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Image from: http://mattturck.com/bigdata2018/



  



  

We will cover only one way to do it!
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SETUP



  

Google Colab

https://colab.research.google.com



  

Google Colab

https://colab.research.google.com



  

Cloud Provider

Just the big names, there are more



  

Offering

● Ready to use 
environments

● APIs / Libraries 
for scalable 
execution

● Pre-build 
services

● ...



  

Bare Metal

$ pip install tensorflow

$ conda install tensorflow



  

Bare Metal

$ pip install tensorflow

$ conda install tensorflow

>>> import tensorflow as tf
>>> tf.__version__
'1.12.0'
>>> tf.Session()
2018-11-25 13:46:01.280605: I tensorflow/core/platform/cpu_feature_guard.cc:141] 
Your CPU supports instructions that this TensorFlow binary was not compiled to 
use: AVX2 FMA

>>> import tensorflow as tf
>>> tf.__version__
'1.12.0'
>>> tf.Session()
2018-11-25 13:58:51.813242: I tensorflow/core/platform/cpu_feature_guard.cc:141] 
Your CPU supports instructions that this TensorFlow binary was not compiled to 
use: SSE4.1 SSE4.2 AVX AVX2 FMA



  

Bare Metal

$ pip install tensorflow-gpu

$ conda install tensorflow-gpu

+ cudatoolkit
+

cudnn

>>> import tensorflow as tf
>>> tf.__version__
'1.12.0'
>>> tf.Session()
2018-11-25 14:13:29.490165: I tensorflow/core/platform/cpu_feature_guard.cc:141] 
Your CPU supports instructions that this TensorFlow binary was not compiled to 
use: SSE4.1 SSE4.2 AVX AVX2 FMA
2018-11-25 14:13:29.615067: I 
tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:964] successful NUMA node 
read from SysFS had negative value (-1), but there must be at least one NUMA node, 
so returning NUMA node zero
2018-11-25 14:13:29.615760: I 
tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with 
properties: 
name: GeForce GTX 1050 major: 6 minor: 1 memoryClockRate(GHz): 1.493
…

>>> import tensorflow as tf
…
ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory
…



  

Bare Metal

https://www.tensorflow.org/install/source



  

DEVELOPMENT



  

Frameworks

Cognitive Toolkit (CNTK)

And many more ...



  

Frameworks

Full article: https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a



  

Before we start…

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture



  

● Notebooks seem convenient, but there are many pitfalls!
– Hidden states can lead to nasty bugs

● Reproducibility is difficult
● Newcomers get easily confused

– Notebooks encourage bad habits

Beware!

Nice slide deck that shows the pitfalls of notebooks:
https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-
AL4ffI/preview

Don’t use them for writing your machine learning code!

Notebooks are great for plotting stuff.



  

● Find a good text editor and get familiar with it:

Beware!

Visual Studio
Code

Sublime Atom PyCharm Spyder

And many more ...



  

Data Scientist are Software Developers

● Get familiar with coding guidelines (Python: PEP 8)

● Document your code (PEP 257, NumPy Style, ...)

● Write tests!!! (e.g. Unit-tests with pytest)

● Modularize your code.



  

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/code_style



  

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/code_style



  

Why tests?
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Testing with pytest

https://docs.pytest.org/en/latest/contents.html

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/code_style



  

Summary

Data Scientist do not have a license to write 
‘spaghetti code’

In fact, your code (and data) needs to be clean, 
structured and better tested as ‘regular’ software 

code.
The hidden technical debt in machine learning systems. Sculley et al (Google). Neural Information Processing Systems (NIPS) 2015.
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdhttp:/martin.zinkevich.org/rules_of_ml/rules_of_ml

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdhttp:/martin.zinkevich.org/rules_of_ml/rules_of_ml


  

Now we can start.



  

Quick Refresher

!!! Reproducibility is a big issue in ML

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/refresher



  

Quick Refresher

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/refresher



  

Quick Refresher

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/refresher



  

Quick Refresher

Nice tutorial:
https://medium.com/@eikonomega/getting-started-with-sphinx-autodoc-part-1-2cebbbca5365



  

Debugging

Debugging Tensorflow can be intimidating...

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/debug_tensorflow



  

Debugging

If you get used to it, the errors contain a lot of valuable information.

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/debug_tensorflow



  

Debugging

● You can improve the readability of the graph by grouping 
tensors and variables into scopes.

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/debug_tensorflow



  

Debugging

● Something seems to be wrong...

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/debug_tensorflow



  

Debugging

● Tensorlow Debugger is a great tool to get to the bottom of this.

● Import it and wrap the session, just execute the code again.

...



  

● Enter ‘run’ to get to the first session run call.
–

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/debug_tensorflow



  

● Scopes are really useful here, too.

● You can click on the “Tensor name” to show its content.
– Try layer1/W/Assign:0 which shows the weights.

● Enter ‘run’ again to get to the next session run call.



  

● That’s are a lot of tensors to inspect. Luckily we used scopes in our code. 
We can use them to filter this list.

● The reported loss was nan so we will start there.

● Enter ‘lt -n loss’



  

● There are negative values flowing into the log of the binary cross entropy...

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/debug_tensorflow



  

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/debug_tensorflow



  

Debugging

Don’t use tf.print for debugging your code.

It’s tedious to use.
It’s adds more code (that you have to remove later).

Tensorflow Debugger works also with tf.keras, tf.estimator …
https://www.tensorflow.org/guide/debugger



  

Tensorflow Eager Execution

● Tensorflow’s (and others) symbolic programming style is:
– Unintuitive for newcomers

– Hard to debug (hopefully less hard now)

– People feel comfortable with imparative programming

● Inspired by 

https://www.tensorflow.org/guide/eager



  

Eager Execution Example

Mix arrays and tensors directly

No session run calls required

Mix python control flows with Tensorflow

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/eager_execution



  

Eager Execution Example

● There are some other things to consider:

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/eager_execution



  

Eager Execution Debugging

...

You can use your standard python debugging routine!

...

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/eager_execution



  

Eager Execution

● Yes, eager sounds nice but consider
–

https://www.tensorflow.org/guide/eager



  

Eager Execution

Mix arrays and tensors directly

No session run calls required

Mix python control flows with Tensorflow

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/eager_execution

Only for static graphs



  

Tensorboard

Scalars Histograms Graph

https://www.tensorflow.org/api_docs/python/tf/summary

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/tensorboard



  

Tensorboard

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/tensorboard



  

Tensorboard

Visualize / 
compare learning 

curves

Visualize the
computation graph

(Use scopes and names)

Tensorboard is mostly used for monitoring the training, not for evaluating the model.
It is an additional tool for debugging.

Visualize how parameters 
and outputs are evolving

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/tensorboard



  

Frameworks

+



  

Frameworks
Don’t worry about numerical stability

output = tf.nn.sigmoid(x) loss = tf.losses.log_loss(x)

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/frameworks



  

Frameworks
Worry less about best practices

● Here: Initialization of model parameters



  

Frameworks
Lots of convenience

Tensorflow
from scratch

371 lines

tf.keras + sklearn

133 lines

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/frameworks



  

Frameworks
Lots of convenience

● Keras Model API is a powerful tool 
for prototyping models quickly.

● Additional features are already 
implemented (layers, Tensorboard 
summaries, ...)

https://www.tensorflow.org/api_docs/python/tf/keras or 
https://keras.io/getting-started/functional-api-guide/



  

Frameworks
Limits

● Often, a high level framework does not contain all the required features or is not flexible enough:

– Fall back to Tensorflow 
● Many convenience functions from tf.keras like layers can be reused.

– Use the framework differently.
● Maybe you need multiple models? (GANs)

– Write own extensions for framework.
● Many things like custom losses, layers and models can be easily implemented. 

– Built-in ways to extend functionalities:

output = tf.keras.layers.Lambda(lambda x: tf.expand_dims(x, -1))(input_x)



  

TUNE



  

Hyperparameter Tuning

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/hypertune



  

Hyperparameter Tuning
General Procedure

● Get an idea what you are actually after
– Run a couple of test experiments

– Measure everything that seems useful to judge the performance manually

– In the ideal case, find a single measure (could be your own) that frames good 
models.

● Roll out large scale experiments
– Use your measures to filter the runs

– Evaluate the best candidates

● Draw conclusions and repeat/refine



  

Hyperparameter Tuning
Methods

You don’t know 
the true error 

landscape



  

Hyperparameter Tuning
Methods - GridSearch

You don’t know 
the true error 

landscape



  

Hyperparameter Tuning
Methods – Random Search

You don’t know 
the true error 

landscape



  

Hyperparameter Tuning 
Methods- Bayesian Model Optimization

Intuition: Automate hyperparameter search by automatically choosing most promising 
candidates based on past experience.

You don’t know 
the true error 

landscape



  

Hyperparameter Tuning
The naive way

Experiment runs are 
automated but they are 
executed sequentially.

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/hypertune



  

Hyperparameter Tuning
Parallel (distributed) execution

● ray is very generic system for parallel 
and distributed Python
– Can also be used for distributed 

execution in computing cluster.

– Easy to setup (just pip install)

– ray.tune contains implementations for 
more advanced hyperparameter 
tuning methods (requires integration 
into API).

https://ray.readthedocs.io/en/latest/index.html

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/hypertune



  

Hyperparameter Tuning
Cloud Solutions

● Cloud solutions have the advantage that you do not have 
to manage the infrastructure.

● There exists a couple of cloud offerings that enable you 
to perform hyperparameter tuning on managed 
infrastructure:

But there are also newcomers:



  

Hyperparameter Tuning
Cloud Solutions- Simple Approach

● All cloud solutions offer the possibility to submit an (infinite) amount of jobs and retrieve the 
results.

● Using for example FloydHub for this is fairly easy:

– Register at floydhub (free)

– Download cli tool with pip:
● $ pip install floyd-cli 

– Create a project in the web ui.

– Connect your local files with (you can use .floydignore to exclude files from synching)
● $ floyd init <your project name>

– Execute your command with:
● $ floyd run –env tensorflow-1.11 “<command>” 

– Your scripts get uploaded (Max 100 MB) and the command gets scheduled (dockerized).

– Download the results (via the WebUI or via the CLI)

– If your job requires data, you should create a dataset with floydhubs API beforehand.

You can extend this.



  

Hyperparameter Tuning
Cloud Solutions- Simple Approach

I created a project
called “hypertune”.

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/hypertune



  

Hyperparameter Tuning
Cloud Solutions- Simple Approach

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/hypertune



  

Hyperparameter Tuning
Cloud Solutions- Simple Approach

Uploaded files
+

new files (results)

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/hypertune



  

Hyperparameter Tuning
Cloud Solutions- Advanced Approach

● Cloud solutions have the advantage that you do not have 
to manage the infrastructure.

● There exists a couple of cloud offerings that enable you 
to perform hyperparameter tuning on managed 
infrastructure:

SageMakerCloud ML Engine Machine Learning service

Python SDK Python SDK Python SDK

Better offering but much more labor intensive to get something (custom) running.



  

AutoML

Don’t bet on it just yet.

We are far away from automating Machine Learning.

https://hackernoon.com/a-brief-overview-of-automatic-machine-learning-solutions-automl-
2826c7807a2a



  

DEPLOY



  

ML Model

Deployment

Preprocessing

ML Model

Client
Data

Preprocessing

Training
Data

Preprocessing /
Augmentation ?

=

Model Training Model Inference

The data sources are often very different!
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Deployment
 Model Serving – Tensorflow Serving

Training
Data

Model
Preprocessing

Model

Model

 Model

Clients

Model 
Server

Model Repo
 Model

 Model V2

V1

Tuning
Model

Model

Model

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/deployment



  

Deployment
 Model Serving – Tensorflow Serving

Training
Data

Model
Preprocessing

Model

Model

 Model

Clients

Model 
Server

Model Repo
 Model

 Model V2

V1

Tuning
Model

Model

Model

Note: In our simple case, 
we do not have any data 

preprocessing.
https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/deployment



  

Deployment
 Model Serving – Tensorflow Serving
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Deployment
 Model Serving – Tensorflow Serving

Training
Data

Model
Preprocessing

Model
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 Model
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https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/deployment



  

Deployment
 Model Serving – Tensorflow Serving

 Model

Clients

Model 
Server

Model Repo
 Model

 Model V2

V1

Training
Data

Model
Preprocessing

Model

Model

 Model

Model Repo
 Model V1

Tuning
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https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/deployment



  

Deployment
 Model Serving – Scaling up

 Model
Model 
Server

 Model

https://github.com/dekromp/deep_learning_and_ai_tooling_lecture/tree/master/tooling_lecture/deployment



  

Things that we did not cover

Model Evaluation

Data Validation

Model Validation

Versioning

Embedded Deployment

Serverless Deployment

Distributed Model Training

Pre-Trained Model Repositories

Online Learning

Remote Debugging



  

Thanks!
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