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Convolutional Neural Networks
Applications



Object Detection / Image Segmentation

Nice Video:
https://www.youtube.com/watch?v=OOT3UIXZztE

Source:
https://towardsdatascience.com/using-tensorflow-object-detection-to-do-pixel-wise-
classification-702bf2605182



Perception in Control Tasks

Winning Team:
Alexey Dosovitskiy, Vladlen Koltun. Learning to Act by Predicting the Future. arXiv:1611.01779v2, 2016

Source: https://techcrunch.com/2016/09/21/scientists-teach-machines-to-hunt-and-kill-
humans-in-doom-deathmatch-mode/?guccounter=1



Perception in Control Tasks

No worries, we are far far away from that …



It‘s not just images…

https://deepmind.com/blog/wavenet-generative-model-raw-audio/



Neural Artistic Style Transformations

ƒ 7.5 Million downloads one week after release.

Also works with videos these days: https://www.youtube.com/watch?v=BcflKNzO31A
Original work:
Leon A. Gatys, Alexander S. Ecker, Matthias Bethge.
A Neural Algorithm of Artistic Style. arXiv:1508.06576v2, 2015



Data Generation

Source and work: Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen. Progressive Growing of GANs for
Improved Quality, Stability, and Variation. arXiv:1710.10196v3, 2018

Full Video:
https://www.youtube.com/watch?v=XOxxPc
y5Gr4

Source (gif):
https://www.theverge.com/2017/10/30/16569402
/ai-generate-fake-faces-celebs-nvidia-gan



Convolutional Neural Networks
History



Convolutional Neural Networks - Invention

Yann LeCun

1989



Convolutional Neural Networks - Breakthrough

https://devblogs.nvidia.com/nvidia-ibm-cloud-support-imagenet-large-scale-visual-recognition-challenge/

http://image-net.org/challenges/LSVRC/2010/ILSVRC2010_NEC-UIUC.pdf



Convolutional Neural Networks - Breakthrough

https://devblogs.nvidia.com/nvidia-ibm-cloud-support-imagenet-large-scale-visual-recognition-challenge/

F. Perronnin, J. Sánchez, “Compressed Fisher vectors for LSVRC”,
PASCAL VOC / ImageNet workshop, ICCV, 2011



Convolutional Neural Networks - Breakthrough

Alexnet

https://devblogs.nvidia.com/nvidia-ibm-cloud-support-imagenet-large-scale-visual-recognition-challenge/

https://medium.com/coinmonks/paper-review-of-alexnet-caffenet-winner-in-ilsvrc-2012-image-classification-b93598314160



Convolutional Neural Networks - Breakthrough

GPUs
Huge amounts of

labeled data

https://ai.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html https://ai.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html



Convolutional Neural Networks - Breakthrough

https://www.researchgate.net/figure/The-evolution-of-the-winning-entries-on-the-ImageNet-Large-Scale-Visual-Recognition_fig1_321896881



Convolutional Neural Networks
Why we Need Them

http://houseofbots.com/news-detail/1442-1-what-is-deep-learning-and-neural-network



Dense Layers on High Dimensional Inputs

INPUTS OUTPUTHIDDEN

1
1

1920 x 1080 x 3

…

6.2 x 106 k



Dense Layers are Expensive

INPUTS OUTPUTHIDDEN

1
1

1920 x 1080 x 3

…

6.2 x 106

W has
6.2 x 106 x k
Parameters

k



Translation Invariance

It is natural to have some degree of invariance to where objects occur in a scene.



Perception of a Dense Layer

INPUT IMAGE INPUT IMAGE

That‘s an 8!That‘s an 8!



Can we do better?

INPUT IMAGE



The Convolutional Neural Network Layer



√
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The 1D Convolution Operator

ݏ =  ∗ ࢞  =  ݇ݔିା(ெିଵ)

ெିଵ

ୀ

Discrete Form

INPUT

KERNEL (or FILTER)FEATURE MAP

(TIME) INDEX

KERNEL SIZE



The 1D Convolution Operator
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The 1D Convolution Operator
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The 1D Convolution Operator
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The 1D Convolution Operator

ݏ =  ∗ ࢞  =  ݇ݔିା(ெିଵ)
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The 1D Cross-Correlation Operator

ݏ =  ∗ ࢞  =  ݇ݔାି(ெିଵ)
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The Convolution Operator in Deep Learning

Most Machine Learning libraries implement cross-correlation but call it convolution.

For the model, the difference does not matter!

We will also use the term convolution in the following but we are actually doing cross-correlation.



Padding Modes

ݏ =  ∗ ࢞  =  ݇ݔାି(ெିଵ)

ெିଵ
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Padding Modes

0 0 0 0INPUT

KERNEL

FEATURE MAP

„full“ convolution

ܯ + ݑ − 1

FILTER SIZE INPUT SIZE



Padding Modes

0 0INPUT

KERNEL

FEATURE MAP

„same“ convolution

ݑ

INPUT SIZE



Padding Modes
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Strided Convolution
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Strided Convolution
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Strided Convolution
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2D Convolution

„full“ convolution

Animations taken from: http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

INPUT
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2D Convolution

„same“ convolution„full“ convolution „valid“ convolution

Animations taken from: http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html



2D Convolution

STRIDE = [2, 2]STRIDE = [1, 1]

Animations taken from: http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html



Convolutional Layer

INPUT FEATURE MAPRANDOM FILTER
(KERNEL)



Convolutional Neural Network Layer

INPUT FEATURE MAPLEARNED FILTER
(KERNEL)

In a Convolutional Neural Network Layer we learn the Kernels.



2D Convolutional Neural Network Layer

ℎ݁݅݃ℎݐ	 × 	ℎݐ݀݅ݓ × ܿℎ݈ܽ݊݊݁ݏ

INPUT FILTER

*
ܿℎ݈ܽ݊݊݁ݏ × ݉ × ݊ ℎ݁݅݃ℎݐ	 × ℎݐ݀݅ݓ



Comparison: Dense Neural Network Layer
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2D Convolutional Neural Network Layer

ℎ݁݅݃ℎݐ	 × 	ℎݐ݀݅ݓ × ܿℎ݈ܽ݊݊݁ݏ ܿℎ݈ܽ݊݊݁ݏ × ݏݎ݁ݐ݈݂݅ × ݉ × ݊

INPUT FILTER

* 4D

ℎ݁݅݃ℎݐ	 × 	ℎݐ݀݅ݓ × ݏݎ݁ݐ݈݂݅



2D Convolutional Neural Network Layer

FILTER

* 4D

(ିଵ)ݏݎ݁ݐ݈݂݅ × ()ݏݎ݁ݐ݈݂݅ ×݉ × ݊

LAYER  − 
LAYER  + 

ℎ݁݅݃ℎݐ × ℎݐ݀݅ݓ × (ିଵ)ݏݎ݁ݐ݈݂݅ ℎ݁݅݃ℎݐ × ℎݐ݀݅ݓ × ()ݏݎ݁ݐ݈݂݅

INPUT
FEATURE MAP(S)

OUTPUT
FEATURE MAP(S)



2D Convolutional Neural Network Layer

INPUT
FEATURE MAP(S)

FILTER z

OUTPUT
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SAME PADDING



2D Convolutional Neural Network Layer
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2D Convolutional Neural Network Layer
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2D Convolutional Neural Network Layer
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2D Convolutional Neural Network Layer
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Efficiency

Convolutional layer:
• Exploits neighborhood relations of the inputs (e.g. spatial).
• Applies small fully connected layers to small patches of the input.

⋅Very efficient!
⋅Weight sharing
⋅Number of free parameters

•The receptive field can be increased by stacking multiple layers
•Should only be used if there is a notion of neighborhood in the input:

•Text, images, sensor time-series, videos, …

Example:
2,700 free parameters for a
convolutional layer with 100
hidden units (filters) with a
filter size of 3 x 3!RGB image of shape

100 x 100 x 3

filters#thfilter widheightfilterchannelsinput# ≥≥≥



Implementation
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Convolutional Neural Networks



Layout of a Classic Convolutional Neural Network (CNN)

Image taken from: https://codetolight.wordpress.com/2017/11/29/getting-started-with-pytorch-for-deep-learning-part-3-neural-network-basics/
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Layout of a Classic Convolutional Neural Network (CNN)
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Pooling

Image taken from: https://codetolight.wordpress.com/2017/11/29/getting-started-with-pytorch-for-deep-learning-part-3-neural-network-basics/
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(Max-)Pooling
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(Max-)Pooling
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is not the(࢞)	ݔܽ݉
only choice here.



Pooling

Image taken from: https://codetolight.wordpress.com/2017/11/29/getting-started-with-pytorch-for-deep-learning-part-3-neural-network-basics/
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Dropout

Image taken from: https://codetolight.wordpress.com/2017/11/29/getting-started-with-pytorch-for-deep-learning-part-3-neural-network-basics/
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Dropout

Problem
• Deep learning models are often highly over

parameterized which allows the model to
overfit on or even memorize the training data.

Approach
• Randomly set output neurons to zero

⋅Transforms the network into an ensemble
with an exponential set of weaker
learners whose parameters are shared.

Usage
• Primarily used in dense layers because of the

large number of parameters
• Rarely used in convolutional layers
• Rarely used in recurrent neural networks (if at

all between the hidden state and output)

1
1

1

. . .



Dropout - Training

1
1

1

INPUTS HIDDEN HIDDEN

. . .

0.0

0.0

Problem
• Deep learning models are often highly over

parameterized which allows the model to
overfit on or even memorize the training data.

Approach
• Randomly set output neurons to zero

⋅Transforms the network into an ensemble
with an exponential set of weaker
learners whose parameters are shared.

Usage
• Primarily used in dense layers because of the

large number of parameters
• Rarely used in convolutional layers
• Rarely used in recurrent neural networks (if at

all between the hidden state and output)



Inverted Dropout - Training

1
1

1

INPUTS HIDDEN HIDDEN

. . .

0.0

0.0

Problem
• Deep learning models are often highly over

parameterized which allows the model to
overfit on or even memorize the training data.

Approach
• Randomly set output neurons to zero

⋅Transforms the network into an ensemble
with an exponential set of weaker
learners whose parameters are shared.

Usage
• Primarily used in dense layers because of the

large number of parameters
• Rarely used in convolutional layers
• Rarely used in recurrent neural networks (if at

all between the hidden state and output)

Compensate for reduced

average activation by multiplying with ଵ
ଵି



Dropout - Inference

Problem
• Deep learning models are often highly over

parameterized which allows the model to
overfit on or even memorize the training data.

Approach
• Randomly set output neurons to zero

⋅Transforms the network into an ensemble
with an exponential set of weaker
learners whose parameters are shared.

Usage
• Primarily used in dense layers because of the

large number of parameters
• Rarely used in convolutional layers
• Rarely used in recurrent neural networks (if at

all between the hidden state and output)

1
1

1

. . .



Layout of a Classic Convolutional Neural Network (CNN)
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Hierarchical Feature Extraction

This illustration only shows the
idea!

In reality the learned features
are abstract and hard to

interpret most of the time.

SOURCE: http://www.eidolonspeak.com/Artificial_Intelligence/SOA_P3_Fig4.png



Hierarchical Feature Extraction

This region is larger
than a 3 x 3 or 5 x 5

filter!

SOURCE: http://www.eidolonspeak.com/Artificial_Intelligence/SOA_P3_Fig4.png
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Receptive Field Expansion

Input

Feature Map

Feature Map

Feature Map

Feature Map

Feature Map
Filter

Filter

Filter

Filter

Filter



Receptive Field Expansion
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Receptive Field Expansion

Input

Feature Map

Feature Map

Feature Map

Feature Map

Feature Map

The outputs of the last convolution layer can „see“
information of 11/28 inputs at maximum
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Receptive Field Expansion - Strides

Filter

Filter

Filter

Filter

Filter

The outputs of the last convolution layer can „see“
information of 11/28 inputs at maximum

Filter

Filter

Filter

Filter

Filter

The outputs of the last convolution layer can „see“
information of 21/28 inputs at maximum



Receptive Field Expansion

Convolution
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Receptive Field Expansion

Convolution

Max Pool

Convolution

Max Pool

The outputs of the second pooling layer can „see“ information of 15/28 inputs Can extract features
that span a 15 x 15
window on the input

image.
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Feature Map
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Receptive Field Expansion

The outputs of the second pooling layer can „see“ information of 15/28 inputs Can recombine features
that span a 15 x 15
window on the input
image at maximum.

Convolution

Max Pool

Convolution

Max Pool

Input

Feature Map

Feature Map

Feature Map

Feature Map



Receptive Field Expansion

1920 x 1080 x 3 Input

Feature Map

Feature Map

Feature Map

Feature Map

Feature Map
Filter

Filter

Filter

Filter

Filter

Will need 250 layers to extract features that span a 500 x 500 window if a 3 x 3 filter is used.
Will need 8 layers to extract features that span a 500 x 500 window if a 3x3 filter is used with dilation/or strides of 2.



Receptive Field Expansion

d=2

d=4

d=8

d=16

d=32

DILATED CONVOLUTION

The outputs of the last convolution layer can „see“
information of 63 inputs at maximum

Receptive field expands by 2ାଵ − 1

Input

FM

FM

FM

FM

FM

FM = Feature Map



Training Very Deep Convolutional Neural Networks
(Not covered in lecture)



Very Deep Convolutional Neural Networks

https://www.researchgate.net/figure/The-evolution-of-the-winning-entries-on-the-ImageNet-Large-Scale-Visual-Recognition_fig1_321896881



Very Deep Convolutional Neural Networks

https://www.researchgate.net/figure/The-evolution-of-the-winning-entries-on-the-ImageNet-Large-Scale-Visual-Recognition_fig1_321896881



VGG19

3x3 Conv2D, 64

3x3 Conv2D, 64

2x2 Max Pool, stride=2

3x3 Conv2D, 128

3x3 Conv2D, 128

2x2 Max Pool, stride=2

3x3 Conv2D, 256

3x3 Conv2D, 256

3x3 Conv2D, 256

3x3 Conv2D, 256

2x2 Max Pool, stride=2

3x3 Conv2D, 512

3x3 Conv2D, 512

3x3 Conv2D, 512

3x3 Conv2D, 512

2x2 Max Pool, stride=2

3x3 Conv2D, 512

3x3 Conv2D, 512

3x3 Conv2D, 512

3x3 Conv2D, 512

2x2 Max Pool, stride=2

Flatten

Dropout, 0.5

Dense, 4096

Dropout, 0.5

Dense, 4096

Dense, 1000

Softmax

224 × 224 × 3

224 × 224 × 64

224 × 224 × 64

112 × 112 × 64

112 × 112 × 128

112 × 112 × 128

56 × 56 × 128

56 × 56 × 256

56 × 56 × 256

56 × 56 × 256

56 × 56 × 256

28 × 28 × 256

56 × 56 × 512

56 × 56 × 512

56 × 56 × 512

56 × 56 × 512

28 × 28 × 512

14 × 14 × 512

14 × 14 × 512

14 × 14 × 512

14 × 14 × 512

7 × 7 × 512

25088

25088

4096

4096

4096

1000

19 neural network layers
143,667,240 learned parameters
• 86% of the parameters are

located in the dense layers

GPU



Very Deep Convolutional Neural Networks

https://www.researchgate.net/figure/The-evolution-of-the-winning-entries-on-the-ImageNet-Large-Scale-Visual-Recognition_fig1_321896881



GoogleNet (Inception)

64 neural network layers (22 layer deep)
16,063,912 learned parameters
• 45% of the parameters are located in the

dense layers

Taken from: Szegedy et. al. Going deeper with convolutions. CVPR 2015.



GoogleNet (Inception)

Auxiliary Heads

Taken from: Szegedy et. al. Going deeper with convolutions. CVPR 2015.



Very Deep Convolutional Neural Networks

https://www.researchgate.net/figure/The-evolution-of-the-winning-entries-on-the-ImageNet-Large-Scale-Visual-Recognition_fig1_321896881



Residual Unit Structure

32 to up to 1000 neural network layers

ResNet

Taken from: He et. al. Deep Residual Learning for Image Recognition. CVPR 2016.



Residual Units

INPUT

Module

+

OUTPUT
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Module = any differentiable function
(e.g. neural network layers)  that
maps  the inputs to some outputs. If
the outputs do not have the same
shape as the inputs some additional
adjustments (e.g. padding) are
required.

Propagates information directly without
concerning any weight layers!
(xl is any shallower layer in the net and xL
is the output any deeper layer L in the
net). This becomes clearer if you set l = 0
and L to be the last layer.

Leads to very nice back propagation/gradient
properties:

Recursive formulation of ResNet:

Reason why deep residual learning
works:



Can be replaced by
any network
architecture

Residual Unit Structure

32 to up to 1000 neural network layers

ResNet

Taken from: He et. al. Deep Residual Learning for Image Recognition. CVPR 2016.

BATCH NORMALIZATION



Batch Normalization

Normalize the input X of layer k by the mini-batch
moments:

The next step gives the model the freedom of
learning to undo the normalization if needed:

The above two steps in one formula.

Note: At inference time, an unbiased estimate of
the mean and standard deviation computed from
all seen mini-batches during training is used.
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Problem
• Deep neural networks suffer from internal

covariate shift which makes training harder.

Approach
• Normalize the inputs of each layer (zero mean,

unit variance)
⋅Regularizes because the training network is

no longer producing deterministic values in
each layer for a given training example

Usage
• Can be used with all layers (FC, RNN, Conv)
• With Convolutional layers, the mini-batch

statistics are computed from all patches in the
mini-batch.



It‘s Not Just Gradient Flow Problems!

Training very deep (Convolutional) neural networks can also lead to the
following issues:

Training data is big, but not big enough.

Training data is very limited.

Training needs lots of data and the forward/backward computations are too
expensive (take too long).

Model does not fit on a single machine. (Not covered today)



Data Augmentation

Very Deep
Neural

Network
Original image

5

Data
Augmenter

(e.g. rotation)

„5“
New image Expected outcome



Pre-Trained Models - Intuition

3x3 Conv2D, 64

3x3 Conv2D, 64

2x2 Max Pool, stride=2

3x3 Conv2D, 128

3x3 Conv2D, 128

2x2 Max Pool, stride=2

3x3 Conv2D, 256

3x3 Conv2D, 256

3x3 Conv2D, 256

3x3 Conv2D, 256

2x2 Max Pool, stride=2

3x3 Conv2D, 512

3x3 Conv2D, 512

3x3 Conv2D, 512

3x3 Conv2D, 512

2x2 Max Pool, stride=2

3x3 Conv2D, 512

3x3 Conv2D, 512

3x3 Conv2D, 512

3x3 Conv2D, 512

2x2 Max Pool, stride=2

Flatten

224 × 224 × 3

224 × 224 × 64

224 × 224 × 64

112 × 112 × 64

112 × 112 × 128

112 × 112 × 128

56 × 56 × 128

56 × 56 × 256

56 × 56 × 256

56 × 56 × 256

56 × 56 × 256

28 × 28 × 256

56 × 56 × 512

56 × 56 × 512

56 × 56 × 512

56 × 56 × 512

28 × 28 × 512

14 × 14 × 512

14 × 14 × 512

14 × 14 × 512

14 × 14 × 512

7 × 7 × 512

25088

16/19 neural network layers
2,000,000 pre-learned parameters

Cut



Pre-Trained Models
import tensorflow as tf

import tensorflow_hub as hub

# Define the input placeholder for the image data.

image_data = tf.placeholder(tf.float32, [None, 224, 224, 3])

# Load the blackbox feature extractor for image data.

image_feature_extractor = hub.Module(

‘https://tfhub.dev/google/imagenet/inception_v3/feature_vector’,

trainable=False)

extracted_features = image_feature_extractor(image_data)

# Define the rest of the model.

...

# Train the model on our (small) dataset to solve a complicated task.

with tf.Session() as sess:

sess.run(tf.global_variables_initializer())

sess.run(tf.tables_initializer())

sess.run(update_op, feed_dict=image_data: images}))

https://www.tensorflow.org/hub/modules/image



(A)synchronous Distributed Training

Parameters Server

Worker 1 Worker 2 Worker N…

Data Data Data


