
Lecture-6:
Uncertainty in Neural
Networks
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Motivation

“Every time a scientific paper presents a bit of data, it's accompanied
by an error bar – a quiet but insistent reminder that no knowledge is
complete or perfect. It's a calibration of how much we trust what we
think we know.”

― Carl Sagan,
The Demon-Haunted World: Science as a Candle in the Dark

https://commons.wikimedia.org/wiki/File:Carl_Sagan_Pla
netary_Society.JPG

Further Reading
Sagan, Carl. The demon-haunted world:

Science as a candle in the dark.
Ballantine Books, 2011.
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Types of Uncertainty

Classical Neural Network
(or any parametric model)

ݕ = f(ݔ, (ߠ ; D = {x, t}

Output/Prediciton Uncertainty

,ݔ|ݕ)~ݕ (ߠ

Model (Weight) Uncertainty

(D|ߠ)~ߠ

Conventions for this lecture
• ߠ = neural network weights
• ݔ = neural network input
• ݕ = neural network output
• D = training data (input and targets)
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Three Different Ways to represent Distributions in Practice

Point Estimate Parametric Distribution Empirical Distribution

Mean

Mean Var. Bin1 Bin 2 Bin 3 … Bin N

data
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Pros and Cons

Point Estimate

þ Calculation efficient and stable

ý Uncertainty not accounted for
ý Cannot be sampled
ý Assumption that point estimate is
representative: e.g. Failure with multi-
modality

Parametric Distribution

þ Calculation relatively efficient
þ Analytical Representation
þ Can be sampled

ý Breaks down if assumption on
class of distribution is not correct
ý Hard to represent multi-modality

Empirical Distribution

þ Flexible: No assumptions
þ Can be sampled (more or less)

ý Breaks down for higher
dimensional data
ý High memory consumption
ý Artifacts due to discretization

Mean

data



Output Uncertainty
for Regression
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Recap: Classification

The standard setup:
• Classification predicts a categorical distribution of the classes
• Targets are one-hot-encoded
• The loss function is the cross-entropy

We will focus on Regression henceforth …

Neural Network Dense Layer
Act:Softmax CategorialX

0 1 2 3 4 … 9

0 0 .98 0 0 .02

target
0 1 2 3 4 … 9

0 0 1 0 0 0
Understates the
true uncertainty!
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Motivation for Output Uncertainty:
Mean Average Precision @ 7

Challenge:
Give at most 7 recommendations from a large product catalog. You are
evaluated based on the precision on these at most 7 items.

Idea:
Select at most 7 recommendations where the model is certain about the
recommendation.

In General:
Situations where a response/action can be rejected.

Further Reading
Brando, Axel, et al. "Uncertainty

Modelling in Deep Networks: Forecasting
Short and Noisy Series." arXiv preprint

arXiv:1807.09011 (2018).

Related Kaggle Challange
https://www.kaggle.com/c/santander-

product-recommendation

https://www.kaggle.com/c/santander-product-recommendation
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Neural Network with Output Uncertainty

,ݔ|ݕ)~ݕ (ߠ

Let’s commit to a parametric distribution:

,ߤ|ݕ) ࣨ~ݕ (ߪ

We will model ߤ as a Neural Network: ,ݔ)ߤ (ߠ

We either model ߪ as a scalar parameter under the assumption of homoskestic uncertainty
or as a Neural Network: ,ݔ)ߪ (ߠ for heteroskedastic uncertainty

ࣨ ݕ ,ߤ ߪ =
1

,ݔ)ߪߨ2 ଶ(ߠ
exp −

ݕ − ,ݔ)ߤ (ߠ ଶ

,ݔ)ߪ2 ଶ(ߠ

Your choice!
Also popular: The

Laplace Distribution
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Neural Network with Output Uncertainty

ࣨ ݕ ,ߤ ߪ =
1

,ݔ)ߪߨ2 ଶ(ߠ
exp −

ݕ − ,ݔ)ߤ (ߠ ଶ

,ݔ)ߪ2 ଶ(ߠ

ܦ = ,ݔ} {ݐ

We will optimize the Log-Likelihood with respect to the weights ߠ

ℒ ,ߠ ܦ = −  − log ߪ ݔ , ߠ −
ݐ − ݔ)ߤ , (ߠ ଶ

ݔ)ߪ2 , ଶ(ߠ + ܥ
||

ୀ

Use a variant of Stochastic Gradient Descent to train.
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Network with Output Uncertainty: Architecture Variants

Neural Network ߪ

X

Normal
Distribution

ߤ
P(Y|X)

Loss: − log ܲ ܇ ܆

Neural Network

X

Neural Network
ߪ

Normal
Distribution

ߤ
P(Y|X)X

Understates the
true uncertainty!
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Multimodality

Fit Gaussian
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Example of Multimodality

Learning the value of an action
(see also Reinforcement Learning)

Steering action

Value of the action

https://commons.wikimedia.org/wiki/File:Newport_Whitepit_Lane_pot_hole.JPG

Mean

Further Reading
Depeweg, Stefan, et al. "Learning and
policy search in stochastic dynamical

systems with bayesian neural networks."
arXiv preprint arXiv:1605.07127 (2016).
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Result of Point Estimation

https://commons.wikimedia.org/wiki/File:Bus_in_hole.jpg
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Inverse Problems

1. We are interested in X, but X can only be perceived indirectly via Y.
2. The relation between X and Y is given by a known, possibly stochastic

function

ݕ = (ݔ)݃

This means we would like to learn the inverse of g:

ݔ = (ݕ)݂

The challenge is that g may not be invertible!
This means that f may be stochastic even if g is not.

X

Y
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Inverse Problems: Examples

1. Image De-Noising
2. Astronomy Imaging
3. Deconvolution
4. Localization
5. …

Atmospheric Disturbance f(x)

X

y
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Gaussian Mixtures

Mean Variance

1.2 3

Mean Var. weight

Cluster 1 4.1 1.8 0.6

Cluster 2 -2.0 2.7 0.38

Cluster 3 -0.6 0.8 0.02

Further Reading
Blei, David M., and Michael I. Jordan.

"Variational inference for Dirichlet
process mixtures." Bayesian analysis

1.1 (2006): 121-143.

Further Practice
with GMMs

http://scikit-
learn.org/stable/module
s/mixture.html#bgmm

Further Reading
Rasmussen, Carl Edward. "The infinite
Gaussian mixture model." Advances in

neural information processing
systems. 2000.

If you want to know how
many clusters to assume:

http://scikit-learn.org/stable/modules/mixture.html
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The Mixture Density Network: Architecture

• standard :࣌ deviations
• means :ࣆ
• cluster :࣊ weights

• Loss: − log ܲ ܇ ܆

Reference
Bishop, Christopher M. Mixture density

networks. Technical Report NCRG/4288,
Aston University, Birmingham, UK, 1994.

Neural Network

࣌

X Mixture
Densityࣆ

࣊

P(Y|X)
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The Mixture Density Network:
Implementation in TensorFlow Probability

import tensorflow as tf
import tensorflow_probability as tfp
tfd = tfp.distributions

X_ph = tf.placeholder(tf.float32, [None, D])
y_ph = tf.placeholder(tf.float32, [None])

K = 10
net = tf.layers.dense(X_ph, 15, activation=tf.nn.relu)
net = tf.layers.dense(net, 15, activation=tf.nn.relu)
locs = tf.layers.dense(net, K, activation=None)
scales = tf.layers.dense(net, K, activation=tf.exp)
logits = tf.layers.dense(net, K, activation=None)

components = [ tfd.Normal(loc=loc, scale=scale) for loc, scale
in zip(tf.unstack(tf.transpose(locs)), tf.unstack(tf.transpose(scales)))]

cat = tfd.Categorical(logits=logits)

mdn = tfd.Mixture(cat=cat, components=components)

loss = -tf.reduce_mean(mdn.log_prob(y_ph))

Neural Network

࣌

X Mixture
Density࣌

࣊

P(Y|X)

Note the
activation! We
want ,0)߳ߪ⃗ ∞)

Understates the
true uncertainty!
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The Mixture Density Network: Result

MDN
Training

Training Data

Mixture Density
Model



Model Uncertainty
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Model Uncertainty

ݕ = f(ݔ, (ߠ ; D = {x, t}

Model (Weight) Uncertainty
(D|ߠ)~ߠ

Implies an uncertainty in the output!

Is it qualitatively different than simple output uncertainty?
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Example: Tossing a Coin

You have tossed a coin 1 000 000 times.

What is your prediction for the outcome of the next flip?

How sure are you? In other words: How sure are you about your model?

Head Tails

501 071 498 929
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Example: Predicting a Time Series

Data

What is your prediction for y?

How sure are you? In other words: How sure are you about your model?

t 0 1 2 3 4 5 6
y 0 1 ? ? ? ? ?
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Epistemic and Aleatoric Uncertainty

Epistimic

Caused by insufficient number of
observations. In other words: The
model is underdetermined.

More observations will reduce
this type of uncertainty

Aleatoric

Caused by stochasticity or un-
observability of an aspect of a
system.

More observations will not reduce
this type of uncertainty.
Different types of observations
might.

Further Reading
Kendall, Alex, and Yarin Gal. "What

uncertainties do we need in
bayesian deep learning for

computer vision?." Advances in
neural information processing

systems. 2017.

Model

Epistemic

Aleatoric Output
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Normalization

PriorLikelihood
of Data

Model/Weight Uncertainty in Neural Networks

Bayes Theorem

Is this radically different than “normal” Neural Networks?
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Preparation:
Neural Networks in the Bayesian Framework

Parametric Model with Noise Term

ݐ = f(ݔ, (ߠ + ߝ
,0)ܰ~ߝ (ߪ
D = {x, t}

Inference on Weights

ܲ ߠ ܦ =
ܲ ܦ θ ܲ(θ)

(ܦ)ܲ
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MSE
L2 Weight

Regularization

Preparation:
Neural Networks in the Bayesian Framework

Likelihood
ܲ ݕ θ = ܰ ݕ f(ݔ, (ߠ − ,ݐ ߪ

ܲ ܦ θ = ෑ ܰ ݕ f(ݔ, (ߠ − ,ݐ ߪ
(௫,௧)∈

Prior

ܲ ી = ෑ ܰ θ 0,1


Log Posterior

ℒ℘ ,ߠ ܦ = ଵܥ  (f ,ݔ ߠ − ଶ(ݐ

௫,௧ ∈

+ ଶܥ  θଶ



Normalization

PriorLikelihood
of Data

ܲ ߠ ܦ =
ܲ ܦ θ ܲ(θ)

(ܦ)ܲ
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MSE
L2 Weight

Regularization

Preparation:
Neural Networks in the Bayesian Framework

ℒ℘ ,ߠ ܦ = ଵܥ  (f ,ݔ ߠ − ଶ(ݐ

௫,௧ ∈

+ ଶܥ  θଶ



Optimization gives the Maximum A Posterior (MAP) Estimate

Further Reading
Barber, David, and Christopher M.

Bishop. "Ensemble learning in
Bayesian neural networks." NATO
ASI SERIES F COMPUTER AND

SYSTEMS SCIENCES 168 (1998):
215-238.
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Why Bayes is Difficult in Practice

Two Main Challenges:

1. How to represent Distributions?
2. How to calculate ܲ ܦ = ∫ ܲ ܦ θ ܲ θ ݀θ?

Normalization

PriorLikelihood
of Data

ܲ ߠ ܦ =
ܲ ܦ θ ܲ(θ)

(ܦ)ܲ



Unrestricted © Siemens AG 2017
17.05.2017Page 31 Dr. Markus M. Geipel / CT RDA BAM LSY

Some Recipes to deal with Bayes Theorem

Reduce it to a point estimate

→ use numerical optimization to find it

þ That’s what we just did!

Assume conjugate distribution of the
exponential family for ࡼ ࡰ ࣂ and ࡼ ࣂ

→ solve analytically

ý Not working for Neural Networks!

Empirically estimate ࡼ ࣂ ࡰ

→ use Markov Chain Monte Carlo Methods to
sample ܲ ߠ ܦ . (MCMC can sample from un-
normalized distributions)

ÜLet’s take a closer look!

Make simplifying assumptions such as
factorization of ࡼ ࣂ ࡰ

→ use Variational Methods to approximate ܲ ߠ ܦ

ÜLet’s take a closer look!

Note: There are more recipes for special types of models. E.g. Message passing for graphical models.
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Empirical Estimate of Weights Distribution
via Markov Chain Monte Carlo

Problem Statement:
1. We want to sample from the distribution of Neural Network weights given the Data: ܲ ߠ ܦ .
2. For a given ߠ we can evaluate the un-normalized ෨ܲ ߠ ܦ = ܲ ܦ θ ܲ θ .

Idea:

θଵ

θଶ

෨ܲ ી ܦ

Jump around in the
weight  space such that
the points are distributed

proportional to ෨ܲ ી ܦ
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How to Jump: The Metropolis-Hastings Algorithm

Split the Jump into two Phases

1. Propose a new point in weight space
by sampling from a arbitrary but known proposal
distribution

• We call the proposal distribution Q(ી∗|ીܜ)
• We call the proposed weight vector ી∗

• We call the current weight vector ીܜ

2. Define an Acceptance Probability for the
proposed weight vector:

accept~ܣ ી∗, ીܜ

• If accept: ીܜା = ી∗

• else: ીܜା = ીܜ

θଵ

θଶ

෨ܲ ી ܦ

ી∗
ીܜ

θଵ

θଶ

෨ܲ ી ܦ

ીܜ
ܣ~ ી∗, ીܜ

Q(ી∗|ીܜ)
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How to Jump: The Metropolis-Hastings Algorithm

If the Acceptance Probability is chosen as

ܣ ી∗, ીܜ = min 1,
෨ܲ ી∗ ܦ Q(ીܜ|ી∗)
෨ܲ ીܜ ܦ Q(ી∗|ીܜ)

It can be proven that distribution of the sampled ીܜ,
ીܜା, ીܜା… converges to ܲ ߠ ܦ

θଵ

θଶ

෨ܲ ી ܦ

ી∗
ીܜ

θଵ

θଶ

෨ܲ ી ܦ

ીܜ
ܣ~ ી∗, ીܜ

Q(ી∗|ીܜ)

Further Reading
Chapter 11, Sampling Methods of

Christopher M. Bishop. 2006. Pattern
Recognition and Machine Learning
(Information Science and Statistics).

Springer-Verlag, Berlin.
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Caveats of Markov Chain Monte Carlo

1. Computational Complexity: One sampling step requires
computation of ܲ ܦ θ ܲ θ which includes .ܦ

2. Convergence to ܲ ߠ ܦ can be slow:

3. Trade-off between high acceptance and efficient
traversal of weight-space

• Long jumps make acceptance low
• Short jumps makes movement in space slow

There is a large body of research addressing these
points: Best use an existing framework or library!

θଵ

θଶ

෨ܲ ી ܦ

x

x

x

x

Python Libraries
• PyMC3: https://docs.pymc.io/
• Edward: http://edwardlib.org/
• TensorFlow Probability: https://www.tensorflow.org/probability/

https://docs.pymc.io/
http://edwardlib.org/
https://www.tensorflow.org/probability/
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Big Caveat of Markov Chain Monte Carlo for Deep Learning

What’s the memory requirement?
• S samples needed for each weight to build histogram
• W weights in a Deep Neural Network

→ O(S*W)

For VGG19: 26578886 and 1000 samples for each weight: ~26 Billion!
One weight is float32, so ~100 GB for the sample traces.
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Parametric Estimate via the Variational Method

So, ܲ ߠ ܦ is intractable? Let‘s simplify and assume:

ܲ ࣂ ܦ ≈ (ࣂ)࣓ܳ

࣓ܳ ࣂ = ෑ ܳఠ(ߠ)


∀: න ߠ݀ . ܳఠ(ߠ) = 1

Let’s measure the discrepancy between ܲ ࣂ ܦ and (ࣂ)࣓ܳ
with the Kullback–Leibler divergence:

D ࣓ܳ ࣂ  ||ܲ ࣂ ܦ = න .ࣂ݀ ࣓ܳ ࣂ  log
࣓ܳ ࣂ
ܲ ࣂ ܦ

If we can measure it, maybe we can minimize it with respect to ࣓…

Further Reading
Hernández-Lobato, J. M., et al.

"Black-Box α-divergence
minimization." 33rd International

Conference on Machine Learning,
ICML 2016. Vol. 4. 2016

Using Dis a design
choice. There are good

reasons to choose
differently.

Further Reading
Ranganath, Rajesh, et al. "Operator
variational inference." Advances in

Neural Information Processing
Systems. 2016.
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Lower bound on
log P(D)!³ 0

Const
for

given D

Parametric Estimate via the Variational Method

D ࣓ܳ ࣂ  ||ܲ ࣂ ܦ = න .ࣂ݀ ࣓ܳ ࣂ  log
࣓ܳ ࣂ
ܲ ࣂ ܦ

Still contains the intractable term ܲ ࣂ ܦ . Let‘s dissect it!

න .ࣂ݀ ࣓ܳ ࣂ  log
࣓ܳ ࣂ
ܲ ࣂ ܦ = න .ࣂ݀ ࣓ܳ ࣂ  log

࣓ܳ ࣂ
,ࣂ)ܲ (ܦ + log (ܦ)ܲ

Rearrange:

log (ܦ)ܲ = D ࣓ܳ ࣂ  ||ܲ ࣂ ܦ + න .ࣂ݀ ࣓ܳ ࣂ  log
,ࣂ)ܲ (ܦ
࣓ܳ ࣂ
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The Evidence Lower Bound

Let’s give it a name: Evidence Lower Bound

ELBO ܦ ≔ න .ࣂ݀ ࣓ܳ ࣂ  log
,ࣂ)ܲ (ܦ
࣓ܳ ࣂ

Further Reading
Chapter 10, Approximate Inference of
Christopher M. Bishop. 2006. Pattern
Recognition and Machine Learning
(Information Science and Statistics).

Springer-Verlag, Berlin.

Coordinate Ascent
Variational Inference
(CAVI) / Mean Field

Aproximation

Option B:
Use sampling and stay
in the gradient descent

framework of neural
networks.

Option A:
Use factorization and
assume exponential

family for Q

Automatic
Differentiation

Variational Inference
(ADVI) / Black Box

Variational Inference

þý(for deep neural networks)
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D ࣓ܳ ࣂ (ࣂ)ܲ|| 
RegularizationAverage Log Likelihood

The Evidence Lower Bound in Detail

න .ࣂ݀ ࣓ܳ ࣂ  log
,ࣂ)ܲ (ܦ
࣓ܳ ࣂ ≔ ELBO(ܦ)

Further deconstruction yields:

න .ࣂ݀ ࣓ܳ ࣂ  log
,ࣂ)ܲ (ܦ
࣓ܳ ࣂ = න .ࣂ݀ ࣓ܳ ࣂ  log (ࣂ|ܦ)ܲ − න .ࣂ݀ ࣓ܳ ࣂ  log

࣓ܳ ࣂ
(ࣂ)ܲ

ܲ ,ࣂ ܦ = (ࣂ)ܲ(ࣂ|ܦ)ܲ
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Can be solved
analytically

D ࣓ܳ ࣂ (ࣂ)ܲ|| 
RegularizationAverage Log Likelihood

Alternative Decomposition

EntropyEnergy

න .ࣂ݀ ࣓ܳ ࣂ  log
,ࣂ)ܲ (ܦ
࣓ܳ ࣂ = න .ࣂ݀ ࣓ܳ ࣂ  log (ࣂ|ܦ)ܲ − න .ࣂ݀ ࣓ܳ ࣂ  log

࣓ܳ ࣂ
(ࣂ)ܲ

න .ࣂ݀ ࣓ܳ ࣂ  log
,ࣂ)ܲ (ܦ
࣓ܳ ࣂ = න .ࣂ݀ ࣓ܳ ࣂ  log ,ࣂ)ܲ (ࡰ − න .ࣂ݀ ࣓ܳ ࣂ  log ࣓ܳ ࣂ
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Stochastic Gradient of the ELBO

ߘ࣓ ELBO ܦ = ߘ࣓ න ࣓ܳ ࣂ  log (ࣂ|ܦ)ܲ − ࣓ܳ ࣂ log
࣓ܳ ࣂ
ܲ ࣂ ࣂ݀

= ߘ࣓ ॱொ࣓ ࣂ log ܲ ݀ ࣂ − log
࣓ܳ ࣂ
ܲ ࣂ

If we could move the derivative into the Expectation, we could approximate it by sampling!

There are at least two options:
1. Log Derivative Trick
ý suffers from high variance
þ flexible with respect to the distribution

2. Reparametrization (a.k.a. Perturbation Analysis, Pathwise Derivatives)
þ easy to implement,þ low gradient variance
ý does not work for every distribution

Further Reading
Williams, Ronald J. "Simple
statistical gradient-following
algorithms for connectionist

reinforcement learning." Machine
learning 8.3-4 (1992): 229-256.

Viable and flexible option in combination with variance control techniques.
Also used in Reinforcement Learning

Further Reading
Ranganath, Rajesh, Sean Gerrish,

and David Blei. "Black box
variational inference." Artificial

Intelligence and Statistics. 2014.
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Reparametrization Trick

ఠॱߘ ௭|ఠ (ݖ)݂ = ఠߘ න  ߱|ݖ ݂ ݖ ݖ݀

Find a way to reparametrize  ߱|ݖ such that ,ߝ)݃~ݖ ߱) and we just sample ߝ

னߘ න  ߱|ݖ ݂ ݖ ݖ݀ = ఠߘ න  ߝ ݂ ,ߝ)݃ ߱) ߝ݀

We move the derivative inside the integral:

= න  ߝ ఠ݂ߘ ,ߝ)݃ ߱) ߝ݀ = ॱ ఌ ,ߝ)݃)ఠ݂ߘ ߱))

Example:
ࣨ~ݖ ,ߤ ߪ  → ߤ~ݖ + ;ߝߪ (0,1)ࣨ~ߝ

þ ࢿ is now independent of ,ࣆ ࣌ and backpropagation works!

Further Reading
Kingma, Diederik P., and Max

Welling. "Auto-encoding variational
bayes." arXiv preprint

arXiv:1312.6114 (2013).

warranted by the
dominated

convergence
theorem
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Flipout

Challenge:
“because a network typically has many more weights than units, it is very
expensive to compute and store separate weight perturbations for every
example in a mini-batch. Therefore, stochastic weight methods are typically
done with a single sample per mini-batch.“

For VGG19: 26578886 weights and a batch size of 100 : ~2.6 Billion!

→ Same sample for the entire batch
→ high variance in the gradient
→ small learning rate needed
→ slow convergence

Further Reading
Wen, Yeming, et al. "Flipout:
Efficient Pseudo-Independent
Weight Perturbations on Mini-

Batches." arXiv preprint
arXiv:1803.04386 (2018).
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Flipout

Idea:
Add independence to the weight samples in one batch with low computational cost.

Conditions:
1. weight distribution is symmetric
2. each weight is sampled independently

These conditions are met for our stochastic variable (perturbation) !ߝ

• Let Δܹ be a matrix of independently sampled ࣨ~ߝ 0,1
• Let ܧ be a matrix of independently sampled signs ±1

Δܹ = Δܹ ∘ ܧ

Δܹ and Δܹ are equally distributed, but Δܹ is less correlated!
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Flipout

Δܹ = Δܹ ∘ ܧ

ࡱ is as big as a fully sampled weights matrix for the batch. Nothing gained yet!

Can we generate ܧ cheaply?

Idea:
Use a rank one ܧ induced by a product of two random sign vectors ݎ and ݏ :

ܧ = ்ݏݎ

For a full analysis of the gradient variance reduction and computational cost see:

Further Reading
Wen, Yeming, et al. "Flipout:
Efficient Pseudo-Independent
Weight Perturbations on Mini-

Batches." arXiv preprint
arXiv:1803.04386 (2018).
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Implementation in TensorFlow Probability

The Bayes Version of the LeNet CNN Architecture:
Taken from the TensorFlow Probability Examples

neural_net = tf.keras.Sequential([
tfp.layers.Convolution2DFlipout(6, kernel_size=5, padding="SAME", activation=tf.nn.relu),
tf.keras.layers.MaxPooling2D(pool_size=[2, 2],  strides=[2, 2], padding="SAME"),
tfp.layers.Convolution2DFlipout(16, kernel_size=5, padding="SAME", activation=tf.nn.relu),
tf.keras.layers.MaxPooling2D(pool_size=[2, 2], strides=[2, 2], padding="SAME"),
tfp.layers.Convolution2DFlipout(120, kernel_size=5, padding="SAME", activation=tf.nn.relu),
tf.keras.layers.Flatten(),
tfp.layers.DenseFlipout(84, activation=tf.nn.relu),
tfp.layers.DenseFlipout(10)
])

labels_distribution = tfd.Categorical( logits = neural_net(images) )

neg_log_likelihood = -tf.reduce_mean(labels_distribution.log_prob(labels))
kl = sum(neural_net.losses) / mnist_data.train.num_examples
elbo_loss = neg_log_likelihood + kl

Further Reading on LeNet
LeCun, Yann, et al. "Gradient-

based learning applied to document
recognition." Proceedings of the
IEEE 86.11 (1998): 2278-2324.

Further Practice
https://github.com/tensorflow/proba
bility/tree/master/tensorflow_probab

ility/examples≈ − න .ࣂ݀ ࣓ܳ ࣂ  log ܲ ܦ ࣂ + න .ࣂ݀ ࣓ܳ ࣂ  log
࣓ܳ ࣂ
ܲ ࣂ

Convolution
Maxpooling Dense

https://github.com/tensorflow/probability/tree/master/tensorflow_probability/examples
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Sampling from a Bayesian Neural Network

Pros
• Estimate of Model Uncertainty

(If your use-case benefits from it!)
• Implies Output Uncertainty
• Acts as Regularization

Con
• Computational / Memory Overhead

Convolution
Maxpooling Dense

0 1 2 3 4 … 9

0 0 .98 0 0 .02

0 .01 .97 0 0 .01

0 0 .99 0 0 0

Calculate network outputSample
Calculate network outputSample
Calculate network outputSample
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Approximating Bayesian Networks with Ensembles

Pros
• Simple
• Parallelizable
• Reduction of expected error

Con
• Excessive training time

for modern
Deep Neural Networks

Mean

Neural
Network

Neural
Network

Neural
Network

Neural
Network

…
Output
Sample

Further Reading
Perrone, Michael P., and Leon N.
Cooper. When networks disagree:

Ensemble methods for hybrid
neural networks. No. TR-61.

BROWN UNIV PROVIDENCE RI
INST FOR BRAIN AND NEURAL

SYSTEMS, 1992.
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Approximating Ensembles with Dropout

Further Reading
Gal, Yarin, and Zoubin

Ghahramani. "Dropout as a
Bayesian approximation: Insights
and applications." Deep Learning
Workshop, ICML. Vol. 1. 2015.

Convolution
Maxpooling Dense

Calculate network outputSample
Calculate network outputSample
Calculate network outputSample

0 1 2 3 4 … 9

0 0 .98 0 0 .02

0 .01 .97 0 0 .01

0 0 .99 0 0 0

Pros
• Implies Output Uncertainty
• Acts as Regularization
• Computationally highly efficient

Con
• Only indirect estimate of  Model

Uncertainty
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In case you want to delve deeper into Bayesian Methods

Further Practice
https://github.com/CamDavidsonPil
on/Probabilistic-Programming-and-

Bayesian-Methods-for-Hackers

Further Reading
Gelman, Andrew, et al. Bayesian

data analysis. Chapman and
Hall/CRC, 2013.

Further Reading
Jaynes, Edwin T. Probability theory:

The logic of science. Cambridge
university press, 2003

Further Reading
Sivia, Devinderjit, and John Skilling.
Data analysis: a Bayesian tutorial.

OUP Oxford, 2006.M
or
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ore

Practice

https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers

