
DBS

Lecture Notes © 2018 Matthias Schubert 

Lecture Notes for
Deep Learning and Artificial Intelligence

Winter Term 2018/2019

Sequential Decision Problems 
and autonomous Agents



What is Artificial Intelligence?

Deep Learning and Artificial Intelligence 2

Thinking Humanly: „The exciting 
new effort to make computers think 
.. machines with minds, in the full 
and literal sense“(Haugeland 1985)
„[The automation of] activities that 
we associate with human thinking, 
activities such as decision making, 
problem solving, learning..“(Bellman 
1978)

Thinking Rationally: „The study of 
mental faculties through the use of 
computational models“(Charniak and 
McDermot 1985)
„The study of the computations that 
make it possible to perceive, reason, 
and act.“(Winston 1992)

Acting Humanly: „The art of 
creating machines that perform 
functions that require intelligence 
when performed by people. 
“(Kurzweil, 1990)
„The study of how to make 
computers do things at which, at the 
moment, people are better.“(Rich 
and Knight 1991)

Acting Rationally: „Computational 
Intelligence is the study of the 
design of intelligent agents.“(Poole 
et al., 1998)
„AI.. Is concerned with intelligent 
behavior in artefacts. “(Nilsson, 
1998)

From S.Russel, P. Norwig: Artificial Intelligence: A modern Approach, Pearson(2016)



AI & Machine/Deep Learning

so far we talked about Machine/Deep Learning:
• learns from data (observations)
• predicts future states
• interprets data
• transforms data 

• ..

machine learning is a core ingredient of modern AI:
• does not require exact knowledge of the mechanisms
• can handle “populations” which might be similar but vary
• can handle uncertain and unknown information

If we want to imitate human minds, we have to allow for individualism.

Deep Learning and Artificial Intelligence 3



but there is more to Artificial Intelligence:

• make better decision: What is knowledge without using it ?
• make machines act in an intelligent way: solve complex 

tasks with machines (chat bots, AI for games, ..)
• incorporate abstract knowledge and known physics:

– not everything can be learned from observation
– Global warming can be predicted based on physics

but by observing 10.000 planets for 1000 years.
– Humans conclude, abstract and transfer knowledge

=> Why learns something from data, I already know?
=> A child needs to 1 image to learn a new object

• Artificial general intelligence (AGI): build a „mind“ that can 
solve various tasks and learns from all of them:
– Specific AIs heavily adapt to new tasks
– Specific AIs have to retrain on lots of data
=> AGIs would learn different tasks and transfer what is applicable

Deep Learning and Artificial Intelligence 4



AI and Decision Making

What is behaviour?
The reaction of a subject or an object to its 
environment? 
• passive: a stone falls to the ground
• active: a mosquito flies into the light bulb

What makes behaviour intelligent?
• act like a human
• pursue a certain goal

=> Decide on an action to improve on a goal.

Deep Learning and Artificial Intelligence 5



Prediction  and Decision Making

How to make decisions to reach a goal?
• What do you know about the current situation ?
• What are your options ?
• Which option is the best?

Problems:
• Parts of your current situation might be unknown or 

not modeled
• Considering all options is often not possible
• Considering all possible impacts of choosing an option 

is often not possible.
• Your goal might not be reachable by one decision

6Deep Learning and Artificial Intelligence



Why is this connected to Machine learning?
Uncertain impacts :
• We do not really know what happens if we do something
• How does the environment react?
• How well do we perform the selected action?

Uncertain costs and rewards:
• We do not know if and when an action pays off. 
• We cannot exactly predict uncertain factors like waiting 

times, prices, joy, congestions,..

Uncertain situation:
• We only got some input about our situation.

e.g. sensor data, player view,..
• We might misinterpret a situation.

7Deep Learning and Artificial Intelligence



Sequential Decision Making 
Machine learning can help to reduce these uncertainties 
by making good decision.

But: Can it do more?

• Observe humans or other intelligent agents and imitate 
their behaviour

• Observe behaviour and learn the outcomes and long 
term rewards of decisions

⇒Directly learn the best action in any situation

This is the domain of Reinforcement Learning and 
training autonomous agents.

8Deep Learning and Artificial Intelligence



Applications Sequential Decision Making 

• AI for Games:
– Competitive agents: Alpha Go, Atari Games, Chess,..
– Realistic opponents: football simulations,

• Controlling Robots and Systems
– Autonomous Cars
– Drones
– Industrial Robots
– Power stations

• Communicate with people
– Chatbots for Technical Support
– Ordering Assistants (e.g. reservations)
– Internet advertisement

• Build intelligent assistant systems
– planning trips and routs
– optimize processes
– manage financial portfolio

Deep Learning and Artificial Intelligence 9



Reinforcement Leaning for board games

• games are classical domain of AI because opponent 
behaves not just nondeterministic but antagonistic

• progress on games like chess, backgammon, Poker.

• for a long time Go was considered the biggest 
challenge due to its enormous branching factor

• In Jan 2016: Deepmind challenged Grand Maste Lee 
Sedol with a program called Alpha Go and won.

• Alpha Go is a combination of reinforcement learning 
and Deep learning techniques which was trained on 
a huge database of Go matches.

• In 2017 the same time proposed Alpha Go Zero: 
Learns any board Game based on the rules only by 
playing against version of itself. Alpha Go Zero 
already outperformd prevision version of Alpha Go

Deep Learning and Artificial Intelligence 10

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., 
Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T. & Hassabis, D. (2017). 
Mastering the game of Go without human knowledge. Nature, 550, 354--. 



Games as Testbed for AGIs

AI is not build single purpose but 
receives images and general controls 
such as a human.
• DQN on Atari Games
https://deepmind.com/research/publications/playing-atari-
deep-reinforcement-learning/

• OpenAI Five (Dota2)
https://blog.openai.com/openai-five/

• RL for Starcraft II: 
https://deepmind.com/blog/deepmind-and-blizzard-open-
starcraft-ii-ai-research-environment/

Deep Learning and Artificial Intelligence 11

https://techxplore.com/news/2016-11-deepmind-
boost-ai-unreal-agent.html

ttps://deepmind.com/research/publications/playing-atari-deep-reinforcement-learning/
https://blog.openai.com/openai-five/
https://deepmind.com/blog/deepmind-and-blizzard-open-starcraft-ii-ai-research-environment/


RL in Control and Robotics

• Control robots
and drones

• Chatbots
For example: Google’s assistent

(https://www.youtube.com/watch?v=D5VN56jQMWM)

Deep Learning and Artificial Intelligence 12

https://robohub.org/drones-that-drive/



Modelfree and Modelbased Approaches

• Modelbased approaches a.k.a. planning
– based on a complete model of the environment
– computes rewards and actions within this models
– optimizes policy based within this model

• Modelfree approaches
– Assumes an interactive environment
– Agent gets observations and selects actions
– Environment process actions and sends new 

observation
– The agents learns  the best action based on the 

encountered interactions (episodes)

Deep Learning and Artificial Intelligence 13



Prediction and Control

• Prediction:
Predicts how good an agents fares on a given 
problem.

⇒ Evaluate future behaviour

• Control:
Optimizes the action policy of an agent.

=> Optimize future behaviour

Deep Learning and Artificial Intelligence 14



Agent and Environment

Deep Learning and Artificial Intelligence 15

State

action processing:
• robot motors
• game engine
• simulation

policy

agent View

Environment Agent

observation

action



Environment

Represents the world in which the agent is acting.
(e.g. a game, a simulation or a robot)
• provides information about the state 

(e.g. images, sounds, game states)
• receives actions and applies them to alter its state

Properties of Environments
• partially / fully observable
• with known model/ model free 
• deterministic / non-deterministic
• single vs. multi-agent
• competitive vs. collaborative
• static / dynamic / semi-dynamic
• discrete / continuous (states and/or actions)

Deep Learning and Artificial Intelligence 16



Agents

Autonomous entity within the environment.
types of agents:
• simple reflex agent

=> condition-action-rule 
(example: If car-in-front-is-braking then initiate-braking.)

• model-based reflex agents (add internal state from history)

• goal-based agents (works towards a goal)

• utility-based agents (optimizes rewards/minimizes costs)

• learning agents (learns how to optimize rewards/costs)

Deep Learning and Artificial Intelligence 17



• behavior is a sequence of actions
• sometimes immediate rewards must be sacrificed to 

acquire rewards in the future
example: invest today to receive a pension in old age

• short-rewards might be very unlikely in many situations
example: score a goal from your own half in football

=> intelligent behavior needs to plan ahead

Sequential Decision Making

Deep Learning and Artificial Intelligence 18



Agent and Environment

At each step t the agent:
• selects action At

• receives observation Ot

• receives scalar reward Rt

19Deep Learning and Artificial Intelligence 19

agent View

Environment Agentobservation Ot

action At

reward Rt

At each step t the environment:
• emits observation Ot

• emits scalar reward Rt

• receives and processes action At



History and State
• What is the information we can base the decision on?

• History: Sequence of observations, action, rewards

𝐻𝐻𝑡𝑡 = 𝑂𝑂1,𝑅𝑅1, 𝐴𝐴1, 𝑂𝑂2, 𝑂𝑂2, 𝑂𝑂2,…, 𝐴𝐴𝑡𝑡−1, 𝑂𝑂𝑡𝑡, 𝑅𝑅𝑡𝑡
• all observable variables until t
• The history documents: 

– How the environment developed?

– How the environment reacted to the last action?

– Which action the agent selected at t given the 
history until t?

• State: Used to decide on the next decision.

formally: 𝑆𝑆𝑡𝑡 = 𝑓𝑓 𝐻𝐻𝑡𝑡
(describes everything relevant to the decision)

20Deep Learning and Artificial Intelligence



Environment and Agent State

21Deep Learning and Artificial Intelligence 21

agent View

Environment Agentobservation Ot

action At

reward Rt

Agent state 𝑆𝑆𝑡𝑡𝑎𝑎:
• Internal representation within agent a
• used for making the next decision

• 𝑆𝑆𝑡𝑡𝑎𝑎 might be a function f(Ht)

Environment state 𝑆𝑆𝑡𝑡𝑒𝑒:
• Complete status of e
• Observation/reward are derived 

from 𝑆𝑆𝑡𝑡𝑒𝑒
• 𝑆𝑆𝑡𝑡𝑒𝑒 is usually invisible to the agent
• 𝑆𝑆𝑡𝑡𝑒𝑒might contain irrelevant 

information



Information State

A Markov state or information state contains all useful 
information from history.

Definition: A state St is Markov if and only if
𝑃𝑃 𝑆𝑆𝑡𝑡+1 𝑆𝑆𝑡𝑡 = 𝑃𝑃 𝑆𝑆𝑡𝑡+1 𝐻𝐻𝑡𝑡

• everything to decide the future is contained in St

=> St is a sufficient statistic of the future

• the environment state 𝑆𝑆𝑡𝑡𝑒𝑒 is Markov

• the history Ht is Markov

22Deep Learning and Artificial Intelligence



Observability of the Environment
• Full observability: 𝑂𝑂𝑡𝑡= 𝑆𝑆𝑡𝑡𝑒𝑒 = 𝑆𝑆𝑡𝑡𝑎𝑎

the agent observes the complete environment state 𝑆𝑆𝑡𝑡𝑒𝑒

= (fully observable) Markov Decision Process (MDP)

• Partially observability: 𝑂𝑂𝑡𝑡≠ 𝑆𝑆𝑡𝑡𝑒𝑒

= partially observable Markov decision process (POMDP)
⇒agent must construct 𝑆𝑆𝑡𝑡𝑎𝑎 from Ht

⇒Beliefs of environment state:
𝑆𝑆𝑡𝑡𝑎𝑎 = 𝑃𝑃 𝑆𝑆𝑡𝑡𝑒𝑒 = 𝑠𝑠1 , . . ,𝑃𝑃 𝑆𝑆𝑡𝑡𝑒𝑒 = 𝑠𝑠𝑛𝑛

example: robot with a camera (not exact location), poker player
(only sees public cards), chat bot (does not know what the 
costumer wants from it)

23Deep Learning and Artificial Intelligence



• Set of states S = {s1,..,sn}

• Set of actions A(s) for each state s∈ S 
• Reward function R: R(s) (if negative = cost function)

• Transition function T: S×A => S:    t(s,a) = s’
(deterministic case !!)

• this implies:

• episode = s1 ,a1,r1 ,s2,a2,r2 ,s3 ,a3 ,r3 ,s3 ...,sl ,al ,rl ,sl+1 

• reward of the episode:  ∑𝑖𝑖=1𝑙𝑙 𝛾𝛾𝑖𝑖𝑟𝑟𝑖𝑖with 0 < 𝛾𝛾 ≤ 1
(𝛾𝛾=1: all rewards count the same, 𝛾𝛾 <1: early rewards count more )

• sometimes: process terminates when reaching a terminal state sT

or process end after k moves.

• a strategy can be described by the actions in the episode which 
imply fixes states and rewards

Deterministic Sequential Planning

Deep Learning and Artificial Intelligence 24



• Static, discrete, deterministic, known and fully observable 
environments:
• S, A are discrete sets and known
• t(s,a) has a deterministic state s’
• Agent knows the current state

• goal: find a sequence of actions (path) that maximize the 
cumulated future rewards.

examples:
• routing from A to B on the map or find an exit
• riddles like the goat, wolf, cabbage transport problem

Deterministic Sequential Planning

Deep Learning and Artificial Intelligence 25



Example: Goat, Wolf, Cabbage
Task:
• You have a goat, a wolf and a cabbage you want to transport over 

a river on a small boat.
• The boat can only carry you an one item.
• If the wolf is alone with the goat, the wolf eats the goat.
• If the goat is alone with the cabbage the goat will eat the cabbage.

Which strategy can transport all three items over the river 
without losing one with a minimum amount of crossings?

Approach: A state models the boat, wolf, cabbage, goat as 
binary variable. (not all combinations are viable)
Each crossing costs 1 time unit. The task is fulfilled when 
reaching the state (1,1,1,1) = all items are on the other side.

26Deep Learning and Artificial Intelligence



Example: Goat, Wolf, Cabbage

27Deep Learning and Artificial Intelligence

(0,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1) (0,1,1,0) (0,1,0,1) (0,0,1,1) (0,1,1,1)

• (b,w,g,c)=(boat, wolf, goat, cabbage)
• invalid states: w=g≠b, g=c ≠b
• find the shortest path between (0,0,0,0) and (1,1,1,1)
Problem: When selecting an action, we do not know if it is
on the shortest path.
Solution: Breadth-First search=first path arriving at (1,1,1,1) is optimal.
(if costs per action vary, use Dijkstra’s algorithm)

(1,0,0,0) (1,1,0,0) (1,0,1,0) (1,0,0,1) (1,1,1,0) (11,0,1) (1,0,1,1) (1,1,1,1)



Problem: We might not know the outcome of an executed action

• the goat might not like the cabbage

• the wolf seems not to be hungry and leaves the goat be

• the boat can sink on each trip and I might drown

=> transitions lead to uncertain future states

⇒ t(s,a) is a stochastic function T: P(s’|s,a) for all s,s’ ∈ S, a ∈ A

implications:

• we do not know the future state after performing action a.

• the reward R(s)/cost C(s) gets stochastic 

• when searching a terminal state, there might be no secure path 
leading us to the target (the boat can always sink).

=> We need an action for each situation, we might encounter and 
not just the ones on a single path to the goal.

Nondeterministic Planning Problems

Deep Learning and Artificial Intelligence 28



Policies and Utilities
• in dynamic, discrete, non-deterministic, known and fully 

observable environments

• a policy 𝝅𝝅 is a mapping defining for every state 𝑠𝑠 ∈ 𝑆𝑆 an 
action 𝜋𝜋 𝑠𝑠 ∈ 𝐴𝐴 𝑠𝑠 (agent knows what to do in any situation)

• stochastic policies: Sometimes it is beneficial to vary the 
action then 𝜋𝜋 𝑠𝑠 is a distribution function over A(s).
– think of a game where strictly following a strategy makes you 

predictable. 
What is the best policy for Rock - Paper – Scissor having an 

unknown opponent?

– sometimes best policy involves trying out different things

Deep Learning and Artificial Intelligence 29



Markov Process

Markov processes are memoryless random processes 
generating sequences of states:

A Markov Process (or Markov Chain) is a tuple ⟨𝑆𝑆, ⟩𝑃𝑃 :
– S is a finite set of states
– P is a state transition probability matrix

𝑃𝑃𝑠𝑠,�́�𝑠 = Pr[𝑆𝑆𝑡𝑡+1 = �́�𝑠|𝑆𝑆𝑡𝑡 = 𝑠𝑠]

⇒ shortened definition: start and terminal states can be 
modelled as ordinary states, but are often mentioned 
separately.

⇒ Markov chains describe state sequence under a 
particular policy

Deep Learning and Artificial Intelligence 30



Markov Reward Process

Markov Reward Process ⟨𝑆𝑆,𝑃𝑃,𝑅𝑅, ⟩𝛾𝛾 :
– S is a finite set of states

– P is a state transition probability matrix
– 𝑃𝑃𝑠𝑠,�́�𝑠 = Pr[𝑆𝑆𝑡𝑡+1 = �́�𝑠|𝑆𝑆𝑡𝑡 = 𝑠𝑠]
– R is a reward function 𝑅𝑅𝑠𝑠 = 𝐸𝐸[𝑅𝑅𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠]
– 𝛾𝛾 discount factor, 𝛾𝛾 ∈ 0,1

⇒ MDP under a fixed policy 𝜋𝜋 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑟𝑟𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝)
⇒ allows to evaluate sequences of states:

∑𝑖𝑖=1𝑙𝑙 𝛾𝛾𝑖𝑖𝑟𝑟𝑖𝑖 with  0 < 𝛾𝛾 ≤ 1 (discounted reward)

Deep Learning and Artificial Intelligence 31



Markov Decision Process

A Markov Decision Process ⟨𝑆𝑆,𝐴𝐴,𝑃𝑃,𝑅𝑅, ⟩𝛾𝛾 :
– S is a finite set of states

– A is a finite set of actions

– P is a state transition probability matrix
𝑃𝑃𝑠𝑠,�́�𝑠 = Pr[𝑆𝑆𝑡𝑡+1 = �́�𝑠|𝑆𝑆𝑡𝑡 = 𝑠𝑠]

– R is a reward function 𝑅𝑅𝑠𝑠 = 𝐸𝐸[𝑅𝑅𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠]
– 𝛾𝛾 discount factor, 𝛾𝛾 ∈ 0,1

⇒ environment where all states are Markov

⇒ allows to evaluate the quality of all possible policy

Deep Learning and Artificial Intelligence 32



simple example: grid world

Deep Learning and Artificial Intelligence 33

+1

-1

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

states S and rewards R(S)

80%

10%10%

transition function P(S’|S,a)actions

+1

-1

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

policy



Finite and Infinite Horizon MDP

When does the process stop?
Finite horizon:
• process terminates after n steps
• γ=1 allowed => all future rewards/costs are weighted equally
• but: policies become non-stationary 𝜋𝜋 𝑠𝑠 → 𝜋𝜋𝑡𝑡 𝑠𝑠

Infinite horizon:
• process potentially goes on forever or until a terminal state is reached
• termination might depend on the policy

(proper policy: eventually reaches goal at some future time)
• γ<1 usually required: 

– future rewards/costs are weighted less
– rewards of infinite random walks converges to a fixed value
– human behaviour favours immediate rewards
– immediate rewards earn more interest in financial applications

• Ergodic Markov Processes optimize the average reward for γ=1

Deep Learning and Artificial Intelligence 34



Partially Observable Markov Decision Process

A Partially Observable Markov Decision Process (POMDP) is a MDP 
with hidden states (c.f. Hidden Markov Model).
A POMDP is a tuple ⟨𝑆𝑆,𝐴𝐴,𝑂𝑂,𝑃𝑃,𝑅𝑅,𝑍𝑍, ⟩𝛾𝛾 :

– S is a finite set of states
– A is a finite set of actions
– O is a finite set of observations
– P is a state transition probability matrix

𝑃𝑃𝑠𝑠,�́�𝑠 = Pr[𝑆𝑆𝑡𝑡+1 = �́�𝑠|𝑆𝑆𝑡𝑡 = 𝑠𝑠]
– R is a reward function 𝑅𝑅𝑠𝑠 = 𝐸𝐸[𝑅𝑅𝑡𝑡+1|𝑆𝑆𝑡𝑡 = 𝑠𝑠]
– Z is an observation function, 𝑍𝑍𝑠𝑠′𝑜𝑜

𝑎𝑎 = 𝑃𝑃[𝑂𝑂𝑡𝑡+1 = 𝑚𝑚|𝑆𝑆𝑡𝑡+1 = 𝑠𝑠′,𝐴𝐴𝑡𝑡 = 𝑎𝑎]
– 𝛾𝛾 discount factor, 𝛾𝛾 ∈ 0,1

⇒ we only observe o but not s
⇒ Z describes the likelihood of observation o when taking action a in 

state s’

Deep Learning and Artificial Intelligence 35



Belief States

Given history ℎ𝑡𝑡 = 𝑂𝑂1,𝑅𝑅1, 𝐴𝐴1, 𝑂𝑂2, 𝑂𝑂2, 𝑂𝑂2,…, 𝐴𝐴𝑡𝑡−1, 𝑂𝑂𝑡𝑡, 𝑅𝑅𝑡𝑡. A 
belief state b(h) is a probability distribution over states, 
conditioned on the history h:

𝑏𝑏 ℎ = (𝑃𝑃 𝑆𝑆𝑡𝑡 = 𝑠𝑠1 𝐻𝐻𝑡𝑡 = ℎ𝑡𝑡 , . . ,𝑃𝑃 𝑆𝑆𝑡𝑡 = 𝑠𝑠𝑛𝑛 𝐻𝐻𝑡𝑡 = ℎ𝑡𝑡 )

⇒b(h) described the likelihood that we are in state si at
time t given the history ℎ𝑡𝑡.

⇒𝐻𝐻𝑡𝑡 satisfies the Markov property and thus, b(h) satisfies 
it as well.

⇒POMDP can be described by history or beliefstate trees

⇒adds uncertainty about the state to the expectation

Deep Learning and Artificial Intelligence 36



Further Variants of MDPs

• Countably infinite state and/or action spaces
=> can be handled similarly as ordinary MDPs

• Continuous state and/or action spaces
=> Closed form for linear quadratic model (LQR)

• Continuous time
– Requires partial differential equations

– Hamilton-Jacobi-Bellman (HJB) equation

– Limiting case of Bellman equation ( t->0)

• …

Deep Learning and Artificial Intelligence 37



Evaluating Policies

We can compute the (discounted) reward of an episode, but how can 
be compute the reward of following a policy.
=> is in a nondeterministic environment, we might observe a variety 

of different episodes following the policy  π => reward uncertain

Estimate the expected reward following π :
• We define the utility/state-value function of state s following policy 

π as: 𝑈𝑈𝜋𝜋 𝑠𝑠𝑖𝑖 = 𝐸𝐸 ∑𝑡𝑡=𝑖𝑖∞ 𝛾𝛾𝑡𝑡𝑅𝑅(𝑠𝑠𝑡𝑡) 𝑠𝑠𝑖𝑖 = 𝑠𝑠,𝜋𝜋

• Correspondingly, we define the action-value function:
𝑞𝑞𝜋𝜋 𝑠𝑠,𝑎𝑎 = 𝐸𝐸 ∑𝑡𝑡=𝑖𝑖∞ 𝛾𝛾𝑡𝑡𝑅𝑅(𝑠𝑠𝑡𝑡) 𝑠𝑠𝑖𝑖 = 𝑠𝑠,𝐴𝐴𝑖𝑖 = 𝑎𝑎,𝜋𝜋

=> How to compute 𝑈𝑈𝜋𝜋 𝑠𝑠𝑖𝑖 and 𝑞𝑞𝜋𝜋 𝑠𝑠,𝑎𝑎 ?

Deep Learning and Artificial Intelligence 38



Bellman’s Equations

• What is the reward of following 𝜋𝜋? (prediction)
Utility 𝑈𝑈𝜋𝜋 𝑠𝑠 : expected reward when following 𝜋𝜋 in state s 
w.r.t. some 0 ≤ 𝛾𝛾 ≤ 1:

• 𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝐸𝐸[∑𝑡𝑡=0∞ 𝛾𝛾𝑡𝑡𝑅𝑅(𝑠𝑠𝑡𝑡) |𝑠𝑠0 = 𝑠𝑠,𝜋𝜋]
• 𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝛾𝛾0𝑅𝑅 𝑠𝑠 + 𝐸𝐸[∑𝑡𝑡=1∞ 𝛾𝛾𝑡𝑡𝑅𝑅(𝑠𝑠𝑡𝑡) |𝑠𝑠0 = 𝑠𝑠,𝜋𝜋]
• 𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 ∑𝑠𝑠′∈𝑆𝑆 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝜋𝜋 𝑈𝑈𝜋𝜋 𝑠𝑠′

(Bellmann Equation)

• What is the optimal policy 𝜋𝜋*? (control)
Bellman Optimality Equation:

𝑈𝑈𝜋𝜋∗ 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾max
𝑎𝑎∈𝐴𝐴

�
𝑠𝑠′∈𝑆𝑆

𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈𝜋𝜋∗(𝑠𝑠′)

Deep Learning and Artificial Intelligence 39



• Policy evaluation is much simpler than solving the bellman equation 
(c.f. Markov Reward Process)

𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 �
𝑠𝑠′∈𝑆𝑆

𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝜋𝜋 𝑈𝑈𝜋𝜋(𝑠𝑠′)

• Note that the non-linear function “max” is not present

• We can solve this by standard algorithms for linear equations systems

• For large state spaces solving linear equation systems takes (𝑂𝑂(𝑝𝑝3))

• In large state spaces a simplified Bellman update for k times can be 
more performant

𝑈𝑈𝑖𝑖+1 𝑠𝑠 ← 𝑅𝑅 𝑠𝑠 + 𝛾𝛾�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝜋𝜋𝑖𝑖 𝑈𝑈𝑖𝑖(𝑠𝑠′)

Policy Evaluation

Deep Learning and Artificial Intelligence 40



• We are looking for the optimal policy.
• The exact utility values are not relevant if one action is 

clearly the optimal.

• Idea:
Alternate between:

• Policy evaluation: given a policy, calculate the 
corresponding utility values

• Policy improvement: Calculate the policy given the 
utility values 𝜋𝜋 𝑠𝑠 = 𝑎𝑎𝑟𝑟𝑎𝑎max

𝑎𝑎∈𝐴𝐴
∑𝑠𝑠′∈𝑆𝑆 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈∗(𝑠𝑠′)

(greedy policy selection)

Finding optimal Policies: Policy Iteration

Deep Learning and Artificial Intelligence 41



repeat
𝑈𝑈 ← PolicyEvaluation(𝜋𝜋,𝑈𝑈,𝑚𝑚𝑚𝑚𝑝𝑝)
𝑢𝑢𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑝𝑝𝑎𝑎𝑚𝑚𝑚𝑚?← 𝑝𝑝𝑟𝑟𝑢𝑢𝑚𝑚
for each state s in S do

if max
𝒂𝒂∈𝑨𝑨

∑𝒔𝒔′ 𝑷𝑷 𝒔𝒔′ 𝒔𝒔,𝒂𝒂 𝑼𝑼 𝒔𝒔′ > ∑𝒔𝒔′ 𝑷𝑷 𝒔𝒔′ 𝒔𝒔,𝝅𝝅 𝑼𝑼 𝒔𝒔′ then

𝝅𝝅 𝒔𝒔 ← argmax
𝑎𝑎∈𝐴𝐴

∑𝒔𝒔′ 𝑷𝑷 𝒔𝒔′ 𝒔𝒔,𝒂𝒂 𝑼𝑼[𝒔𝒔′]

𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒂𝒂𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖?← 𝒇𝒇𝒂𝒂𝒇𝒇𝒔𝒔𝒖𝒖
until 𝑢𝑢𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑝𝑝𝑎𝑎𝑚𝑚𝑚𝑚?
return 𝜋𝜋

Policy Iteration

Deep Learning and Artificial Intelligence 42



• if we use Bellman updates  anyway, we can join both steps
• update Bellman optimality equation directly:

𝑈𝑈∗ 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 𝑎𝑎𝑟𝑟𝑎𝑎max
𝑎𝑎∈𝐴𝐴

�
𝑠𝑠′∈𝑆𝑆

𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈∗(𝑠𝑠′)

• Non-linear system of equations
• Use Dynamic Programming:

• Compute utility values for each state
by using the current utility estimate

• Repeat until it converges to 𝑈𝑈∗

• convergence can be proofed by contraction

(c.f.: S.Russel, P. Norwig: Artificial Intelligence: A modern Approach, 
Pearson(2016), page 654 for the proof)

Value Iteration

Deep Learning and Artificial Intelligence 43



repeat
𝑈𝑈 ← 𝑈𝑈′

𝛿𝛿 ← 0
for each state s in S do

𝑈𝑈′ 𝑠𝑠 ← 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴

∑𝑠𝑠′ 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈[𝑠𝑠′]

if 𝑈𝑈′ 𝑠𝑠 − 𝑈𝑈 𝑠𝑠 > 𝛿𝛿 then 𝛿𝛿 ← 𝑈𝑈′ 𝑠𝑠 − 𝑈𝑈 𝑠𝑠

until 𝛿𝛿 < 𝜖𝜖 1−𝛾𝛾
𝛾𝛾

return 𝑈𝑈

Value Iteration

Deep Learning and Artificial Intelligence 44



Synchronous Dynamic Programming

• Algorithms are based on state-value function U(s)

• Policy Iteration (prediction & control):
– iterates prediction (Bellman Expectation Equation) 

and evaluation (Greedy Policy Improvement)

• Value Iteration (control): 
– updates utility and policy based on Bellman Optimality Equation

• Complexity O(mn2) per iteration for m actions and n 
states (with Bellmann updates)

Deep Learning and Artificial Intelligence 45



Dynamic Programming with asynchronous backups

• Dynamic Programming with synchronous backups
=> all states are backed up in each iteration

• Dynamic Programming with asynchronous backups
– select state to backup in any order
– for each selected state, the appropriate back up is applied
– allows to backups some states more often then others
– Guaranteed to converge if all states continue to be selected

Advantages:

– some state might be never visited under the optimal policy 𝜋𝜋 ∗
– Utility U(s) might take different times to converge for 

different states
=> asynchronous update can significantly speed up  

computation

Deep Learning and Artificial Intelligence 46



Directions for Async. Dyn. Programmming

• In-place dynamic programming

• Prioritised sweeping

• Real-time dynamic programming

Deep Learning and Artificial Intelligence 47



In-place Dynamic Programming

• Synchronous Value iteration needs 2 copies for the U(s) 
for all s ∈ S:

𝑈𝑈𝑛𝑛𝑒𝑒𝑛𝑛 𝑠𝑠 ← 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴

�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈𝑜𝑜𝑙𝑙𝑜𝑜 [𝑠𝑠′]

⇒ ′
𝑛𝑛𝑒𝑒𝑛𝑛 is computed based on 𝑈𝑈′𝑜𝑜𝑙𝑙𝑜𝑜

• Idea: directly update 𝑈𝑈′
𝑛𝑛𝑒𝑒𝑛𝑛 after back up of one state.

for all s in S:

U 𝑠𝑠 ← 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴

∑𝑠𝑠′ 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈[𝑠𝑠′]

⇒ less memory
⇒back ups are done on more recent versions of the value function

Deep Learning and Artificial Intelligence 48



Prioritized Sweep

• Bellman error: Difference between right and left side of the 
Bellman equation.

𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎∈𝐴𝐴 𝑅𝑅 𝑠𝑠 + 𝛾𝛾�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈[𝑠𝑠′] − 𝑈𝑈′ 𝑠𝑠

Idea: Update the state with the largest Bellman error first and update 
Bellman errors of affected states (those relying on updated U(s))
⇒ Requires to know the predecessors
⇒ algorithm uses priority queue on states and always updates the one 

with the largest Bellman error until convergence.

Deep Learning and Artificial Intelligence 49



Real-time dynamic programming

idea: Not all states are relevant to an agent.
⇒ some states might not even be visited under a reasonable policy
⇒ use the experience of the agent to select visited states
In particular:
• select state st

• select action at leading to reward Rt+1

• Backup st with U(st)= max
𝑎𝑎∈𝐴𝐴

𝑅𝑅𝑎𝑎 𝑠𝑠𝑡𝑡 + 𝛾𝛾 ∑𝑠𝑠′ 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈[𝑠𝑠′]

• sample over the possible follow states st+1 and proceed with the 
sampled state (different variant use different sample schemes)

Caution: Not applicable to all types of MDPs:
• requires a proper policy, a terminal state and assumes costs
• requires monotonic lower bounds on the utility

Deep Learning and Artificial Intelligence 50



Performance Bottlenecks on MDPs

• size of state space |S| is often huge
(for example exponential in descriptive variables)

• transitions are potential |S|2⋅|A|
• In all dynamic programming approaches so far we do full-widths 

backups:
⇒ We consider all potential followup states no matter their likelihood
⇒ Unlikely steps often do not influence the utility to a high degree due to 

having a small likelihood

Solution approaches:
• summarize states 
• build models considering a continuous state description vector than 

a discrete state
• sample backups instead of computing full-width backups
⇒ utilities are expectations and can be estimated using sampling

Deep Learning and Artificial Intelligence 51



Summary MDPs

• MDPs rely on a Markov model with assumptions about:
states, actions, rewards, transition probabilities, etc.

• If all the information is available, computing the optimal 
policy does not require any samples or learning 

• Transitions probabilities are usually not defined but 
have to be estimated based on observations.

• usually observations ≠ states
– partially observable MDP, estimate belief states (c.f. HMM) 
– set of possible states and transitions is unknown

• If the agent does not know the model, we require 
methods learning from experience
=> model free approaches and reinforcement learning

Deep Learning and Artificial Intelligence 52



Literature

• Lecture notes D. Silver: Introduction to Reinforcement Learning
(http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)

• S. Russel, P. Norvig: Artificial Intelligence: A modern Approach, 
Pearson, 3rd edition, 2016

• R. S. Sutton, A. G. Barto: Reinforcement Learning: An Introduction 
(Adaptive Computation and Machine Learning), The MIT Press; 
Auflage: 2., 2018

Deep Learning and Artificial Intelligence 53

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

	Lecture Notes for�Deep Learning and Artificial Intelligence�Winter Term 2018/2019
	What is Artificial Intelligence?
	AI & Machine/Deep Learning
	but there is more to Artificial Intelligence:
	AI and Decision Making
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Applications Sequential Decision Making 
	Reinforcement Leaning for board games
	Games as Testbed for AGIs
	RL in Control and Robotics
	Modelfree and Modelbased Approaches
	Prediction and Control
	Agent and Environment
	Environment
	Agents
	Sequential Decision Making
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Deterministic Sequential Planning
	Deterministic Sequential Planning
	Foliennummer 26
	Foliennummer 27
	Nondeterministic Planning Problems
	Policies and Utilities
	Markov Process
	Markov Reward Process
	Markov Decision Process
	simple example: grid world
	Finite and Infinite Horizon MDP
	Partially Observable Markov Decision Process
	Belief States
	Further Variants of MDPs
	Evaluating Policies
	Bellman’s Equations
	Policy Evaluation
	Finding optimal Policies: Policy Iteration
	Policy Iteration
	Value Iteration
	Value Iteration
	Synchronous Dynamic Programming
	Dynamic Programming with asynchronous backups
	Directions for Async. Dyn. Programmming
	In-place Dynamic Programming
	Prioritized Sweep
	Real-time dynamic programming
	Performance Bottlenecks on MDPs
	Summary MDPs
	Foliennummer 53

