
Math Primer & Neural
Network Basics

Florian Buettner

buettner.florian@siemens.com

Today‘s lecture: Math Primer &
Neural Network Basics

• Intro to supervised learning
• Math primer: probability theory, linear algebra
• Building blocks of basic neural networks
• Multilayer architectures and Non-linearities

Supervised machine learning

• Learn mapping from input x to output y, given a labeled
set of input-output pairs

• When y is categorical
– Classification

• When y is continuous
– Regresssion

Four steps of supervised ML

1. Collect data and extract features
2. Build model: choose model class M and loss function
3. Optimization: minimize the empirical loss
4. Evaluate model performance on independent test data

Overview

• Supervised machine learning techniques
– Classification

• Random forest
• SVM
• Neural networks

• Evaluation

Linear and non-linear classifiers

Linear and non-linear classifiers

• Opportunities
– Can resolve complex interactions between inputs
– Potentially higher predictive power than linear classifier

• Challenges
– Hard to fit, easy to overfit
– Hard to interpret (“black box classifier”)

Features

• Statistical features (histograms, moments, …)
• Domain-specifc features (SiFT features, Fourier coefficients, …)

Extract

Features

Colour histogram

build

model

K-Nearest Neighbors

9

k=5

Image source: https://github.com/rasbt/python-machine-learning-
book/blob/master/code/ch03/images/03_20.png

Decision trees

• Decision trees
– Recursively partition input
– Use greedy approaches to find locally optimal MLE
– Prune back to avoid overfitting

Random forest

• Cons
– Poor classification power
– Descision trees instable

• Small errors on top can have big effect
– High variance estimators

• Random forests
– Reduce variance by averaging many estimates (“bagging”)
– Decorrelate base learners by subsampling samples and input

variables
– Fast, interpretable, high predictive power

Support vector machines

• Use a kernel to map the data in a high-dimensional
transformed feature space such that the classes can be
separated linearly

Feature extraction and feature
selection

• Image features
• Clinical factors
• Environmental factors
• Genetic factors
• But: can yield very large number of predictors

Feature selection
• Evaluate relevance of each feature separately and retain

only top K features
– Feature ranking, e.g. ANOVA, F-test

• Recursive feature elimination
– Start with all feature in the model and recursiveley eliminate the

ones not needed

• Bayesian variable selection
– View model as whole and treat number of variables as

additional parameter

– Calculate probability of being the best model for all
potential models given the data

– Determine marginal probabilities that a variable should be
in the model

A caveat
• Common methodological mistake in supervised machine

learning
– Learning the parameters of a prediction function and testing it

on the same data

• Hold out part of the available data as a test set
– Make sure test set does not “leak” into training

• hyperparameters are optimised on separate validation set
• Perform feature selection without looking at test data
• Perform normalisation steps (standardisation etc) separately

• K-fold cross-validation
– Split data in k folds
– model is trained using k-1 of the folds as training data
– Test models on kth fold

Training & Test Data

16

All Data

Training Data

Test DataTypically:
 75% : 25%

 Use stratification

 Consider cross-validation

 10-fold CV

 Leave-one-out CV

Image source: py-con

Evaluation and performance
metrics

• Training objective (cost function) is only a proxy for real
world objective.
– Metrics help capture a business/diagnostic goal into a

quantitative target (not all errors are equal).

• Useful to quantify the “gap” between:
– Desired performance and baseline (estimate effort initially).
– Desired performance and current performance.

• Useful for lower level tasks and debugging (like
diagnosing bias vs variance)

Binary classifiers

• Two types of models
– Models that output a categorical class directly (K Nearest

neighbor, Decision tree)
– Models that output a real valued score (SVM, Logistic

Regression, NN)
• Score could be margin (SVM), probability (LR)
• Need to pick a threshold
• We focus on this type

Score-based models

• For most metrics only ranks matter
• Set threshold to get classification
• Prevalence: (#pos. Examples)/(total # examples)

– Class imbalance

Score=0 Score=1

Pos. label
Neg. label

Threshold

Point-based metrics

• After thresholding, compute point-based metrics
– Confusion matrix

• TP, FP, TN, FN
• Type I error, Type II error

Predicted class

T
ru

e
cl

a
ss

FN TP

FPTN

Summary point metrics
• Accuracy: What overall fraction did we predict

correctly?

• Precision: Quality of positive predictions (how many
are relevant?)

• Recall (sensitivity): How many positives are identified?
(How sensitive is the model for predicting disease?)

• Negative Recall (specificity): Proportion of actual
negatives that are correctly identified as such?
(percentage of healthy people who are correctly
identified as not having the condition)

• F1 score: harmonic mean of rec and prec

Predicted class

T
ru

e
 c

la
ss

3 6

15

Acc: (5+6)/(5+1+3+6) = 0.73

Prec: 6/(1+6) = 0.86

Rec: 6/(3+6) = 0.66

spec: 5/(5+1) = 0.83

Changing the threshold

• Depending on our actual (business/dignostic) goal, we
can change the threshold to change precison/recall etc

• Scan through all thresholds and summarize tradeoff

{Precision, Specificity} vs Recall/Sensitivity

ROC curve

• AUC = Area Under Curve. Also called C-
Statistic (concordance score).

• Represents how well the results are
ranked.

• Thresholds are points on this curve. Each
point represents one set of point metrics.

• Diagonal line = random guessing

PR curve
• Represents different tradeoff

• More meaningful if TNs are not so
important or low prevalence of relevant
class (rare disease, search engine)

• Area under PRC = Average Precision
• End of curve at right cannot be lower than

prevalence.
• Jaggedness (esp. for small sample sizes)

• Sequence of positives: increase rec and
prec – slow climb

• Sequence of negatives: precision
decreases, recall doesn’t change –
steep drop

Class imbalance

• For low prevalence (e.g. < 5%) many metrics are not
meaningful (e.g. accuracy of 95% is trivial to achieve)

• Focus on PR and REC
– High precision is required (search engine)
– High recall is required (fraud detection)

Diagnostics

• Setting: test metrics of classifier are unacceptably bad
• Diagnostic:

– High variance: Training loss will be much lower than test loss
– High bias: Training loss will also be high

• Root cause
– Overfitting (high variance)
– Insuffcient information in data (e.g. bad features)

High variance

Image by Andrew Ng

High bias

Image by Andrew Ng

Fixes

• Increase number of training examples.
• Increase size of feature set
• Decrease size of feature set
• Train model for longer (more gradient steps)
• Tune model hyperparameters on validation set
• Try more complex model
• Try simpler model
• More reading

– „Advice for applying Machine Learning” (Andrew Ng)
• http://cs229.stanford.edu/materials/ML-advice.pdf

Math primer – probabilistic
machine learning

Bayes‘ theorem

Slide adapted byZoubin Gharamani

Example for Bayes’ theorem
• Exercise: Cancer Screening Example (~10 min)
• Mammograms:

– Sensitivity: 80%
– False Positive rate: 10%
– Prevalence: 0.4%

• Q: Use Bayes Theorem to calculate the probability that
you have cancer if you test positive!

P(y | x, H) =
P(x | y, H)P(y | H)

y P(x | y , H)P(y | H)
.

Solution

• x=1: mammogram is positive
• y=1: you have cancer

P(y=1| x =1) = p(x =1| y=1)p(y=1)

p(x =1| y=1)p(y=1)+ p(x =1| y= 0)p(y= 0)

p(x =1| y=1) = 0.8

p(y=1) = 0.004

p(x =1| y= 0) = 0.1

Answer: The probability that you have cancer if you test positive is 0.031!

P(y | x, H) =
P(x | y, H)P(y | H)

y P(x | y , H)P(y | H)
.

Sensitivity: 80%
False Positive rate: 10%
Prevalence: 0.4%

The Meaning of Probability

• Often used in two ways:
• 1st usage: Probabilities describe frequencies of outcomes

in random experiments
– Hard to give non-circular definitions of “frequency” and

“random”

• 2nd (more general) usage: Probabilities describe degrees
of belief
– “probability that the email you just received is spam”
– “probability that Oscar P. murdered his girlfriend, given the

evidence”

Bayesian vs. frequentist viewpoint

• Frequentist:
– Probabilities are restricted to frequencies in repeatable random

experiments

• But: Degrees of belief can be mapped to probabilities (if they
follow some rules of consistency: Cox Axioms)

• Bayesian viewpoint: Use probabilities to describe assumptions
and inferences given those assumptions
– Probabilities depend on assumptions
– Bayesians: you cannot do inference without assumptions

• Bayesians: use probabilities to describe inferences
• Frequentist: use probabilities to describe random variables

Bayes’ theorem - some terminology

• Common scenario:
– Infer parameter theta given some data D:

P(θ | D , H) =
P(D | θ, H)P(θ | H)

P(D | H)

P(θ | D , H)

posterior =
likelihood × prior

evidence
.

Continuous random variables

• So far: discrete events/random variables
• Let X be some uncertain, continuous quantity
• Aim: Compute probability that a≤X≤b

– Define event A=(X≤a), B=(X≤b), W=(a<X≤b)
– Then p(B)=p(A)+p(W)
– P(W)=p(B)-p(a)

• Let F(q)=p(X≤q) be the cumulative distribution function:
p(a<X≤b)=F(b)-F(a)

• Define probability density function f (x)= d

dx
F(x)

Working with continuous random
variables

• Compute probability of a continuous variable being in a
finite interval given a pdf f(x)

• Consequently, for small intervals:

• Note: f(x) needs to be positive but can be greater than 1
if it integrates to 1

• Uniform distribution:

P(a< X £ b) = f (x)dx
a

b

ò

P(x £ X £ x+dx) » p(x)dx

Unif (x |a.b) = 1

b-a
I (a£ x £ b)

Example

Some distributions

• Useful discrete distributions:
– Binomial distribution:

– Bernoulli distribution: Special case of Binomial with n=1
– Poisson distribution:

Bin(k |n,q) := n
k

æ

è
ç

ö

ø
÷q k(1-q)n-k

Poi(x | l) = e-l l
x!

Continuous distributions

• Gaussian (normal) distribution
• pdf:

• cdf:

• Most important distribution in stats/ML
– Easy to interpret
– Central limit theorem
– simple mathematical form allows for effective inference

methods

N(x |m,s 2)= 1

2ps 2
e
- 1

2s 2
(x-m)2

f(x;m,s 2) =
-¥

z

ò 1

2ps 2
e
- 1

2s 2
(z-m)2

dz= 1

2
[1+erf (z / 2)]

Continuous distribution with limited
support

• Gamma distribution

• Beta distribution

f (x;k,q) = 1

q k

1

G(k)
xk-1e

-x
q

f (x;a,b) = 1

B(a,b)
xa-1(1- x)b-1

1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Gamma distributions

a=1.0,b=1.0
a=1.5,b=1.0
a=2.0,b=1.0

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

beta distributions

a=0.1, b=0.1
a=1.0, b=1.0
a=2.0, b=3.0
a=8.0, b=4.0

Example – Beta-Bernoulli model
• Toss a coin N times, obtain sequence of heads (N1) and

tails
• Questions:

– What is the bias θ of the coin (fair coin: θ=0.5)?
– What’s the probability that the next toss will be head?

• In Bayesian terms:
– What is the posterior ?

• How to infer the posterior?
p(q |D)

posterior =
likelihood × prior

evidence
.

Likelihood

• Data: N_1 heads in N trials

N1 ~ Bin(N,q)

p(D |q) =q N1 (1-q)N-N1

Prior

• Need prior with support over interval [0,1]
• If possible, same form as likelihood (makes maths easy)

– Conjugate prior

– Here: beta distribution!

– a and b are hyper-parameters - they encode our prior beliefs
p(q)µqg1 (1-q)g2

Beta(q;a,b) = 1

B(a,b)
q a-1(1-q)b-1

Posterior

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

prior Be(2.0, 2.0)
lik Be(4.0, 18.0)
post Be(5.0, 19.0)

p(q |D)µBin(N1 |N,q)Beta(q | a,b)µBeta(q |N1 +a,N0 +b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

prior Be(5.0, 2.0)
lik Be(12.0, 14.0)
post Be(16.0, 15.0)

MAP and MLE

• MAP is mode of posterior
– mode of Beta distribution with (a,b) is a-1/(a+b-2)

• If uniform prior is used MAP=MLE
• Mean of posterior is a/(a+b)

Linear algebra primer

• Provides a way of compactly representing and operating
on sets of linear equations

• Example set of equations:

• With matrix notation:

Some concepts you should be
familiar with

• Scalars, Vectors, Matrices and Tensors
• Multiplying Matrices and Vectors
• Identity and Inverse Matrices
• Eigendecomposition
• Singular value decomposition
• The Moore Penrose pseudo-inverse
• The trace operator
• The determinant
• You will need this in the 2nd tutorial, make sure to revise if

needed

Eigendecomposition

• Factorization of a matrix such that it is represented in
terms of its eigenvalues and eigenvectors

• Eigenvector v of square matrix A

• Each eigenvector has ist own equation

Eigendecomposition

• Factorise A as

• Q is NxN matirx, with columns being eigenvectors
• Lambda is diagonal matrix with eigenvalues on the

diagonal

Eigendecomposition – fun facts

• Only diagonisable matrices can be eigendecomposed
• Real symmetric matrices can be decomposed so that EVs

are orthogonal
• Useful for matrix inversion

– A is invertible iff all EVs are non-zero
–

Matrix calculus and Gradient

• Extension of calculus to the vector setting
• Let f be a function that takes as input a matrix A of size

m×n and returns a scalar. Then the gradient of f (with
respect to A) is the matrix of partial derivatives

• As for derivatives, linearity, product rule and chain rule
hold

Hessian

• If gradient is the analogue of the first derivative for
functions of vectors, the Hessian is the analogue of the
second derivative

• Some useful rules:

Jacobian

• Generalises gradient to functions that return vector
• Let f : n → m be a function which takes as input the vector

x n and returns as output the vector f(x) m. Then the
Jacobian matrix J of f is an m×n matrix:

• Useful for transformations and variable changes
• Determinant at a given point gives important information

about the behavior of f near that point
• If m is 1, Jacobian is transposed of gradient
• Hessian is Jacobian of gradient

Multivariate Gaussian
• Pdf of MVN in D dimensions

• Covariance matrix:
• Mean vector:
• Eigendecomposition of :

• Mahalonobis distance:

Application: Linear regression

• Model the response as a linear function of inputs

• Noise is normally distributed

Source: Machine Learning – A Probabilistic Perspective, KP Murphy

How to fit the model?
• Maximum likelihood

– Common assumption: samples are independent and
identically distributed (iid)

– Minimize negative log likelihood
– Minimize residuals

What about the prior?

• We can put a normal prior on w
• Then use Bayes rule for Gaussians to compute the

posterior

How to implement it all?

• Deep learning
– Tensorflow

• Keras

– Theano
– Caffe2
– pyTorch
– CNTK

• Linear Algebra
– NumPy

Tensorflow vs NumPy

• NumPy
– Library supporting

• Multi-dimensional arrays and matrices
• Large collection of high-level mathematical functions to operate

on these arrays

• Tensorflow
– Deep learning library open sourced by google
– Provides primitives for defining functions on tensors
– Automatically computes derivatives
– GPU support

NumPy recap

=

Image: https://en.wikipedia.org/wiki/Matrix_multiplication#/media/File:Matrix_multiplication_diagram_2.svg

Tensorflow
Interactive session keeps default session open

TensorFlow computations define a
computation graph that has no numerical
value until evaluated!

Matrix multiplication

BREAK

Representation learning

Extract

Features

Color histogram

build

model

Why not learn ?

Feed-forward networks
View each dimension of as something that
has to be learnt

Feed-forward networks
Linear functions Phi don‘t work – we need non-linearities

Feed-forward networks
Typically use non-linear function r:

Deep neural networks

…

Components of basic neural
networks

• Representations:
– Input
– Hidden variables

• Layers/weights:
– Hidden layers
– Output layer

Components

Input
Output

Hidden layers

Input

• Represented as a vector
• Sometimes require some preprocessing, e.g.,

– Subtract mean
– Divide by variance (standardise)
– Normalize to [-1,1]

Expand

Output layer

• Regression:
• Linear units: no nonlinearity

Output layer

Output layer

• Regression:
• Linear units: no nonlinearity
• Multiple outputs Output layer

Output layer

• Binary classification:
• Correponds to logistic regression on h

Output layer

Output layer

• Multi-class classification:
•

• Correponds to multi-class logistic regression on h

Output layer

Hidden layers

• Neurons take weighted linear
combination of the previous
layer

• So can think of outputting one
value for the next layer

Activations

•

• Typical activation functions
– Threshold

• t()= [≥0]

– Sigmoid
• ()=1/(1+exp(−))

– Tanh

Saturation

Small
gradient!

ReLU

•
Gradient 1

Gradient 0

Fitting the NN

• Define a loss function that quantifies our unhappiness
with the scores across the training data.

• Come up with a way of efficiently finding the parameters
that minimize the loss function. (optimization)

Loss functions

• A loss function tells how good our current classifier is
given a dataset of examples

• Where x is the input and y is the (scalar) label
• Loss over the dataset is a sum of loss over examples:

Regression model - MSE

• Mean squared error

• Optimised regression line minimizes the sum of distance
of each point to the regression line

• Mean Squared Logarithmic Error
– Used when large differences between actual and predicted

value don‘t matter (for large values)

• Slow convergence for activation function used for
classification

Softmax classifier – cross-entropy
loss

• Let scores be unnormalised probabilities

• Minimise NLL for correct class

Other loss functions

• KL Divergence
– measure of how one probability distribution diverges from a

second expected probability distribution

• Hinge loss
– max-margin objective (used e.g. in SVMs)

Summary and outlook

• We now have all the ingredients to fit (deep) neural
networks
– Linear algebra+matrix calculus
– Building blocks (input/hidden layers/outputs)
– Activation functions
– Loss

• In the next lecture you will learn how to bring this all
together so that we can optimise the parameters of the
neural network

