: For TD and TD(λ) the target depends on 𝜃𝜃
⇒ TD and TD(λ) are semi-gradient methods because the gradient is 

only computed w.r.t. 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 , but the for the target functions.
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MC with value function approximation

• Return 𝐺𝐺𝑡𝑡 is an unbiased, noisy sample of true value 𝑈𝑈 𝑆𝑆
• Applying supervised learning to known experience is viable:

𝑥𝑥(𝑆𝑆1),𝐺𝐺1 , 𝑥𝑥(𝑆𝑆2),𝐺𝐺2 ,… 𝑥𝑥(𝑆𝑆𝑇𝑇),𝐺𝐺𝑇𝑇

• For example, linear Monte-Carlo policy evaluation:
∆𝜃𝜃 = 𝛼𝛼 𝐺𝐺𝑡𝑡 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 𝛻𝛻𝜃𝜃𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃

= 𝛼𝛼 𝐺𝐺𝑡𝑡 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 � 𝑥𝑥 𝑆𝑆𝑡𝑡

• Monte-Carlo evaluation converges to a local optimum

• Even when using non-linear value function approximation
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TD with value function approximation

• The TD-target is a biased sample sample of true value 𝑈𝑈 𝑆𝑆
• Applying supervised learning is still possible but training data looks 

like:
𝑥𝑥(𝑆𝑆1),𝑅𝑅1 + 𝛾𝛾𝑓𝑓 𝑥𝑥 𝑆𝑆2 ,𝜃𝜃 , 𝑥𝑥(𝑆𝑆1),𝑅𝑅2 + 𝛾𝛾𝑓𝑓 𝑥𝑥 𝑆𝑆3 ,𝜃𝜃 ,… 𝑥𝑥(𝑆𝑆𝑇𝑇−1),𝑅𝑅𝑇𝑇

• For example, linear TD(0) policy evaluation:
∆𝜃𝜃 = 𝛼𝛼 𝑅𝑅𝑡𝑡 + 𝛾𝛾𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡+1 ,𝜃𝜃 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 𝛻𝛻𝜃𝜃𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃

= 𝛼𝛼 𝑅𝑅𝑡𝑡 + 𝛾𝛾𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡+1 ,𝜃𝜃 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 � 𝑥𝑥 𝑆𝑆𝑡𝑡
= 𝛼𝛼𝛼𝛼 � 𝑥𝑥 𝑆𝑆𝑡𝑡

• Linear TD(0) converges (close) to global optimum
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TD(λ) with value function approximation

• The λ-return is also a biased sample sample of true value 𝑈𝑈 𝑆𝑆
• Applying supervised learning is to training data of the form:

𝑥𝑥 𝑆𝑆1 ,𝐺𝐺1𝜆𝜆 , 𝑥𝑥 𝑆𝑆2 ,𝐺𝐺2𝜆𝜆 , .. , 𝑥𝑥 𝑆𝑆𝑇𝑇−1 ,𝐺𝐺𝑇𝑇−1𝜆𝜆

• Forward view of linear TD(λ):

∆𝜃𝜃 = 𝛼𝛼 𝐺𝐺1𝜆𝜆 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 𝛻𝛻𝜃𝜃𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃

= 𝛼𝛼 𝐺𝐺1𝜆𝜆 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃 � 𝑥𝑥 𝑆𝑆𝑡𝑡

• Backward view of linear TD(λ):
𝛼𝛼𝑡𝑡 = 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡+1 ,𝜃𝜃 − 𝑓𝑓 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝜃𝜃
𝑉𝑉𝑡𝑡 = 𝛾𝛾𝛾𝛾𝑉𝑉𝑡𝑡−1 + 𝑥𝑥 𝑆𝑆𝑡𝑡
= 𝛼𝛼𝛼𝛼 � 𝑉𝑉𝑡𝑡
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Convergence of Prediction Methods
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On/Off 
policy

Algorithm Table 
Lookup

Linear Non-Linear

On-Policy MC ✔ ✔ ✔

On-Policy TD ✔ ✔ ✘

On-Policy TD(λ) ✔ ✔ ✘

Off-Policy MC ✔ ✔ ✔

Off-Policy TS ✔ ✘ ✘

Off-Policy TD(λ) ✔ ✘ ✘



Control and Value Function Approximation

• To apply policy iteration, we again have to switch to state-value 
functions Q(S,A)

• Basic idea for on-policy learning:
– approximate 𝑞𝑞𝜋𝜋 with a function q(x(S),a,𝜃𝜃):

�𝑞𝑞(𝑆𝑆,𝐴𝐴,𝜃𝜃) ≈ 𝑞𝑞𝜋𝜋(𝑆𝑆,𝐴𝐴)
– employ 𝜀𝜀 − 𝑔𝑔𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑔𝑔 policy improvement

Caution:
• It is not necessary to approximate 𝑞𝑞𝜋𝜋 𝑆𝑆,𝐴𝐴 very accurately. Instead, 

we take a step into improving �𝑞𝑞(𝑆𝑆,𝐴𝐴,𝜃𝜃) and then adjust the policy.
• Using function approximation is not guaranteed to converge 

against 𝑞𝑞𝜋𝜋 𝑆𝑆,𝐴𝐴 . Since �𝑞𝑞(𝑆𝑆,𝐴𝐴,𝜃𝜃) is a regression function it is not 
guaranteed that the model can describe the real 𝑞𝑞𝜋𝜋 𝑆𝑆,𝐴𝐴 for all 
(S,A).
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Control and Value Function Approximation

To learn a reasonable close  �𝑞𝑞 𝑆𝑆,𝐴𝐴, 𝜃𝜃 , we can:
• Minimize the mean square error between the approximation 

�𝑞𝑞(𝑆𝑆,𝐴𝐴,𝜃𝜃) and the true action value 𝑞𝑞𝜋𝜋(𝑆𝑆,𝐴𝐴):

𝐿𝐿 𝜃𝜃 = 𝔼𝔼𝜋𝜋,𝑠𝑠~𝜇𝜇 𝑞𝑞𝜋𝜋(𝑠𝑠,𝑎𝑎) − �𝑞𝑞 𝑠𝑠,𝑎𝑎,𝜃𝜃 2

• Optimization via SGD:
−1

2
𝛻𝛻𝜃𝜃𝐿𝐿 𝜃𝜃 = 𝑞𝑞𝜋𝜋(𝑆𝑆,𝐴𝐴) − �𝑞𝑞 𝑆𝑆,𝐴𝐴, 𝜃𝜃 𝛻𝛻𝜃𝜃 �𝑞𝑞 𝑆𝑆,𝐴𝐴,𝜃𝜃

∆𝜃𝜃 = 𝛼𝛼 𝑞𝑞𝜋𝜋(𝑆𝑆,𝐴𝐴) − �𝑞𝑞 𝑆𝑆,𝐴𝐴,𝜃𝜃 𝛻𝛻𝜃𝜃 �𝑞𝑞 𝑆𝑆,𝐴𝐴,𝜃𝜃
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Control with Linear Value Functions

• State-action are modelled as a feature vector:

𝑥𝑥 𝑆𝑆,𝐴𝐴 =
𝑥𝑥1 𝑆𝑆,𝐴𝐴

⋮
𝑥𝑥𝑛𝑛 𝑆𝑆,𝐴𝐴

• Represent action-value function by linear combination of features

�𝑞𝑞 𝑆𝑆 ,𝐴𝐴,𝑤𝑤 = �
𝑗𝑗=1

𝑛𝑛

𝑥𝑥𝑗𝑗 𝑆𝑆,𝐴𝐴 𝑤𝑤𝑗𝑗

• With the SGD update:

−1
2
𝛻𝛻𝑤𝑤𝐿𝐿 𝑤𝑤 = 𝑞𝑞𝜋𝜋(𝑆𝑆,𝐴𝐴) − 𝑥𝑥 𝑆𝑆,𝐴𝐴 𝑇𝑇𝑤𝑤 𝛻𝛻𝑤𝑤 𝑥𝑥 𝑆𝑆,𝐴𝐴 𝑇𝑇𝑤𝑤

= 𝑞𝑞𝜋𝜋(𝑆𝑆,𝐴𝐴) − 𝑥𝑥 𝑆𝑆,𝐴𝐴 𝑇𝑇𝑤𝑤 𝑤𝑤

∆𝑤𝑤 = 𝛼𝛼 𝑞𝑞𝜋𝜋(𝑆𝑆,𝐴𝐴) − �𝑞𝑞 𝑆𝑆,𝐴𝐴,𝑤𝑤 𝑥𝑥 𝑆𝑆,𝐴𝐴
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Incremental Control Algorithms

similar to prediction but substitute 𝑞𝑞𝜋𝜋(𝑆𝑆,𝐴𝐴) :
• For MC, the target is the complete return 𝐺𝐺𝑡𝑡

∆𝜃𝜃 = 𝛼𝛼 𝐺𝐺𝑡𝑡 − �𝑞𝑞 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡 ,𝜃𝜃 𝛻𝛻𝜃𝜃 �𝑞𝑞 𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡 ,𝜃𝜃
• For TD, the target is the TD target 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾 �𝑞𝑞 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡,𝜃𝜃

∆𝜃𝜃 = 𝛼𝛼 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾 �𝑞𝑞 𝑆𝑆𝑡𝑡+1,𝐴𝐴𝑡𝑡+1,𝜃𝜃 − �𝑞𝑞 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡 ,𝜃𝜃 𝛻𝛻𝜃𝜃 �𝑞𝑞 𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡,𝜃𝜃
• For TD(λ), the target is the action-value λ-return 𝑞𝑞𝑡𝑡𝜆𝜆:

– Forward view

∆𝜃𝜃 = 𝛼𝛼 𝑞𝑞𝑡𝑡𝜆𝜆 − �𝑞𝑞 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡,𝜃𝜃 𝛻𝛻𝜃𝜃 �𝑞𝑞 𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡 ,𝜃𝜃

– Backward view:
𝛼𝛼𝑡𝑡 = 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾 �𝑞𝑞 𝑆𝑆𝑡𝑡+1,𝐴𝐴𝑡𝑡+1,𝜃𝜃 − �𝑞𝑞 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡,𝜃𝜃
𝑉𝑉𝑡𝑡 = 𝛾𝛾𝛾𝛾𝑉𝑉𝑡𝑡−1 + 𝛻𝛻𝜃𝜃 �𝑞𝑞 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡 ,𝜃𝜃
∆𝜃𝜃 = 𝛼𝛼𝛼𝛼𝑡𝑡𝑉𝑉𝑡𝑡
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Example: Mountain Car

Deep Learning and Artificial Intelligence 22

Step 428

Goal

4

0
0

2 7

0

120

0

104

0

4 6

Episode 12

Episode 104 Episode 1000 Episode 9000

MOUNTAIN  CAR

R. S. Sutton, A. G. Barto: Reinforcement Learning: An Introduction (Adaptive Computation and 
Machine Learning), The MIT Press; Auflage: 2., 2018, page 245, Fig 10.1



Semi-gradient Sarsa method with tile-coding
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Control and Convergence

• Convergence to the minimal error between Q(S,A,θ) and 𝑞𝑞𝜋𝜋 𝑆𝑆,𝐴𝐴
is problematic.

• Generally convergence is problematic if we employ:
• Value Function Approximation

• Bootstraping

• Off-Policy Learning

(Deadly Triad)

=> For these cases, updates might even increase the error. 

Deep Learning and Artificial Intelligence 24



Baird’s Counterexample

• episodic MDP with 7 states
and 2 actions:

– Dashed: go to any of the upper 
states with 1/6

– Solid: go to lower state 100 %

• reward is always 0
⇒ true value functions = 0

• γ=0.999

• behavioural policy b:
– b(𝑝𝑝𝑎𝑎𝑠𝑠𝑑𝑠𝑠𝑝𝑝| �) =6/7

– b 𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝 � =1/7

• target policy:
– 𝜋𝜋(𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝| �) =1.0

feature vectors: 

x(1)=(2,0,0,0,0,0,0,1)T

x(2)=(0,2,0,0,0,0,0,1)T

…

x(7)=(0,0,0,0,0,0,1,2)T
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2𝑤𝑤1 +𝑤𝑤8 2𝑤𝑤2 +𝑤𝑤8 2𝑤𝑤3 +𝑤𝑤8 2𝑤𝑤4 +𝑤𝑤8 2𝑤𝑤5 +𝑤𝑤8 2𝑤𝑤6 +𝑤𝑤8

𝑤𝑤7 +2𝑤𝑤8

Applying semi-gradient TD(0) makes the weights diverge into 
infinity but switching to on-policy makes the TD(0) converge.



Making gradient methods converge

• TD is not a full GD approach

• Idea: Compute the complete gradient over.
– Straight-forward the error function is smoothed rather then optimized

– Gradient TD follows the true gradient of projected Bellman error and therefore 
does not diverge 
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On/Off 
policy

Algorithm Table 
Lookup

Linear Non-Linear

On-Policy MC ✔ ✔ ✔
On-Policy TD ✔ ✔ ✘
On-Policy Gradient TD ✔ ✔ ✔
Off-Policy MC ✔ ✔ ✔
Off-Policy TS ✔ ✘ ✘
Off-Policy Gradient TD ✔ ✔ ✔



Convergence of Control Methods
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Algorithm Table Lookup Linear Non-Linear

MC Control ✔ (✔) ✘
Sarsa ✔ (✔) ✘
Q-Learning ✔ ✘ ✘
Gradient Q-
Learning

✔ ✔ ✘

(✔)= jumps around the near optimal value function



Batch Methods

Utilization of experience is rather bad with GD methods.

⇒Batch Reinforcement Learning: Find the best fitting 
value function for the given experience
(“training data”)

⇒Using an example only once for making one step might 
be a waste of experience
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Least Squares Prediction

• Given the value function approximation f 𝑠𝑠,𝜃𝜃 ≈ 𝑈𝑈(𝑆𝑆)
• The experience 𝒟𝒟 is given by a set of state-value pairs

𝒟𝒟 = 𝑠𝑠1,𝑈𝑈𝜋𝜋(𝑆𝑆1) , . . , 𝑠𝑠𝑇𝑇 ,𝑈𝑈𝜋𝜋(𝑠𝑠𝑇𝑇)

We want to find the parameters 𝜃𝜃 to provide the value 
function approximation f 𝑠𝑠,𝜃𝜃 with the best fit on 𝒟𝒟.

⇒The least squares method fits the 𝜃𝜃 to minimize the 
sum-squared error between f 𝑠𝑠,𝜃𝜃 and 𝑈𝑈 𝑆𝑆 .

𝐿𝐿𝑆𝑆𝒟𝒟 𝜃𝜃 = ∑𝑡𝑡=1𝑇𝑇 𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 − 𝑓𝑓(𝑠𝑠,𝜃𝜃) 2

≅ 𝔼𝔼𝒟𝒟 𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 − 𝑓𝑓(𝑠𝑠,𝜃𝜃) 2
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SGD with  Experience Replay

Given experience 𝒟𝒟 is given by a set of state-value pairs

𝒟𝒟 = 𝑠𝑠1,𝑈𝑈𝜋𝜋(𝑆𝑆1) , . . , 𝑠𝑠𝑇𝑇 ,𝑈𝑈𝜋𝜋(𝑠𝑠𝑇𝑇)

Repeat:

• Smple state-value pair from 𝒟𝒟 :

𝑠𝑠,𝑈𝑈𝜋𝜋(𝑠𝑠) ~𝒟𝒟
• Apply SGD update on the parameters 𝜃𝜃:

∆𝜃𝜃 = 𝛼𝛼 𝑈𝑈𝜋𝜋 𝑠𝑠 − 𝑓𝑓 𝑠𝑠,𝜃𝜃 𝛻𝛻𝜃𝜃𝑓𝑓 𝑠𝑠,𝜃𝜃

⇒Converges to least squares solution 
𝜃𝜃𝜋𝜋 = 𝑎𝑎𝑝𝑝𝑔𝑔max

𝜃𝜃
𝐿𝐿𝑆𝑆𝒟𝒟 (𝜃𝜃)
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Experience Replay in Deep Q-Networks (DQN)

• DQN applies deep learning to off-policy, non-linear, TD-target 
reinforcement learning. (danger of instability)

• by using experience replay and fixed Q-targets can be trained in a 
stable way.

• Experience: 
– observed transitions 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑝𝑝𝑡𝑡+1, 𝑠𝑠𝑡𝑡+1 in replay memory 𝒟𝒟.
– By sampling independently  from 𝒟𝒟 episodes are decoupled

• Idea of fixed Q-targets:
– Q-learning targets in the experience replay are all generated 

w.r.t. “old”, fixed parameters 𝜃𝜃 −.
– Thus, Q-targets are independent from 𝜃𝜃 in f(s, 𝜃𝜃) which are 

updated
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DQN Algorithm

Repeat:

• Take action at according to ε-greedy policy

• Store transition 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑝𝑝𝑡𝑡+1, 𝑠𝑠𝑡𝑡+1 in replay buffer 𝒟𝒟
• Sample random mini-batch of transition (s,a,r,s’) from 𝒟𝒟
• Compute the Q-learning targets w.r.t. fixed 𝜃𝜃 −

• Optimize MSE between Q-network and Q-learning 
targets:

ℒ𝑖𝑖 𝜃𝜃𝑖𝑖 = 𝔼𝔼𝑠𝑠,𝑡𝑡,𝑟𝑟,𝑠𝑠𝑠~𝒟𝒟 𝑝𝑝 + 𝛾𝛾max
𝑡𝑡𝑠

𝑓𝑓 𝑠𝑠𝑠,𝑎𝑎𝑠;𝜃𝜃 − − 𝑓𝑓 𝑠𝑠,𝑎𝑎,𝜃𝜃
2

by SGD
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Example: DQN on Atari games
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https://gym.openai.com/envs/#atari



DQN in Atari

Idea: Use one network architecture to learn multiple 
computer games on the video buffer as input.

• End-to-end learning of Q(s,a) from pixels s

• Input state s is stack of raw pixels from last 4 frames
(a single fram is not Markov!!)

• Actions: 18 Joystik/button combnation (9 directions + 2 
button states)

• Reward change in score for the step (most Atari games 
had general scores constantly rewarding actions)
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DQN on Atari Games Network Architecture
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https://media.nature.com/lw926/nature-assets/nature/journal/v518/n7540/images/nature14236-f1.jpg

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., 
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S. & Hassabis, 
D. (2015). Human-level control through deep reinforcement learning. Nature, 518, 529--533. 



DQN Results in Atari
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Advantages replay buffer and fixed targets
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Replay 
Fixed-Q

Replay Q-
learning

No replay 
Fixed-Q

No replay Q-
learning

Breakout 316.81 240.73 10.16 3.17
Enduro 1006.3 831.25 141.89 29.1
River Raid 7446.62 4102.81 2867.66 1453.02
Seaquest 2894.4 822.55 1003 275.81
Space Invaders 1088.94 826.33 373.22 301.99

Lecture notes D. Silver: Introduction to Reinforcement Learning
(http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)
Lecture 6: Function Approximation (Slide 41)

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html


Linear Least Squares Prediction

• Experience replay finds the least-squares solutions by 
sampling and using SGD on mini-batches

• If we use linear value function approximation, we can 
analytically solve for a solution minimizing 𝐿𝐿𝑆𝑆𝒟𝒟 𝜃𝜃 :

𝐿𝐿𝑆𝑆𝒟𝒟 𝑤𝑤 = �
𝑡𝑡=1

𝑇𝑇

𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 − 𝑥𝑥𝑡𝑡𝑇𝑇𝑤𝑤 2

• For a quadratic loss the derivative is linear and to find a 
local minimum we have to compute its zero
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Linear Least Squares Prediction

• At minimum 𝐿𝐿𝑆𝑆𝒟𝒟 𝑤𝑤 = 0,i.e., the expected update is zero as well.
𝔼𝔼𝒟𝒟 ∆𝑤𝑤 = 0

𝛼𝛼�
𝑡𝑡=1

𝑇𝑇

𝑥𝑥 𝑠𝑠𝑡𝑡 𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 − 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑇𝑇𝑤𝑤 = 0

∑𝑡𝑡=1𝑇𝑇 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 = ∑𝑡𝑡=1𝑇𝑇 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑇𝑇𝑤𝑤

w = �
𝑡𝑡=1

𝑇𝑇

𝑥𝑥 𝑠𝑠𝑡𝑡 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑇𝑇

−1

�
𝑡𝑡=1

𝑇𝑇

𝑥𝑥 𝑠𝑠𝑡𝑡 𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡

• For N features, direct solution 𝑂𝑂 𝑁𝑁3 (matrix inversion)
• Incremental solution time 𝑂𝑂 𝑁𝑁2 using Sherman-Morrision
• Usability depends on the ratio between the number of features N 

and the number of samples T
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Linear Least Squares Prediction Algorithms

• Again: in practice 𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 is yet unknown

⇒ Use noisy or biased samples of 𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡

• LMSC - Least Squares Monte-Carlo

𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 ≈ 𝐺𝐺𝑡𝑡
• LSTD – Least Squares Temporal Difference Learning

𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 ≈ 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑓𝑓 𝑠𝑠𝑡𝑡 ,𝑤𝑤
• LSTD(λ) – Least Squares with TD(λ)

𝑈𝑈𝜋𝜋 𝑠𝑠𝑡𝑡 ≈ 𝐺𝐺𝑡𝑡𝜆𝜆

⇒ For each target we can solve directly for the fixed point of 
MC/TD/ TD(λ) because the targets are considered as fixed
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Linear Least Squares Prediction Algorithms (2)

LMSC: 0 = 𝛼𝛼∑𝑡𝑡=1𝑇𝑇 𝐺𝐺𝑡𝑡 − 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑇𝑇𝑤𝑤 𝑥𝑥 𝑠𝑠𝑡𝑡
𝑤𝑤 = ∑𝑡𝑡=1𝑇𝑇 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑇𝑇 −1 ∑𝑡𝑡=1𝑇𝑇 𝑥𝑥 𝑠𝑠𝑡𝑡 𝐺𝐺𝑡𝑡

LSTD: 0 = 𝛼𝛼∑𝑡𝑡=1𝑇𝑇 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑥𝑥 𝑠𝑠𝑡𝑡+1 𝑇𝑇𝑤𝑤 − 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑇𝑇𝑤𝑤 𝑥𝑥 𝑠𝑠𝑡𝑡

𝑤𝑤 = ∑𝑡𝑡=1𝑇𝑇 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑥𝑥 𝑠𝑠𝑡𝑡 − 𝛾𝛾𝑥𝑥 𝑠𝑠𝑡𝑡+1
𝑇𝑇 −1

∑𝑡𝑡=1𝑇𝑇 𝑥𝑥 𝑠𝑠𝑡𝑡 𝑅𝑅𝑡𝑡+1
LSTD(λ): 0 = ∑𝑡𝑡=1𝑇𝑇 𝛼𝛼𝛼𝛼𝑡𝑡𝑉𝑉𝑡𝑡

𝑤𝑤 = ∑𝑡𝑡=1𝑇𝑇 𝑉𝑉𝑡𝑡 𝑥𝑥 𝑠𝑠𝑡𝑡 − 𝛾𝛾𝑥𝑥 𝑠𝑠𝑡𝑡+1
𝑇𝑇 −1

∑𝑡𝑡=1𝑇𝑇 𝑉𝑉𝑡𝑡𝑅𝑅𝑡𝑡+1
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Convergence of Linear Least Square Prediction
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On/Off 
policy

Algorithm Table 
Lookup

Linear Non-Linear

On-Policy MC ✔ ✔ ✔
LSMC ✔ ✔ -

TD ✔ ✔ ✘
LSTD ✔ ✔ -

Off-Policy MC ✔ ✔ ✔
LSMC ✔ ✔ -

TD ✔ ✘ ✘
Gradient TD ✔ ✔ -



Least Squares Control Algorithms

• Policy evaluation: Policy evaluation by least squares Q-Learning
• Policy improvement: Greedy policy improvement
• We want to make use of all experience in 𝒟𝒟 to:

– Efficienty evaluate the policy
– Improve the policy

But: The experience is drawn from different policies from various 
stages of training.
⇒ To evaluate 𝑞𝑞𝜋𝜋 𝑆𝑆,𝐴𝐴 we must learn off-policy
⇒ Use the same idea as on Q-learning:

• Use experience generated by old policy: 𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡,𝑅𝑅𝑡𝑡+1,𝑆𝑆𝑡𝑡+1~𝜋𝜋𝑜𝑜𝑡𝑡𝑜𝑜
• Consider alternative successor action A’=𝜋𝜋𝑛𝑛𝑡𝑡𝑤𝑤(𝑆𝑆𝑡𝑡+1)
• Update f(𝑆𝑆𝑡𝑡,𝐴𝐴𝑡𝑡,w) towards value of alternative action:

𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑓𝑓 𝑆𝑆𝑡𝑡+1,𝐴𝐴𝑠,𝑤𝑤
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Least Squares Q-Learning

• Given the following Q-learning update

𝛼𝛼 = 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾 𝑓𝑓 𝑆𝑆𝑡𝑡+1,𝜋𝜋 𝑆𝑆𝑡𝑡+1 ,𝑤𝑤 − 𝑓𝑓 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡 ,𝑤𝑤
∆𝑤𝑤 = 𝛼𝛼𝛼𝛼𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡

• LSTDQ algorithm: solve for total update = zero

0 = �
𝑡𝑡=1

𝑇𝑇

𝛼𝛼 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾 𝑓𝑓 𝑆𝑆𝑡𝑡+1,𝜋𝜋 𝑆𝑆𝑡𝑡+1 ,𝑤𝑤 − 𝑓𝑓 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡,𝑤𝑤 − 𝑓𝑓 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡,𝑤𝑤 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡

𝑤𝑤 = �
𝑡𝑡=1

𝑇𝑇

𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡 𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡 − 𝛾𝛾𝑥𝑥 𝑆𝑆𝑡𝑡+1,𝜋𝜋 𝑆𝑆𝑡𝑡+1
𝑇𝑇

−1

�
𝑡𝑡=1

𝑇𝑇

𝑥𝑥 𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡 𝑅𝑅𝑡𝑡+1
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Least Squares Policy Iteration Algorithm
• Pseudocode Policy Iteration using LSTDQ
• Experience 𝒟𝒟 is re-evaluated with different 

policies

function LSPI-TD(𝒟𝒟, π0) 
π′ ← π𝟎𝟎
repeat

π ← π′
Q ← LSTDQ(π, D)
for all s ∈ S do

π′(s) ← arg max
𝑡𝑡∈𝐴𝐴

Q(s, a)
end for

until (π ≈ π′)
return π

End function
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Convergence of Control Algorithms
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Algorithm Table Lookup Linear Non-Linear

MC Control ✔ (✔) ✘
Sarsa ✔ (✔) ✘
Q-Learning ✔ ✘ ✘
LSPI ✔ (✔) -

(✔)= jumps around the near optimal value function
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level control through deep reinforcement learning. Nature, 518, 529--
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