

DATA
FEATURE ENGINEERING

DATA PREPROCESSING

DATA
VALIDATION

MACHINE RESOURCE
MANAGEMENT

DEPLOYMENT

MONITORING

MODEL ANALYSIS

ML CODE

TOOLING
Deep Learning & AI
Dr. Denis Krompaß
Co-Founder creaidAI
Senior Key Expert Deep Learning at Siemens

Lecture Overview

1. SET UP 2. DEVELOP 3. TUNE 4. DEPLOY

Quick Exploration

Cloud Provider

Bare Metal

Frameworks

Debugging

Testing

Monitoring

Inference Pipeline

Model Serving

Methods

Local Setup

Cloud Solutions

AutoML

Going from idea to production

Image from: http://mattturck.com/bigdata2018/

We will cover only one way to do it!

1. SET UP 2. DEVELOP 3. TUNE 4. DEPLOY

Quick Exploration

Cloud Provider

Bare Metal

Frameworks

Debugging

Testing

Monitoring

Inference Pipeline

Model Serving

Methods

Local Setup

Cloud Solutions

AutoML

Going from idea to production

SETUP

Google Colab

https://colab.research.google.com

Google Colab

https://colab.research.google.com

Cloud Provider

Just the big names, there are more

Offering

● Ready to use
environments

● APIs / Libraries
for scalable
execution

● Pre-build
services

● ...

Bare Metal

$ pip install tensorflow

$ conda install tensorflow

Bare Metal

$ pip install tensorflow

$ conda install tensorflow

>>> import tensorflow as tf
>>> tf.__version__
'1.12.0'
>>> tf.Session()
2018-11-25 13:46:01.280605: I tensorflow/core/platform/cpu_feature_guard.cc:141]
Your CPU supports instructions that this TensorFlow binary was not compiled to
use: AVX2 FMA

>>> import tensorflow as tf
>>> tf.__version__
'1.12.0'
>>> tf.Session()
2018-11-25 13:58:51.813242: I tensorflow/core/platform/cpu_feature_guard.cc:141]
Your CPU supports instructions that this TensorFlow binary was not compiled to
use: SSE4.1 SSE4.2 AVX AVX2 FMA

Bare Metal

$ pip install tensorflow-gpu

$ conda install tensorflow-gpu

+ cudatoolkit
+

cudnn

>>> import tensorflow as tf
>>> tf.__version__
'1.12.0'
>>> tf.Session()
2018-11-25 14:13:29.490165: I tensorflow/core/platform/cpu_feature_guard.cc:141]
Your CPU supports instructions that this TensorFlow binary was not compiled to
use: SSE4.1 SSE4.2 AVX AVX2 FMA
2018-11-25 14:13:29.615067: I
tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:964] successful NUMA node
read from SysFS had negative value (-1), but there must be at least one NUMA node,
so returning NUMA node zero
2018-11-25 14:13:29.615760: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with
properties:
name: GeForce GTX 1050 major: 6 minor: 1 memoryClockRate(GHz): 1.493
…

>>> import tensorflow as tf
…
ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory
…

Bare Metal

https://www.tensorflow.org/install/source

DEVELOPMENT

Frameworks

Cognitive Toolkit (CNTK)

And many more ...

Frameworks

Full article: https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

Before we start…

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture

● Notebooks seem convenient, but there are many pitfalls!
– Hidden states can lead to nasty bugs

● Reproducibility is difficult
● Newcomers get easily confused

– Notebooks encourage bad habits

Beware!

Nice slide deck that shows the pitfalls of notebooks:
https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-
AL4ffI/preview

Don’t use them for writing your machine learning code!

Notebooks are great for plotting stuff.

● Find a good text editor and get familiar with it:

Beware!

Visual Studio
Code

Sublime Atom PyCharm Spyder

And many more ...

Data Scientist are Software Developers

● Get familiar with coding guidelines (Python: PEP 8)

● Document your code (PEP 257, NumPy Style, ...)

● Write tests!!! (e.g. Unit-tests with pytest)

● Modularize your code.

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/code_style

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/code_style

Why tests?

DATA

FEATURE ENGINEERING

DATA PREPROCESSING

DATA
VALIDATION

MACHINE RESOURCE
MANAGEMENT

DEPLOYMENT

MONITORING

MODEL ANALYSIS

ML CODE

Why tests?

DATA

FEATURE ENGINEERING

DATA PREPROCESSING

DATA
VALIDATION

MACHINE RESOURCE
MANAGEMENT

DEPLOYMENT

MONITORING

MODEL ANALYSIS

ML CODE

?

?

?

?

?
Something
is wrong ...

Testing with pytest

https://docs.pytest.org/en/latest/contents.html

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/code_style

Summary

Data Scientist do not have a license to write
‘spaghetti code’

In fact, your code (and data) needs to be clean,
structured and better tested as ‘regular’ software

code.
The hidden technical debt in machine learning systems. Sculley et al (Google). Neural Information Processing Systems (NIPS) 2015.
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdhttp:/martin.zinkevich.org/rules_of_ml/rules_of_ml

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdhttp:/martin.zinkevich.org/rules_of_ml/rules_of_ml

Now we can start.

Quick Refresher

!!! Reproducibility is a big issue in ML

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/refresher

Quick Refresher

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/refresher

Quick Refresher

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/refresher

Quick Refresher

Nice tutorial:
https://medium.com/@eikonomega/getting-started-with-sphinx-autodoc-part-1-2cebbbca5365

Debugging

Debugging Tensorflow can be intimidating...

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/debug_tensorflow

Debugging

If you get used to it, the errors contain a lot of valuable information.

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/debug_tensorflow

Debugging

● You can improve the readability of the graph by grouping
tensors and variables into scopes.

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/debug_tensorflow

Debugging

● Something seems to be wrong...

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/debug_tensorflow

Debugging

● Tensorlow Debugger is a great tool to get to the bottom of this.

● Import it and wrap the session, just execute the code again.

...

● Enter ‘run’ to get to the first session run call.
–

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/debug_tensorflow

● Scopes are really useful here, too.

● You can click on the “Tensor name” to show its content.
– Try layer1/W/Assign:0 which shows the weights.

● Enter ‘run’ again to get to the next session run call.

● That’s are a lot of tensors to inspect. Luckily we used scopes in our code.
We can use them to filter this list.

● The reported loss was nan so we will start there.

● Enter ‘lt -n loss’

● There are negative values flowing into the log of the binary cross entropy...

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/debug_tensorflow

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/debug_tensorflow

Debugging

Don’t use tf.print for debugging your code.

It’s tedious to use.
It’s adds more code (that you have to remove later).

Tensorflow Debugger works also with tf.keras, tf.estimator …
https://www.tensorflow.org/guide/debugger

Tensorflow Eager Execution

● Tensorflow’s (and others) symbolic programming style is:
– Unintuitive for newcomers

– Hard to debug (hopefully less hard now)

– People feel comfortable with imparative programming

● Inspired by

https://www.tensorflow.org/guide/eager

Eager Execution Example

Mix arrays and tensors directly

No session run calls required

Mix python control flows with Tensorflow

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/eager_execution

Eager Execution Example

● There are some other things to consider:

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/eager_execution

Eager Execution Debugging

...

You can use your standard python debugging routine!

...

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/eager_execution

Eager Execution

● Yes, eager sounds nice but consider
–

https://www.tensorflow.org/guide/eager

Eager Execution

Mix arrays and tensors directly

No session run calls required

Mix python control flows with Tensorflow

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/eager_execution

Only for static graphs

Tensorboard

Scalars Histograms Graph

https://www.tensorflow.org/api_docs/python/tf/summary

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/tensorboard

Tensorboard

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/tensorboard

Tensorboard

Visualize /
compare learning

curves

Visualize the
computation graph

(Use scopes and names)

Tensorboard is mostly used for monitoring the training, not for evaluating the model.
It is an additional tool for debugging.

Visualize how parameters
and outputs are evolving

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/tensorboard

Frameworks

+

Frameworks
Don’t worry about numerical stability

output = tf.nn.sigmoid(x) loss = tf.losses.log_loss(x)

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/frameworks

Frameworks
Worry less about best practices

● Here: Initialization of model parameters

Frameworks
Lots of convenience

Tensorflow
from scratch

371 lines

tf.keras + sklearn

133 lines

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/frameworks

Frameworks
Lots of convenience

● Keras Model API is a powerful tool
for prototyping models quickly.

● Additional features are already
implemented (layers, Tensorboard
summaries, ...)

https://www.tensorflow.org/api_docs/python/tf/keras or
https://keras.io/getting-started/functional-api-guide/

Frameworks
Limits

● Often, a high level framework does not contain all the required features or is not flexible enough:

– Fall back to Tensorflow
● Many convenience functions from tf.keras like layers can be reused.

– Use the framework differently.
● Maybe you need multiple models? (GANs)

– Write own extensions for framework.
● Many things like custom losses, layers and models can be easily implemented.

– Built-in ways to extend functionalities:

output = tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, -1))(input_x)

TUNE

Hyperparameter Tuning

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/hypertune

Hyperparameter Tuning
General Procedure

● Get an idea what you are actually after
– Run a couple of test experiments

– Measure everything that seems useful to judge the performance manually

– In the ideal case, find a single measure (could be your own) that frames good
models.

● Roll out large scale experiments
– Use your measures to filter the runs

– Evaluate the best candidates

● Draw conclusions and repeat/refine

Hyperparameter Tuning
Methods

You don’t know
the true error

landscape

Hyperparameter Tuning
Methods - GridSearch

You don’t know
the true error

landscape

Hyperparameter Tuning
Methods – Random Search

You don’t know
the true error

landscape

Hyperparameter Tuning
Methods- Bayesian Model Optimization

Intuition: Automate hyperparameter search by automatically choosing most promising
candidates based on past experience.

You don’t know
the true error

landscape

Hyperparameter Tuning
The naive way

Experiment runs are
automated but they are
executed sequentially.

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/hypertune

Hyperparameter Tuning
Parallel (distributed) execution

● ray is very generic system for parallel
and distributed Python
– Can also be used for distributed

execution in computing cluster.

– Easy to setup (just pip install)

– ray.tune contains implementations for
more advanced hyperparameter
tuning methods (requires integration
into API).

https://ray.readthedocs.io/en/latest/index.html

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/hypertune

Hyperparameter Tuning
Cloud Solutions

● Cloud solutions have the advantage that you do not have
to manage the infrastructure.

● There exists a couple of cloud offerings that enable you
to perform hyperparameter tuning on managed
infrastructure:

But there are also newcomers:

Hyperparameter Tuning
Cloud Solutions- Simple Approach

● All cloud solutions offer the possibility to submit an (infinite) amount of jobs and retrieve the
results.

● Using for example FloydHub for this is fairly easy:

– Register at floydhub (free)

– Download cli tool with pip:
● $ pip install floyd-cli

– Create a project in the web ui.

– Connect your local files with (you can use .floydignore to exclude files from synching)
● $ floyd init <your project name>

– Execute your command with:
● $ floyd run –env tensorflow-1.11 “<command>”

– Your scripts get uploaded (Max 100 MB) and the command gets scheduled (dockerized).

– Download the results (via the WebUI or via the CLI)

– If your job requires data, you should create a dataset with floydhubs API beforehand.

You can extend this.

Hyperparameter Tuning
Cloud Solutions- Simple Approach

I created a project
called “hypertune”.

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/hypertune

Hyperparameter Tuning
Cloud Solutions- Simple Approach

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/hypertune

Hyperparameter Tuning
Cloud Solutions- Simple Approach

Uploaded files
+

new files (results)

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/hypertune

Hyperparameter Tuning
Cloud Solutions- Advanced Approach

● Cloud solutions have the advantage that you do not have
to manage the infrastructure.

● There exists a couple of cloud offerings that enable you
to perform hyperparameter tuning on managed
infrastructure:

SageMakerCloud ML Engine Machine Learning service

Python SDK Python SDK Python SDK

Better offering but much more labor intensive to get something (custom) running.

AutoML

Don’t bet on it just yet.

We are far away from automating Machine Learning.

https://hackernoon.com/a-brief-overview-of-automatic-machine-learning-solutions-automl-
2826c7807a2a

DEPLOY

ML Model

Deployment

Preprocessing

ML Model

Client
Data

Preprocessing

Training
Data

Preprocessing /
Augmentation ?

=

Model Training Model Inference

The data sources are often very different!

Deployment
 Model Serving

Training
Data

Model
Preprocessing

Model

Model

 Model

Clients

Model
Server

Model Repo
 Model

 Model V2

V1

Tuning
Model

Model

Model

Deployment
 Model Serving – Tensorflow Serving

Training
Data

Model
Preprocessing

Model

Model

 Model

Clients

Model
Server

Model Repo
 Model

 Model V2

V1

Tuning
Model

Model

Model

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/deployment

Deployment
 Model Serving – Tensorflow Serving

Training
Data

Model
Preprocessing

Model

Model

 Model

Clients

Model
Server

Model Repo
 Model

 Model V2

V1

Tuning
Model

Model

Model

Note: In our simple case,
we do not have any data

preprocessing.
https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/deployment

Deployment
 Model Serving – Tensorflow Serving

Training
Data

Model
Preprocessing

Model

Model

 Model

Clients

Model
Server

Model Repo
 Model

 Model V2

V1

Tuning
Model

Model

Model

Deployment
 Model Serving – Tensorflow Serving

Training
Data

Model
Preprocessing

Model

Model

 Model
Model
Server

Model Repo
 Model

 Model V2

V1

Tuning
Model

Model

Model

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/deployment

Deployment
 Model Serving – Tensorflow Serving

 Model

Clients

Model
Server

Model Repo
 Model

 Model V2

V1

Training
Data

Model
Preprocessing

Model

Model

 Model

Model Repo
 Model V1

Tuning
Model

Model

Model

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/deployment

Deployment
 Model Serving – Scaling up

 Model
Model
Server

 Model

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/deployment

Things that we did not cover

Model Evaluation

Data Validation

Model Validation

Versioning

Embedded Deployment

Serverless Deployment

Distributed Model Training

Pre-Trained Model Repositories

Online Learning

Remote Debugging

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

