Generative models

Florian Buettner

buettner.florian@siemens.com

Today's lecture: NNs as generative models

- Generative models What and why
- Autoregressive models
- Variational autoencoders
- GANs

Unsupervised learning and generative models

- Just data, no labels
 - PCA, k-means,...
- Learn latent structure of data
- Density estimation
 - Training data from distribution p_data
 - Learn a distribution p_model that is similar to p_data

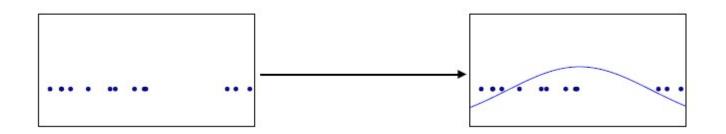


Figure: Goodfellow 2017 arXiv:1701.00160

Density modelling

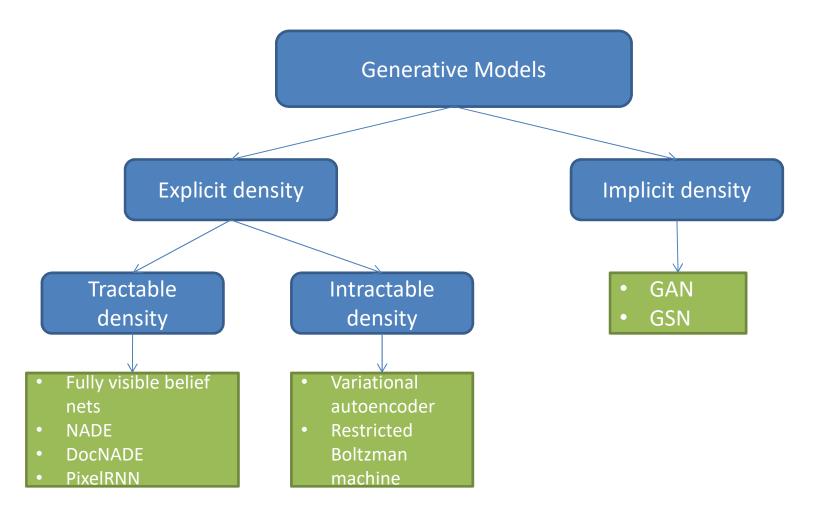
- Simples approach: learn everything about the data
 - Define explicit model and maximise overall likelihood
- Better: focus on what is useful!
 - pixel value Vs image content, n-gram Vs semantics
 - "not all bits are created equal"
 - Curse of dimenstionality
- How can models be used for future taks?
 - Access representations?
 - Get generative model for free

But why?

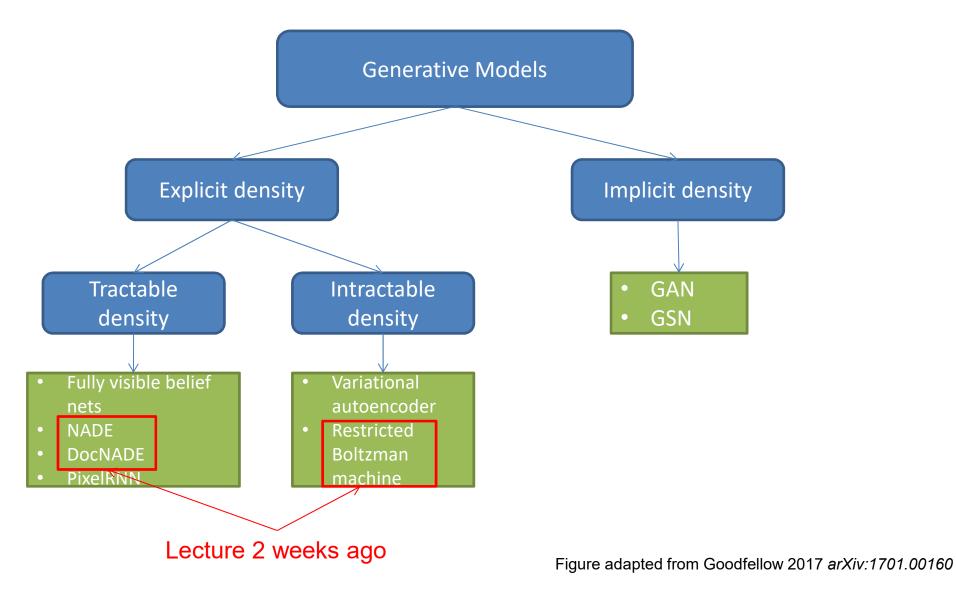
- Latent variables capturing data manifold as general feature
- Anomaly detection
- Domain transfer: Art, super-resolution, colorisation
- Simulation and planning (RL)
- Creating means understanding
 - What kind of patterns has the model learnt?

Figure: Zhu et al. arXiv preprint, 2017.

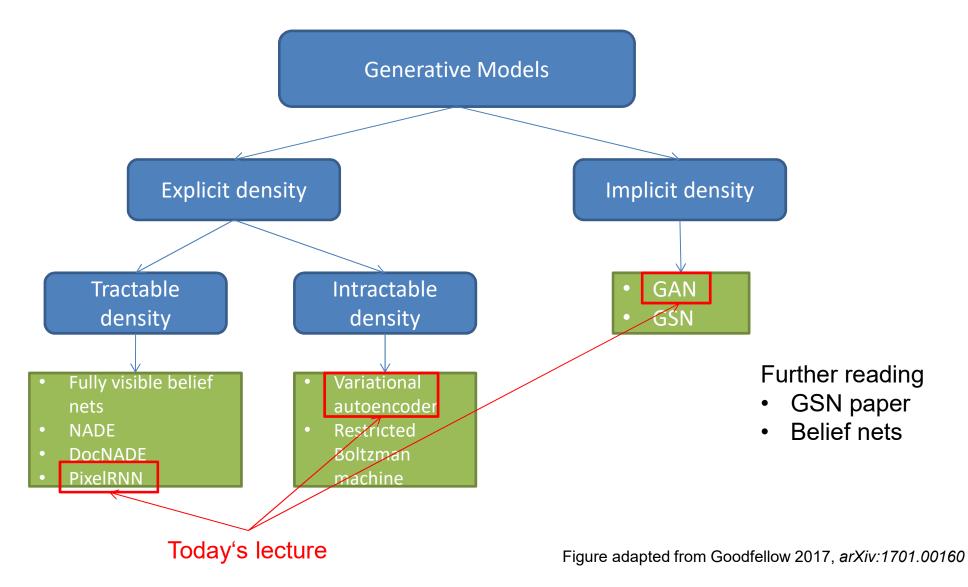
Types of generative models



Types of generative models



Types of generative models



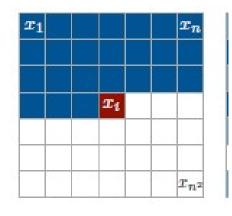
Autoregressive models

- Explicit density model
- Spilt high-dimensional input data into into sequence
 - predict small piece of system (current state previous states)
 - no more curse of dimensionality

$$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i | x_1, \dots, x_{i-1})$$

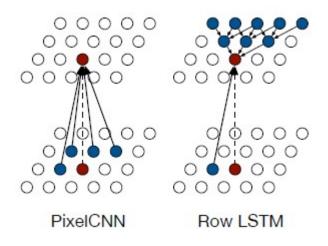
PixelRNN algorithm

- Use neural net to model distribution over pixel values
- Optimise weights by maximising likelihood of all images
- Need to choose order!
 - Start at a corner
 - Sequentially generate pixel values
- Use LSTM to model dependency on previous pixels



PixelCNN

- Same as before, but use CNN to model dependency on previous pixels
 - Masked convolutions
- Training more efficient thanks to possible parallelisations
 - Context for convs is known!
- Prediction is still slow



Further Reading

- Mulsti-scale RNN
- Conditonal Image generation
- PixelCNN++
- Gated PixelCNN

Some results

32x32 CIFAR-10

32x32 ImageNet

Figure from van der Oord et al 2016, arxiv

Pros and Cons

- Pros
 - Simple: just pick an order, no need to define prob distribution
 - easy to generate samples, like dreaming
- Cons
 - very expensive
 - as many predictions as pieces of data
 - parallelise during training but not testing
 - order dependance
 - where to start in an image?
 - how to deal with missing data?
 - Teacher forcing
 - difficult to generate long sequences
 - *"*blind representation": not large structure of data that is actually interesting

Recap: Auto-encoders (AEs)

h_{W,b}(x)

Layer L₂

Layer L₃

→ a feed-forward neural network trained to reproduce its

input at the output layer

Key Facts about AEs:

- \rightarrow unsupervised ML algorithm, similar to PCA
- \rightarrow neural network's target output is its input
- → learn latent features/encoding of input (no manual fe engineering)
- → represent both **linear** and **non-linear** transformation
- →layered to form deep learning network, i.e., distribute (representations

 \rightarrow tractable / easier optimization

 \rightarrow applications in *denoising* and *dimensionality* reduction (*dense* representation)

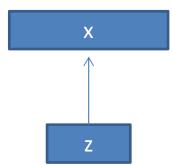
→ powerful non-linear (i.e., non-linear encoding and decoding) generalization of PCA

http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/

Variational autoencoders

- Probabilistic version of autoencoder
 - Place prior on latent space
 - Sample from prior and use decoder to generate new samples
 - AE as generative model

prior p(z) = N(0,I) $p_{\theta}(x|z) = N(\mu,\sigma^2)$ $\mu = f_{\theta}(z) = multilayer neural net$



likelihood

Inference

- With flexible neural net f_θ(z), the data distribution p_θ(x) can be almost arbitrarily complicated / multimodal distribution
- But intractable posterior distribution p(z|x)
- Need approximate inference for learning

posterior

$$p_{\theta}(z|x) = p_{\theta}(x|z)p_{\theta}(z)/p_{\theta}(x)$$

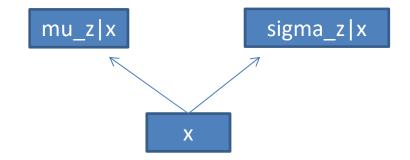
Data likelihood

$$p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$$

Variational inference with neural networks

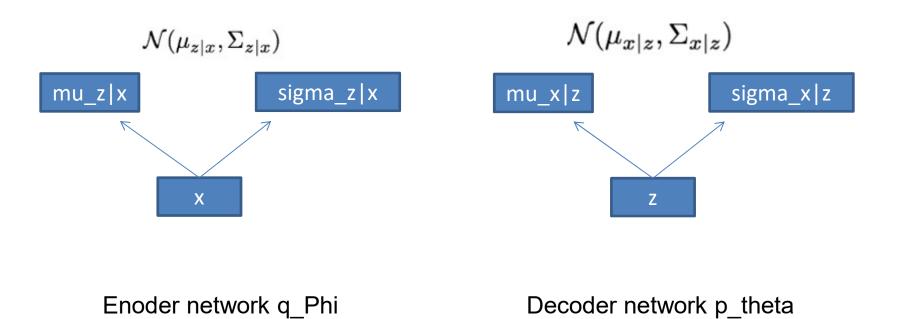
- Posterior p(z|x) is not tractable
- Introduce parametric model $q_\phi(z|x)$ of true posterior
 - φ: variational parameters
 - parameterised by neural networks

$$\begin{split} q_{\phi}(z|x) &= N(\mu, \sigma^2) \\ [\mu, \, \sigma^2] &= f^{(z|x)}(x, \phi) = \text{multilayer neural net} \end{split}$$



Encoder and decoder

 2 NNs, encoder network q_phi(z|x) and decoder network p_theta(x|z)



Recap: Variational inference

- Approximate posterior p with q-distribution
- Minimize KL divergence between q and p
 - Equivalent: maximise Evidence Lower Bound (ELBO) of data D

$$D_{KL}(Q_{\omega}(\boldsymbol{\theta}) || P(\boldsymbol{\theta} | D)) = \int d\boldsymbol{\theta} . Q_{\omega}(\boldsymbol{\theta}) \log \frac{Q_{\omega}(\boldsymbol{\theta})}{P(\boldsymbol{\theta} | D)}$$

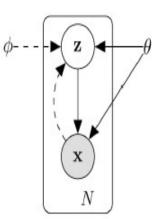
$$\nabla_{\boldsymbol{\omega}} \text{ELBO}(D) = \nabla_{\boldsymbol{\omega}} \int Q_{\boldsymbol{\omega}}(\boldsymbol{\theta}) \log P(D|\boldsymbol{\theta}) - Q_{\boldsymbol{\omega}}(\boldsymbol{\theta}) \log \frac{Q_{\boldsymbol{\omega}}(\boldsymbol{\theta})}{P(\boldsymbol{\theta})} d\boldsymbol{\theta}$$
$$= \nabla_{\boldsymbol{\omega}} \mathbb{E}_{Q_{\boldsymbol{\omega}}(\boldsymbol{\theta})} \left[\log P(d|\boldsymbol{\theta}) - \log \frac{Q_{\boldsymbol{\omega}}(\boldsymbol{\theta})}{P(\boldsymbol{\theta})} \right]$$

If we could move the derivative into the Expectation, we could approximate it by sampling!

Variational inference with neural networks

$$\underbrace{\mathbf{E}_{z}\left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)}$$

- Jointly optimize w.r.t. ϕ and θ
- Simple SGD:
 - Sampling small minibatches of data
 - Sampling from approx. posterior
 - Use reparametrisation trick to approximate gradient of ELBO



Recap: reparameterisation trick

$$\nabla_{\!\omega} \mathbb{E}_{p(z|\omega)}[f(z)] = \nabla_{\!\omega} \int p(z|\omega) f(z) \, dz$$

Find a way to reparametrize $p(z|\omega)$ such that $z \sim g(\varepsilon, \omega)$ and we just sample ε

$$\nabla_{\!\omega} \int p(z|\omega) f(z) \, dz = \nabla_{\!\omega} \int p(\varepsilon) f(g(\varepsilon, \omega)) \, d\varepsilon$$

warranted by the dominated convergence theorem

We move the derivative inside the integral:

$$= \int p(\varepsilon) \nabla_{\omega} f(g(\varepsilon, \omega)) \, d\varepsilon = \mathbb{E}_{p(\varepsilon)} [\nabla_{\omega} f(g(\varepsilon, \omega))]$$

Example:

$$z \sim \mathcal{N}(\mu, \sigma) \rightarrow z \sim \mu + \sigma \varepsilon; \varepsilon \sim \mathcal{N}(0, 1)$$

$\boxtimes \varepsilon$ is now independent of μ, σ and backpropagation works!

Slide from lecture 7

Stochastic Gradient VB

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}) = \int q_{\boldsymbol{\phi}}(\mathbf{z}) \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z}) - \log q_{\boldsymbol{\phi}}(\mathbf{z}) \right] d\mathbf{z}$$
$$\simeq \frac{1}{L} \sum_{l=1}^{L} \left(\log p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z}^{(l)}) - \log q_{\boldsymbol{\phi}}(\mathbf{z}^{(l)}) \right)$$

where $\boldsymbol{\epsilon}^{(l)} \sim p(\boldsymbol{\epsilon})$ (samples from noise variable) $\mathbf{z}^{(l)} = g(\boldsymbol{\epsilon}^{(l)}, \boldsymbol{\phi})$ (such that $\mathbf{z}^{(l)} \sim q_{\boldsymbol{\phi}}(\mathbf{z})$)

Stochastic VB in practice

- Draw mini-batch
- Sample from p(eps)
- Compute gradients using backprop
- Update theta and phi

Some results

(a) Learned Frey Face manifold

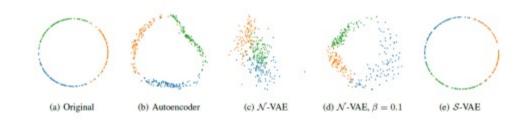
66666666666666666 0 6666666 0 З в 6 6 5 5 З 5 6 з з 3 з 3 3 3 3

(b) Learned MNIST manifold

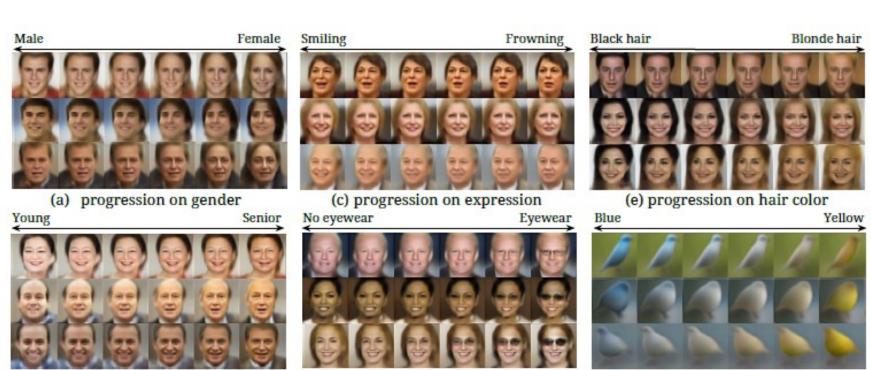
- Diagonal prior leads to independent z_i s
- Components are interpretable
- Representation is accesible (via q(z|x))

Some improvements

- Improve encoder/decoder
 - Use convolutions
 - Conditional VAE
 - Replace all P(X|z) with P(X|z,Y)
 - Replace all Q(z|X) with Q(z|X,Y)
 - Hierarchical VAE
- Improve prior
 - Problem: mis-match prior and aggregate posterior
 - Bad samples for high density in prior and low density in posterior (hasn't seen samples!)
 - Bad reconstruction error



Results



(b) progression on age

(d) progression on eyewear

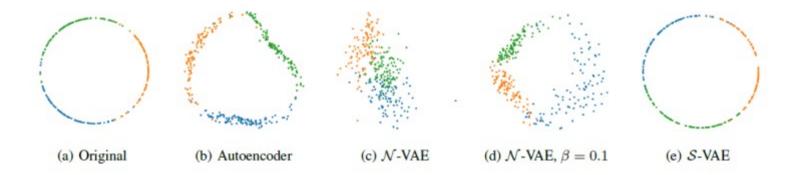
(f) progression on primary color

Yan et al., European Conference on Computer Vision. Springer, Cham, 2016.

More improvements

- Beta-VAE
 - Encourage disentangled factors
 - introduce an adjustable hyperparameter that balances independence constraints with reconstruction accuracy

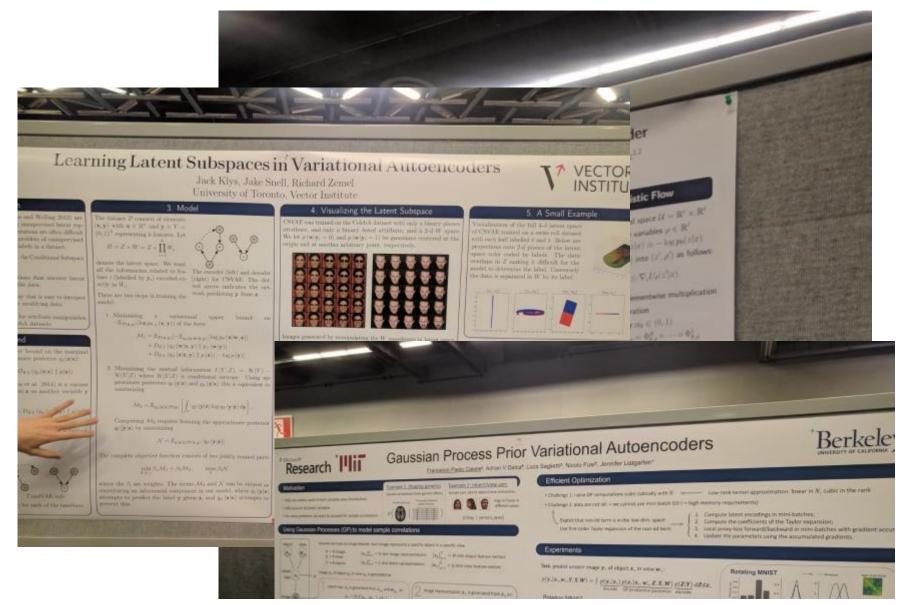
 $\mathcal{F}(\theta, \phi, \beta; \mathbf{x}, \mathbf{z}) \geq \mathcal{L}(\theta, \phi; \mathbf{x}, \mathbf{z}, \beta) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \beta D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$



Higgins et al., ICLR 2017; Davidson et al, UAI, 2018

Beta-VAE and S-VAE

Some current research directions



Pros and Cons of VAEs

• Pros

- Accesible representation
- Robust and straight-forward to train
- Cons
 - Generated images blurrier than SOTA

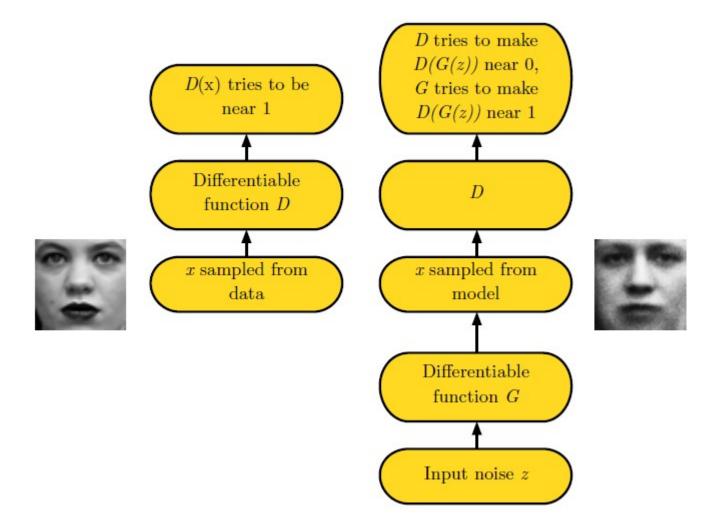
GANs

- We would like to sample from a complex, highdimensional distribution
 - Problem: No direct way for this
 - Solution: Sample random noise and pass it through NN

A two-player game

- Set up a game between two players
- **Generator G**: generate samples that are intended to come from the same distribution as the training data
- **Discriminator D**: determines whether a determine whether a sampel is real or fake
 - use traditional supervised learning techniques
- Generator is trained to fool discriminator

Illustration of the game



Ian Goodfellow arxiv 2016

Learning the parameters of G and D

- Cost functions of generator and discriminator (J_D and J_G) depend on both sets of parameters (theta_D and theta_G)
 - But: Each network has only access to it's own parameters
 - Not optimisation, but game!
- Solution to game
 - Nash equilibrium: Tuple (theta_G, theta_D) that is a local optimum of J_D wrt theta_D and a local optimum of J_G wrt theta_G

Cost function of D

- Minimize cross-entropy
 - Train on 2 mini-batches
 - one coming from the dataset, where the label is 1 for all examples
 - one coming from the generator, where the label is 0 for all examples
- Co-operative view
 - Discriminator more like a teacher instructing the generator in how to improve

Zero-sum game

• Sum of all players' costs is always zero

- Also referred to as minmax
- minimization in outer loop and maximization in inner loop

$$\theta^{(G)*} = \underset{\theta^{(G)}}{\arg \min} \underset{\theta^{(D)}}{\max} V\left(\theta^{(D)}, \theta^{(G)}\right)$$

$$\int$$
Value function
$$V\left(\theta^{(D)}, \theta^{(G)}\right) = -J^{(D)}\left(\theta^{(D)}, \theta^{(G)}\right)$$

Heuristic non-saturating game

- Cost from zero-sum game does not perform well in practice
 - D minimizes a cross-entropy but G maximises same cross-entropy
 - When D rejects sampels with high confidence, gradient of G vanishes
- Solution: flip target of cross-entropy for cost for G
 - Maximise log-prob of D being mistaken

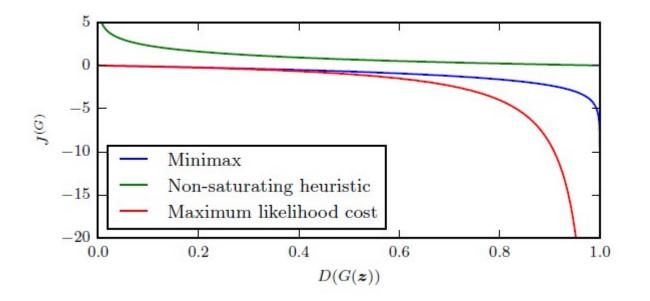
$$J^{(G)} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log D(G(\boldsymbol{z}))$$

- Each player has strong gradient when he loses the game

Maximum likelihood game

- Minimizing the KL divergence between the data and the model
 - Equivalent (if D is optimal)

$$J^{(G)} = -\frac{1}{2}\mathbb{E}_z \exp\left(\sigma^{-1}\left(D(G(z))\right)\right)$$



Putting it together

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]$$

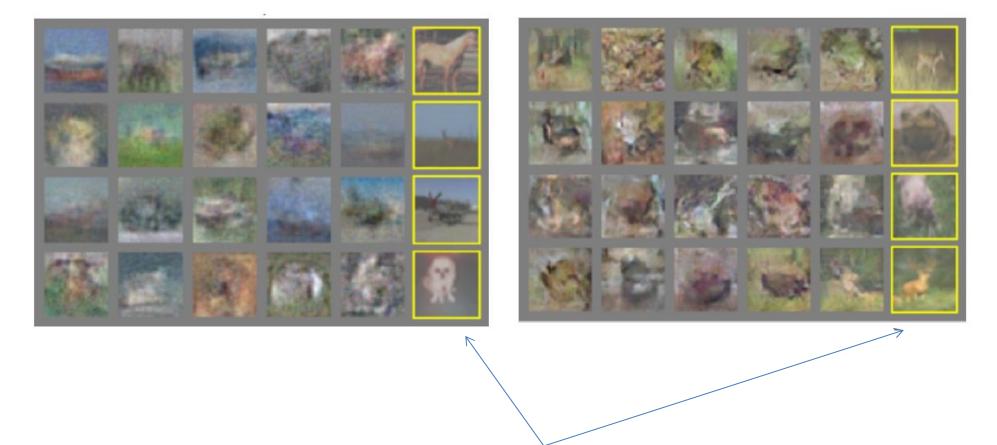
end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by ascending its stochastic gradient (improved objective):

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))$$

end for

Samples from generator



Nearest neighbour from training set

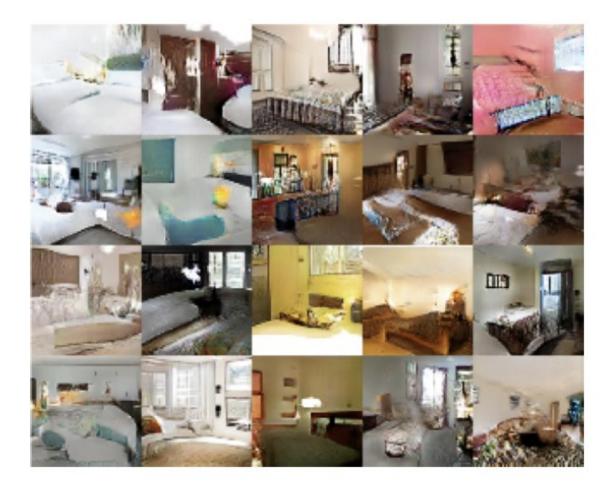
DGAN

Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.

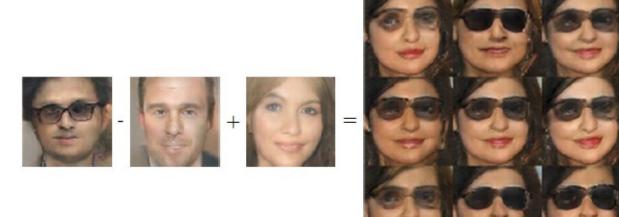


Sample again



Goodfellow 2016, Radford 2015

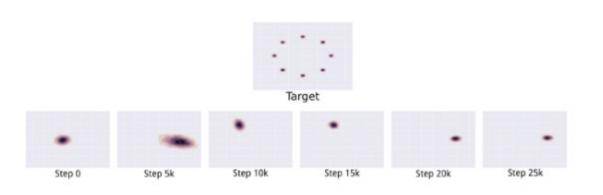
GAN maths



Goodfellow 2016, Radford 2015

Mode collapse

- Most severe problem in terms of non-convergence
- Issue: maximin solution to the GAN game is different from the minimax solution
 - Generator asked to map every z value to the single x coordinate that discriminator believes is most likely to be real
 - Simultaneous gradient descent doesn't favour one over the other



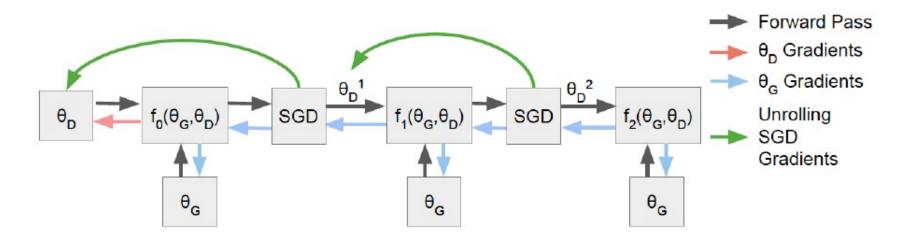
$$\boldsymbol{\theta}^{(G)*} = \operatorname*{arg\,min}_{\boldsymbol{\theta}^{(G)}} \underset{\boldsymbol{\theta}^{(D)}}{\underset{\boldsymbol{\theta}^{(D)}}}{\underset{\boldsymbol$$

Solutions

- Minibatch features
 - Compare one example to batches of real/fake examples
 - D can detect if sample is unusually similar to other samples
- Unrolled GAN
 - back-propagate through the maximization operation

Unrolled GAN

- Consider several updates of the generator when updating the discriminator and vice versa
 - k steps in the discriminator
 - backpropagate all steps when computing the gradient on the generator



Better generators: LSGAN,

- Least squares GAN
 - X. Mao, Q. Li, H. Xie, R. Lau, Z. Wang, "Least squares generative adversarial networks" 2016
 - Still use a classifier but replace cross-entropy loss with Euclidean loss

$$\begin{array}{c|c} \textbf{Discriminator} \\ \textbf{GAN} & \min_{D} E_{x \sim p_{X}} [-\log D(x)] + E_{z \sim p_{Z}} [-\log(1 - D(G(z)))] \\ \textbf{LSGAN} & \min_{D} E_{x \sim p_{X}} [(D(x) - 1)^{2}] + E_{z \sim p_{Z}} [D(G(z))^{2}] \\ \end{array}$$

LSGAN

Wasserstein GAN

- M. Arjovsky, S. Chintala, L. Bottou "Wasserstein GAN" 2016
- Use critic instead of discriminator
 - Discriminator can output real number (same as before w/o sigmoid)

Discriminator
GAN
$$\max_{D} E_{x \sim p_X} [\log D(x)] + E_{z \sim p_Z} [\log(1 - D(G(z))]$$
WGAN
$$\max_{D} E_{x \sim p_X} [D(x)] - E_{z \sim p_Z} [D(G(z))]$$
Generator
GAN
$$\max_{G} E_{z \sim p_Z} [\log D(G(z))]$$
WGAN
$$\max_{G} E_{z \sim p_Z} [D(G(z))]$$
64

WGAN

WGAN-GP

• I. Gulrajani, F. Ahmed, M. Arjovsky, V. Domoulin, A. Courville "Improved Training of Wasserstein GANs" 2017

$$\min_{G} \max_{D} E_{x \sim p_X}[D(x)] - E_{z \sim p_Z}[D(G(Z))] + \lambda E_{y \sim p_Y}[(||\nabla_y D(y)||_2 - 1)^2]$$
$$y = ux + (1 - u)G(z) \qquad \bullet \ y: \text{ imaginary samples}$$

Optimal critic has unit gradient norm almost everywhere

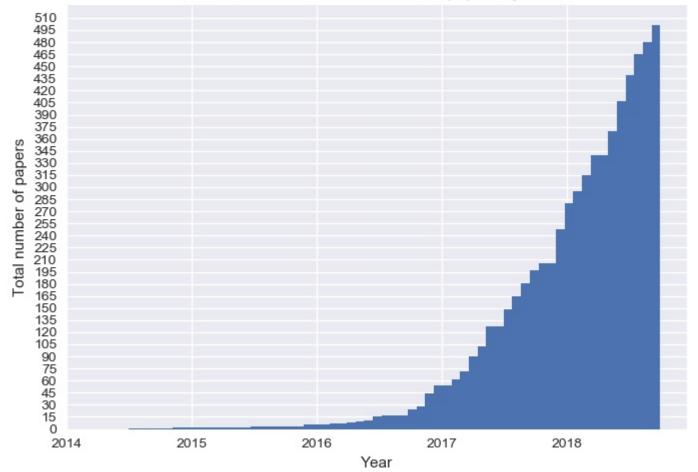
BEGAN and **DRAGAN**

- DRAGAN: Add gradient norm to standard GAN and evaluate around the data manifold
- BEGAN: use autoencoder as discriminator and optimize lower bound of the Wasserstein distance between autoencoder loss distributions on real and fake data.

DRAGAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{DRAGAN}} = \mathcal{L}_{\mathrm{D}}^{\mathrm{GAN}} + \lambda \mathbb{E}_{\hat{x} \sim p_d + \mathcal{N}(0,c)}[(\nabla D(\hat{x}) _2 - 1)^2]$	$\mathcal{L}_{G}^{\mathrm{dragan}} = \mathbb{E}_{\hat{x} \sim p_{g}}[\log(1 - D(\hat{x}))]$
BEGAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{BEGAN}} = \mathbb{E}_{x \sim p_d} [x - \mathrm{AE}(x) _1] - k_t \mathbb{E}_{\hat{x} \sim p_g} [\hat{x} - \mathrm{AE}(\hat{x}) _1]$	$\mathcal{L}_{G}^{\text{began}} = \mathbb{E}_{\hat{x} \sim p_{g}}[\hat{x} - AE(\hat{x}) _{1}]$

The GAN zoo

Cumulative number of named GAN papers by month



https://github.com/hindupuravinash/the-gan-zoo

So....which one is best?

Are GANs Created Equal? A Large-Scale Study

Mario Lucic*	Karol Kurach*	Marcin Michalski	Olivier Bousquet	Sylvain Gelly
		Google Brain		

than others. We conduct a neutral, multi-faceted large-scale empirical study on state-of-the art models and evaluation measures. We find that most models can reach similar scores with enough hyperparameter optimization and random restarts. This suggests that improvements can arise from a higher computational budget and tuning more than fundamental algorithmic changes. To overcome some limitations

NeurIPS 2018

Evaluating GANs

- Challenging to define appropriate metric
 - Maximum likelihood and other classical metrics not applicable
 - Subjective comparisons (visual quality) may be misleading
 - Inception score: disciminator has low entropy, while producing samples from all classes when passed through a classifier

 $\exp(\mathbb{E}_{x \sim G}[d_{KL}(p(y \mid x), p(y)]))$

- Fréchet Inception Distance: difference in embedding of true and fake data (assuming MVN in embedded space)
 - Strong negative correlation between visual quality and FID

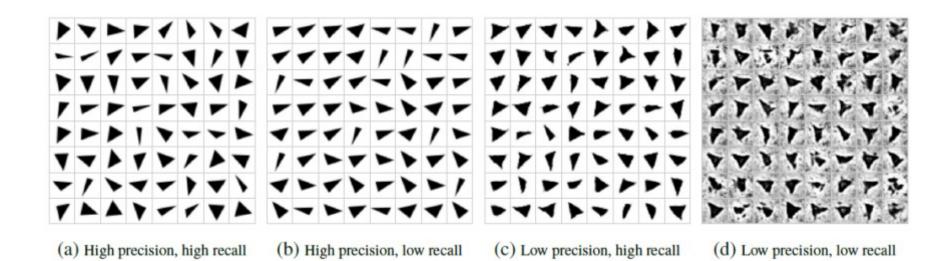
 $\operatorname{FID}(x,g) = ||\mu_x - \mu_g||_2^2 + \operatorname{Tr}(\Sigma_x + \Sigma_g - 2(\Sigma_x \Sigma_g)^{\frac{1}{2}}),$

Precision/recall

Metrics

- Precision measures fraction of relevant retrieved instances among the retrieved instances
- Recall measures fraction of retrieved instances among relevant instances
- F1 score is harmonic average of precision and recall.
- IS captures precision: no penalization for not producing all modes of the data distribution
 - Only for not producing all classes
- FID captures both precision and recall

Precision-Recall for GANs



Fair assessment

• Compare state-of-the-art approaches

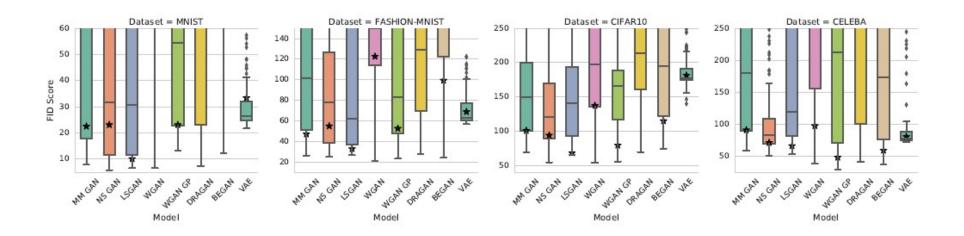
GAN	DISCRIMINATOR LOSS	GENERATOR LOSS
MM GAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{GAN}} = -\mathbb{E}_{x \sim p_{d}}[\log(D(x))] - \mathbb{E}_{\hat{x} \sim p_{g}}[\log(1 - D(\hat{x}))]$	$\mathcal{L}_{\rm G}^{\rm gan} = \mathbb{E}_{\hat{x} \sim p_g}[\log(1 - D(\hat{x}))]$
NS GAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{NSGAN}} = -\mathbb{E}_{x \sim p_d} \left[\log(D(x)) \right] - \mathbb{E}_{\hat{x} \sim p_g} \left[\log(1 - D(\hat{x})) \right]$	$\mathcal{L}_{\mathrm{G}}^{\mathrm{nsgan}} = -\mathbb{E}_{\hat{x} \sim p_{g}}[\log(D(\hat{x}))]$
WGAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{WGAN}} = -\mathbb{E}_{x \sim p_{d}}[D(x)] + \mathbb{E}_{\hat{x} \sim p_{g}}[D(\hat{x})]$	$\mathcal{L}_{\mathbf{G}}^{WGAN} = -\mathbb{E}_{\hat{x} \sim p_{g}}[D(\hat{x})]$
WGAN GP	$\mathcal{L}_{\mathrm{D}}^{\mathrm{WGANGP}} = \mathcal{L}_{\mathrm{D}}^{\mathrm{WGAN}} + \lambda \mathbb{E}_{\hat{x} \sim p_{g}} [(\nabla D(\alpha x + (1 - \alpha \hat{x}) _{2} - 1)^{2}]$	$\mathcal{L}_{\mathrm{G}}^{\scriptscriptstyle{\mathrm{WGANGP}}} = -\mathbb{E}_{\hat{x} \sim p_{g}}[D(\hat{x})]$
LS GAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{LSGAN}} = -\mathbb{E}_{x \sim p_d} \left[(D(x) - 1)^2 \right] + \mathbb{E}_{\hat{x} \sim p_g} \left[D(\hat{x})^2 \right]$	$\mathcal{L}_{\mathrm{G}}^{\mathrm{lsgan}} = -\mathbb{E}_{\hat{x} \sim p_{g}}[(D(\hat{x}-1))^{2}]$
DRAGAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{DRAGAN}} = \mathcal{L}_{\mathrm{D}}^{\mathrm{GAN}} + \lambda \mathbb{E}_{\hat{x} \sim p_d} + \mathcal{N}(0,c) [(\nabla D(\hat{x}) _2 - 1)^2]$	$\mathcal{L}_{\mathrm{G}}^{\mathrm{dragan}} = \mathbb{E}_{\hat{x} \sim p_{g}}[\log(1 - D(\hat{x}))]$
BEGAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{BEGAN}} = \mathbb{E}_{x \sim p_d}[x - \mathrm{AE}(x) _1] - k_t \mathbb{E}_{\hat{x} \sim p_g}[\hat{x} - \mathrm{AE}(\hat{x}) _1]$	$\mathcal{L}_{\mathrm{G}}^{\mathrm{BEGAN}} = \mathbb{E}_{\hat{x} \sim p_{g}}[\hat{x} - \mathrm{AE}(\hat{x}) _{1}]$

Fair comparisons

- Use same architecture
- Optimize hyperparameters on each dataset OR on one dataset only (infer for new datasets)
- Computational budget
 - Dependence on number of optimised hyperparameters

Are GANs created equal?

- Asterisk
 - Default hyperparameters

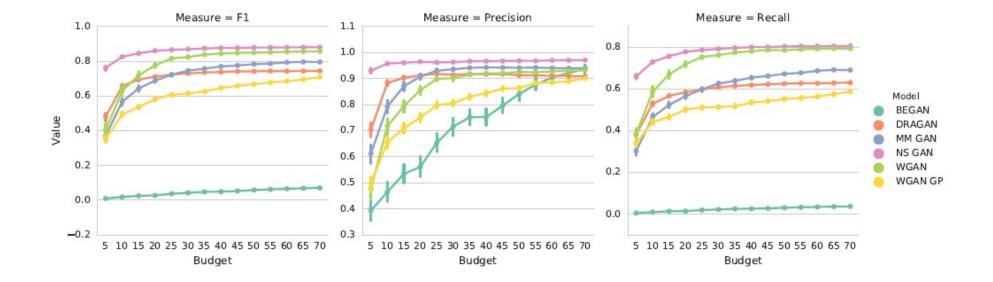


Large-scale hyperparmeter optimisation

- No model strictly dominates the others
 - Strong dependence on dataset
- But: performance not SOTA
 - Larger networks would perform better
 - Authors report best FID (random seed optimisation!)

	MNIST	FASHION	CIFAR	CELEBA
MM GAN	9.8 ± 0.9	29.6 ± 1.6	72.7 ± 3.6	65.6 ± 4.2
NS GAN	6.8 ± 0.5	26.5 ± 1.6	58.5 ± 1.9	55.0 ± 3.3
LSGAN	$7.8 \pm 0.6^{*}$	30.7 ± 2.2	87.1 ± 47.5	$53.9 \pm 2.8*$
WGAN	6.7 ± 0.4	21.5 ± 1.6	55.2 ± 2.3	41.3 ± 2.0
WGAN GP	20.3 ± 5.0	24.5 ± 2.1	55.8 ± 0.9	30.0 ± 1.0
DRAGAN	7.6 ± 0.4	27.7 ± 1.2	69.8 ± 2.0	42.3 ± 3.0
BEGAN	13.1 ± 1.0	22.9 ± 0.9	71.4 ± 1.6	38.9 ± 0.9
VAE	23.8 ± 0.6	58.7 ± 1.2	155.7 ± 11.6	85.7 ± 3.8

Budget matters



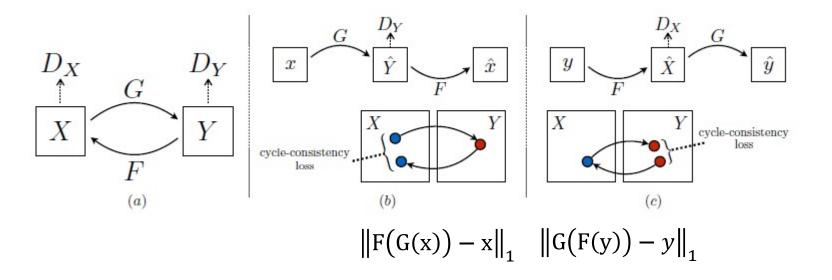
Combinging VAEs and GANs

- VEEGAN
 - Combine likelihood-based and likelihood-free models
 - variational inference with synthetic likelihoods
- IntroVAE
 - minimize the divergence of the approximate posterior with the prior for real data while maximizing it for the generated samples
 - generator model attempts to mislead the inference model by minimizing the divergence of the generated samples
- Adversarial Autoencoder
- Adversarial Variational Bayes
- ALI/BiGAN
- AlphaGAN

Unpaired Image-to-Image Translation with CycleGAN

- Unpaired data is cheap
- How to use unpaired data for paired image-to-image translation?
- Idea:
 - Capture special characteristics of one image collection and translate into another image collection
 - Cycle consistency
 - Define additional mapping from generated space to data space
 - Translator $G : X \rightarrow Y$ and translator $F : Y \rightarrow X$
 - F and G inveseres of each other

CycleGAN



$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [\|F(G(x)) - x\|_1] + \mathbb{E}_{y \sim p_{\text{data}}(y)} [\|G(F(y)) - y\|_1].$$

$$\mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) = \mathbb{E}_{y \sim p_{\text{data}}(y)} [\log D_Y(y)] + \mathbb{E}_{x \sim p_{\text{data}}(x)} [\log(1 - D_Y(G(x))], (1)]$$

$$\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) + \mathcal{L}_{\text{GAN}}(F, D_X, Y, X) + \lambda \mathcal{L}_{\text{cyc}}(G, F),$$

Style transfer

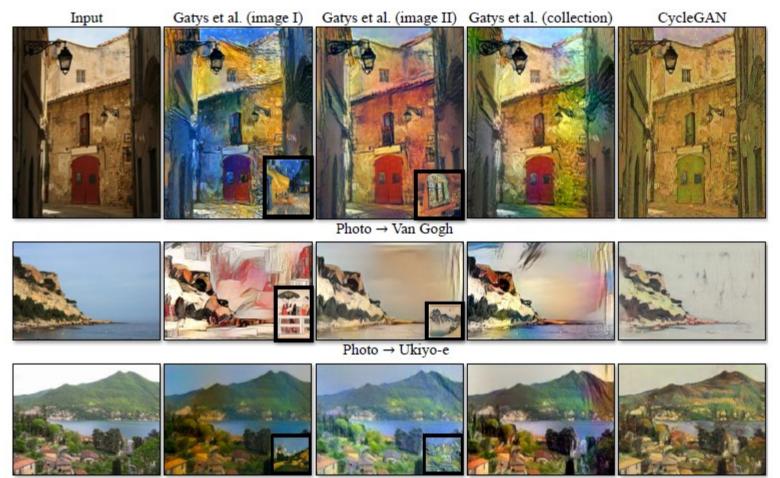
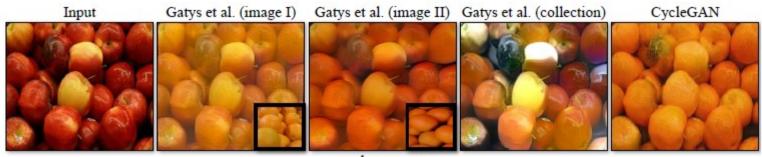


Photo \rightarrow Cezanne

More aplications

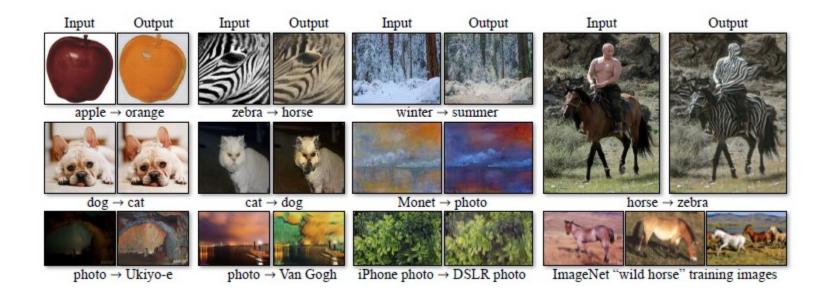


apple \rightarrow orange

horse \rightarrow zebra

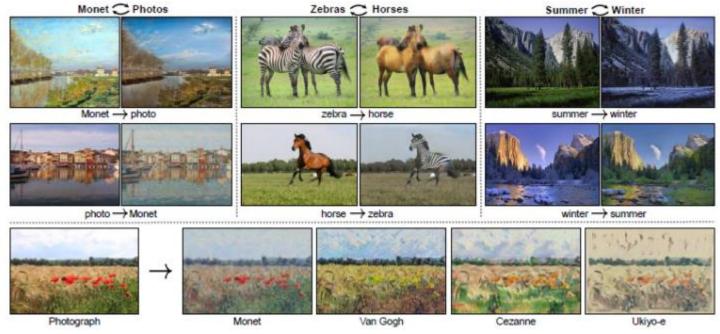
Monet \rightarrow photo

Failures



CycleGAN

 Excellent qualitative results on several tasks where paired training data does not exist, including collection style transfer, object transfiguration, season transfer, photo enhancement, etc.



Conclusion

- Various types of models
 - Autoregressive models,
 - Explicit density model, opimizes exact likelihood, good samples.
 Slow
 - VAEs
 - Optimises lower bound on likelihood. Useful representation and inference queries. Blurry samples.
 - GANs
 - Game-theoretic approach, best samples. Tricky and unstable to train
- Large variation between datasets, no one-size-fits-all model
- Lots of open research question and ongoing research