Math Primer & Neural
Network Basics

Florian Buettner

buettner.florian@siemens.com

Today’s lecture: Math Primer &
Neural Network Basics

Intro to supervised learning

Math primer: probability theory, linear algebra
Building blocks of basic neural networks
Multilayer architectures and Non-linearities

Supervised machine learning

* Learn mapping from input x to output y, given a labeled
set of input-output pairs

D= {(Xa y) 7]5\21

* Wheny is categorical

— Classification

* Wheny is continuous

— Regresssion

R A\

Four steps of supervised ML

Collect data and extract features

Build model: choose model class M and loss function [
Optimization: minimize the empirical loss

Evaluate model performance on independent test data

ldea Code

4

Experiment

Overview

e Supervised machine learning techniques

— Classification

e Random forest
e SVM
 Neural networks

 Evaluation

Linear and non-linear classifiers

Linear and non-linear classifiers

* Opportunities

— Can resolve complex interactions between inputs

— Potentially higher predictive power than linear classifier
* Challenges

— Hard to fit, easy to overfit
— Hard to interpret (“black box classifier”)

Features

» Statistical features (histograms, moments, ...)
« Domain-specifc features (SiFT features, Fourier coefficients, ...)

Colour histogram

Extract . build y =w! ®(x)
Features e model

K-Nearest Neighbors

k=5

A . . ; .
d(x(Z),x(:f)) — E :|$§c) _ :EECJ) p
X2
k
>
Image source: https://github.com/rasbt/python-machine-learning-
book/blob/master/code/ch03/images/03_20.png X 1

Decision trees

* Decision trees
— Recursively partition input
— Use greedy approaches to find locally optimal MLE
— Prune back to avoid overfitting

Random forest

* Cons
— Poor classification power
— Descision trees instable
* Small errors on top can have big effect
— High variance estimators
* Random forests
— Reduce variance by averaging many estimates (“bagging”)

— Decorrelate base learners by subsampling samples and input
variables

— Fast, interpretable, high predictive power

Support vector machines

* Use a kernel to map the data in a high-dimensional
transformed feature space such that the classes can be
separated linearly

Feature extraction and feature
selection

* Image features

* C(Clinical factors

* Environmental factors

e Genetic factors

* But: can yield very large number of predictors

Feature selection

Evaluate relevance of each feature separately and retain
only top K features
— Feature ranking, e.g. ANOVA, F-test

Recursive feature elimination

— Start with all feature in the model and recursiveley eliminate the
ones not needed

Bayesian variable selection

— View model as whole and treat number of variables as
additional parameter

— Calculate probability of being the best model for all
potential models given the data

— Determine marginal probabilities that a variable should be
in the model

A caveat

e Common methodological mistake in supervised machine
learning

— Learning the parameters of a prediction function and testing it
on the same data

* Hold out part of the available data as a test set

— Make sure test set does not “leak” into training
* hyperparameters are optimised on separate validation set
* Perform feature selection without looking at test data
e Perform normalisation steps (standardisation etc) separately
* K-fold cross-validation
— Split data in k folds
— model is trained using k-1 of the folds as training data
— Test models on kth fold

Training & Test Data

All Data

Training Data

Typically:
> 75% : 25%
» Use stratification

Test Data

» Consider cross-validation

> 10-fold CV
> Leave-one-out CV

Image source: py-con

Evaluation and performance
metrics

Training objective (cost function) is only a proxy for real
world objective.

— Metrics help capture a business/diagnostic goal into a
guantitative target (not all errors are equal).

Useful to quantify the “gap” between:
— Desired performance and baseline (estimate effort initially).

— Desired performance and current performance.

Useful for lower level tasks and debugging (like
diagnosing bias vs variance)

Binary classifiers

 Two types of models

— Models that output a categorical class directly (K Nearest
neighbor, Decision tree)

— Models that output a real valued score (SVM, Logistic
Regression, NN)
* Score could be margin (SVM), probability (LR)
* Need to pick a threshold
* We focus on this type

Score-based models

000000000000

Threshold

Score=0

@ Pos. label
© Neg. label

Score=1

* For most metrics only ranks matter

e Set threshold to get classification

* Prevalence: (#pos. Examples)/(total # examples)

— Class imbalance

Point-based metrics

e After thresholding, compute point-based metrics

— Confusion matrix
* TP, FP, TN, FN
* Type | error, Type Il error

Type I error Type II error
(false positive) (false negative)
TN FP il ' You're not
% O % O pregnant
©
&)
o FN '
- You're V
@
O

O
Predicted class

Coubd not find bruse source of image to ciba

Summary point metrics

Accuracy: What overall fraction did we predict

correctly?
Acc: (5+6)/(5+1+3+6) = 0.73

Precision: Quality of positive predictions (how many

are relevant?)

5
Prec: 6/(1+6) = 0.86 20 & | ©°
o |3
Recall (sensitivity): How many positives are identified? § ° & 6’:
(How sensitive is the model for predicting disease?) o o

Predicted class
Rec: 6/(3+6) = 0.66
Negative Recall (specificity): Proportion of actual
negatives that are correctly identified as such?
(percentage of healthy people who are correctly
identified as not having the condition) spec: 5/(5+1) = 0.83

F1 score: harmonic mean of rec and prec

Changing the threshold

* Depending on our actual (business/dignostic) goal, we
can change the threshold to change precison/recall etc

e Scan through all thresholds and summarize tradeoff

{Precision, Specificity} vs Recall/Sensitivity

specificity

Lo

08 4

[=]
L=}

=
a

0.2 1

0.0

Receiver operating characteristic

ROC curve

ROC curve (area = 0.80)

0.0

0.2 0.4 0.6
Sensitivity

0.8

AUC = Area Under Curve. Also called C-
Statistic (concordance score).
» Represents how well the results are
ranked.
Thresholds are points on this curve. Each
point represents one set of point metrics.
Diagonal line = random guessing

FIEvISIn

10

0.8

0.6 1

0.4 1

0.2 4

0.0

Precision-Recall curve

PR curve

Average Precision / AUPRC = 0.81

oo

0.z 0.4
Recall

0.6

0.8

L0

Represents different tradeoff
* More meaningful if TNs are not so
important or low prevalence of relevant
class (rare disease, search engine)
Area under PRC = Average Precision
End of curve at right cannot be lower than
prevalence.
Jaggedness (esp. for small sample sizes)
« Sequence of positives: increase rec and
prec — slow climb
« Sequence of negatives: precision
decreases, recall doesn’t change —
steep drop

Class imbalance

* For low prevalence (e.g. < 5%) many metrics are not
meaningful (e.g. accuracy of 95% is trivial to achieve)

* Focus on PR and REC
— High precision is required (search engine)
— High recall is required (fraud detection)

Diagnostics

* Setting: test metrics of classifier are unacceptably bad
* Diagnostic:
— High variance: Training loss will be much lower than test loss
— High bias: Training loss will also be high

* Root cause
— Overfitting (high variance)
— Insuffcient information in data (e.g. bad features)

error

High variance

Test error

Desired performance

Training error

m (training set size)

Image by Andrew Ng

error

High bias

Test error

Training error

Desired performance

m (training set size)

Image by Andrew Ng

Fixes

Increase number of training examples.
Increase size of feature set

Decrease size of feature set

Train model for longer (more gradient steps)
Tune model hyperparameters on validation set
Try more complex model

Try simpler model

More reading

— ,,Advice for applying Machine Learning” (Andrew Ng)
* http://cs229.stanford.edu/materials/ML-advice.pdf

Math primer — probabilistic
machine learning

Bayes’ theorem

Everything follows from two simple rules:
Sum rule: P(z) =>_, P(z,y)
Product rule: P(z,y) = P(2)P(y|z)

P(D|6,m)P(6|m) P(D|8, m) Iiklelihood of‘ Parameters # in model m
: P(6|m) prior probability of &

PielD.m) = ,
P(D|m) 3 : . :
P(#|D,m) posterior of & given data D

Slide adapted byZoubin Gharamani

Example for Bayes’ theorem

e Exercise: Cancer Screening Example (~10 min)

* Mammograms:
— Sensitivity: 80%
— False Positive rate: 10%
— Prevalence: 0.4%

* Q: Use Bayes Theorem to calculate the probability that
you have cancer if you test positive!

. _PXIVHPYIH)
POYDGH) = S iy, P TH).

P(xly,H)P(y|H)

PUYDGH) = S Py P TH).

Solution
Sensitivity: 80%
False Positive rate: 10%
* x=1: mammogram is positive Prevalence: 0.4%

 y=1:vyou have cancer

p(x=1|y=1)=0.8
p(y=1)=0.004
p(x=1|y=0)=0.1

Ply=1]x=1)= p(x=1]y=Dp(y=1)
p(x=1]y=Dp(y=1)+p(x=1|y=0)p(y=0)

Answer: The probability that you have cancer if you test positive is 0.031!

The Meaning of Probability

Often used in two ways:

15t usage: Probabilities describe frequencies of outcomes
in random experiments

— Hard to give non-circular definitions of “frequency” and
“random”

2"d (more general) usage: Probabilities describe degrees
of belief
— “probability that the email you just received is spam”

— “probability that Oscar P. murdered his girlfriend, given the
evidence”

Bayesian vs. frequentist viewpoint

Frequentist:

— Probabilities are restricted to frequencies in repeatable random
experiments

But: Degrees of belief can be mapped to probabilities (if they
follow some rules of consistency: Cox Axioms)

Bayesian viewpoint: Use probabilities to describe assumptions
and inferences given those assumptions

— Probabilities depend on assumptions

— Bayesians: you cannot do inference without assumptions

Bayesians: use probabilities to describe inferences
Frequentist: use probabilities to describe random variables

Bayes’ theorem - some terminology

e Common scenario:

— Infer parameter theta given some data D: P(6|D,H)

D[6,H)P(6|H)
P(D|H)

P(©|D,H) = P

likelihood x prior
evidence

posterior =

Continuous random variables

So far: discrete events/random variables

Let X be some uncertain, continuous quantity
Aim: Compute probability that a<X<b

— Define event A=(X<a), B=(X<b), W=(a<X<b)

— Then p(B)=p(A)+p(W)

— P(W)=p(B)-p(a)

Let F(q)=p(X<q) be the cumulative distribution function:
p(a<X<b)=F(b)-F(a)

Define probability density function f(x)=%F(X)

Working with continuous random
variables

Compute probability of a continuous variable being in a
finite interval given a pdf f(x)

P(a< X<b)= T f(x)dx
Consequently, for small intervals:
P(x< X< x+adX) = p(x)dx

Note: f(x) needs to be positive but can be greater than 1
if it integratesto 1

Uniform distribution: unif(x|ab)= bL/(as X< b)
a

Example

3 @ (aR) 0 o (1-al2)

(a) (b)

Some distributions

e Useful discrete distributions:

— Binomial distribution:

Bin(k|n,6) :=[Z)ek(l—e)”k

— Bernoulli distribution: Special case of Binomial with n=1

— Poisson distribution: Poi(XM):e‘li'
X!

Continuous distributions

Gaussian (normal) distribution

df: R R
P N ety = e
2o
| R |
. X, 1, 0°) = e 2° dz=—[1+erf(z/\2
cdf: #(Xu07) Jz — S[L+erf(z/V2)]

Most important distribution in stats/ML
— Easy to interpret
— Central limit theorem

— simple mathematical form allows for effective inference
methods

Continuous distribution with limited
support

Gamma distributions

° | —2=1.0.0=1.0

e Gamma distribution bl e
1 1 k—l _; 0.4‘?: ¢)))"1\

f(X;k,@): p xXe o ¢ ,

&" T'(k) 02l |

e Beta distribution

beta distrib
3/ [2=0.1, b=0.1
1.0, b=1.0
25t 1mim g= 2.0, b=3.0
8.0, b=4.0
2,
1 1.5F

f(x%a,p)=

11 WAL
&%mﬁ(lm

Example — Beta-Bernoulli model

Toss a coin N times, obtain sequence of heads (N,) and
tails

Questions:

— What is the bias 6 of the coin (fair coin: 8=0.5)?

— What's the probability that the next toss will be head?

In Bayesian terms:

— What is the posterior p(@| D)>?

How to infer the posterior?

likelihood x prior

sterior = :
posterior ~idence

Likelihood

* Data: N_1headsin N trials

p(D|9)=6"(1-0)""
N ~ Bin(N,6)

Prior

* Need prior with support over interval [0,1]
* |f possible, same form as likelihood (makes maths easy)

— Conjugate prior

— Here: beta distribution!

p(0) < 6" (1-0)"
— a and b are hyper-parameters - they encode our prior beliefs

1
Beta(0;a,b)=——6*'(1-0)*"
()B(a,b) (1-6)

Posterior
p(0| D)oc Bin(N. | N, 0)Beta(6 | a,b) o< Beta(d| N, +a, N, + b)

6
= prior Be(2.0, 2.0)
o lik Be(4.0, 18.0)
«=+= post Be(5.0, 19.0) 457 -~ -
7\ | =prior Be(5.0, 2.0)
ol g e lik Be(12.0, 14.0)
‘.‘ +=1= post Be(16.0, 15.0)
35} i
al
25
A
151
e
05

MAP and MLE

 MAP is mode of posterior
— mode of Beta distribution with (a,b) is a-1/(a+b-2)

* |f uniform prior is used MAP=MLE
* Mean of posterior is a/(a+b)

Linear algebra primer

* Provides a way of compactly representing and operating
on sets of linear equations

e Example set of equations:

ilr;ITl — 5;1.‘-9
—2r1 + 319

—13

I
L

 With matrix notation:

Some concepts you should be
familiar with

Scalars, Vectors, Matrices and Tensors
Multiplying Matrices and Vectors
ldentity and Inverse Matrices
Eigendecomposition

Singular value decomposition

The Moore Penrose pseudo-inverse
The trace operator

The determinant

You will need this in the 2nd tutorial, make sure to revise if
needed

Eigendecomposition

* Factorization of a matrix such that it is represented in
terms of its eigenvalues and eigenvectors

* Eigenvector v of square matrix A

Av = \v

* Each eigenvector has ist own equation

(A—AzI)VZO

Eigendecomposition

 Factorise A as

A =QAQ!

* Qis NxN matirx, with columns being eigenvectors

* Lambda is diagonal matrix with eigenvalues on the
diagonal

Eigendecomposition — fun facts

Only diagonisable matrices can be eigendecomposed

Real symmetric matrices can be decomposed so that EVs
are orthogonal

Useful for matrix inversion

— Ais invertible iff all EVs are non-zero
— A—l _ QA—IQ—I

Matrix calculus and Gradient

* Extension of calculus to the vector setting

 Letf be afunction that takes as input a matrix A of size

m X n and returns a scalar. Then the gradient of f (with
respect to A) is the matrix of partial derivatives

[8f(A) &f(4) .. B8f(4) T
411 A2 B2A1,,
of(A) Of(A) .. Bi(A)
T 1Jl|'-|r 1'] — Ea.r.li,(i'? i HA2q GAaa i Az
8f{A) 8f(A) af(A)
L 8A 1 JA 9 g A mn A

* As for derivatives, linearity, product rule and chain rule
hold o Vi(f(z)+g(x))=V:f(z)+ Vzg(x).
o Fort € R, V.(t f(z)) = tVf(x).

Hessian

e |f gradient is the analogue of the first derivative for
functions of vectors, the Hessian is the analogue of the
second derivative

- 82f(z) 8f(x) . BPf(z) -

-f.u-% Or101 Bz,
:'.iﬂf;r] -:‘,'i'j_.l'[_v'] i a2 fir)
r3 Y~ THTLETE Ao T fira firafir,
vjflrvﬂ eR — S 2 g el
:'.ijf;:-] c‘}g_.l'[_r | S a° flx)

L Oznfr1 OBradrs orz

e Some useful rules:

o Vobiz=10
o V.7 Ax = 2Ax (if A symmetric)

* 'F?_.a"‘r.-'-hr‘ = 2A (if A symmetric)

Jacobian

Generalises gradient to functions that return vector

Let f : R” - R™ be a function which takes as input the vector
X € R" and returns as output the vector f(x) € R™. Then the
Jacobian matrix J of f is an m X n matrix:

on | on
3-"-'31 ﬁ:rn
of of
J=]|— ... = : : :
day Oz, - ‘ '
Ofm O fm
L 8-131 aIJt a

Useful for transformations and variable changes

Determinant at a given point gives important information
about the behavior of f near that point

If mis 1, Jacobian is transposed of gradient
Hessian is Jacobian of gradient

Multivariate Gaussian
Pdf of MVN in D dimensions

)D/12|2‘1/2 exp [—I/Q(X —p)!'E (x - ,u)]

N(z|p,) £ T

Covariance matrix: 3

Mean vector: [}, b

Eigendecomposition of 3 =7'=U"ATU =} —uuy’
i=1 "

D 9
Mahalonobis distance: (x — p)"S ™ (x — p) =) i_
i=1

Yi = uiT(X — 1)

Application: Linear regression

 Model the response as a linear function of inputs
D

y:WTX+€:ijCUj_|—€
j=1

* Noise is normally distributed

p(ylx,0) =N (y|u(x), 0 (x))

u(z) = w'x = wo + wy

Source: Machine Learning — A Probabilistic Perspective, KP Murphy

How to fit the model?

e Maximum likelihood

— Common assumption: samples are independent and
identically distributed (iid)

— Minimize negative log likelihood
— Minimize residuals

NLL(0) := —logp(D|0) = Zlogp yilzi, 0)
N
NLL(#)=—) log [(! 2>exp(1/20%(y; — w'x;)°)
— 2o

wors = (XTX) X"y

What about the prior?

* We can put a normal prior on w

 Then use Bayes rule for Gaussians to compute the
posterior

p(w|X,y,0%) o N(w|wg, Vo)N(y|Xw,o°Iy) = N(w|wn, V)
_ 1 T
wy = VNVi'iwg+ pvi\,xfy

1
Vi = V51+§XTX

Vy = o*(c®Vy' +XTX)™!

How to implement it all?

L2

TensorfFlow

— Tensorflow

* Keras O

- Theano

— Caffe2 caﬁez

— pyTorch
I\Jllrr:%igf

— CNTK

* Linear Algebra
— NumPy

Tensorflow vs NumPy

* NumPy
— Library supporting
* Multi-dimensional arrays and matrices

* Large collection of high-level mathematical functions to operate
on these arrays

* Tensorflow
— Deep learning library open sourced by google
— Provides primitives for defining functions on tensors
— Automatically computes derivatives
— GPU support

In

In

Im

[2]:

[3]:

import numpy as np
import tensorflow as tf

A = np.ones({3,2))

print (&)
L.shape

jiid: d)
FL. A
THE T

(3, 2)

np.sum(&, 1)

array([2., 2., 2.1)

B = np.ones{({2,3))*2

B.shape

B

array([[2., 2., 2.],
25 2hs 2ol

np.dot (&, B)

array{[[4., 4., 4.1,
[4., 4., 4.1,
[duy @11

NumPy recap

A

Image: https://en.wikipedia.org/wiki/Matrix_multiplication#/media/File:Matrix_multiplication_diagram_2.svg

In :

in :

Tensorflow

tf.InteractiveSess=sion()

T Interactive session keeps default session open

<tensorflow.python.client.session.InteractiveSe

A= tfF.ones{{3,2))

print (&)

&.get shape ()

Tensor ("ones: 0", shape=(3, 2), dtype=float3l)

TensorShape ([Dimension(3), Dimension(2}])}

print (A.eval()) TensorFlow computations define a

1. 1.1 computation graph that has no numerical
.] value until evaluated!
fls 5014

tf.reduce sum(A, reduction_indices=1).eval ()

array({[2., 2., 2.1, dtype=float32)
B = tf.ones{({2,3))*2
B.get shape ()

TensorShape ([Dimension(2), Dimension(3}])

. Matrix multiplication
tf.matmul (A,B) .eval ()

array([[4., 4., 4.],
oy B BT,
(4., 4., 4.]1], dtype=float3il)

BREAK

Representation learning

Color histogram

Extract . build y =w! ®(x)
Features — model

Why not learn (I)(T) ?

Feed-forward networks

View each dimension of CD(.L) as something that
has to be learnt

Feed-forward networks

Linear functions Phi don‘t work — we need non-linearities

Feed-forward networks

Typically use non-linear function r: ®(z) = r(6*)

Deep neural networks

O ADADAD
OO
/AN ()

WA A
/“Gv vav V@V V@
PN

. LEARNED FROM DATA LR LLLLL Rl LER LR LA L L INLL IR NLLIRLINRNLIRIRLRN]l]]™

OUTPUT

MAPPING FROM
FEATURES

OUTPUT

ADDITIONAL LAYERS OF

MAPPING FROM

MAPPING FROM

OUTPUT MORE ABSTRACT
FEATURES FEATURES FEATURES
HAND-DESIGNED
INPUT INPUT INFUT INPUT

RULE-BASED SYSTEMS CLASSIC MACHINE
LEARNING

DEEP LEARNING

EEEEEEEEEEIEIEEEEEEENEEEEEINNEEEEEEEINIEEENEEEEEEEEEEmnEmel

REPRESENTATION LEARNING

Components of basic neural
networks

* Representations:

— Input
— Hidden variables

* Layers/weights:

— Hidden layers
— Output layer

Components

Ok
SYEATIAT A
N A

“

'fe W W vvke

el 0 W W/

ORARAAA S
\V V[‘\V
A \

I~
R

Input Hidden layers Output

Input

e Represented as a vector

* Sometimes require some preprocessing, e.g.,
— Subtract mean
— Divide by variance (standardise)
— Normalize to [-1,1]

e Linear units: no nonlinearity

Output layer

e Regression: 3 — it
5 Y wh+b Output layer

Output layer

. Regression: y = WX1h+b
e Linear units: no nonlinearity

* Multiple outputs Output layer
)
(\

* Correponds to logistic regression on h

Output layer

* Binary classification: y = o(w”’ h + b) Output |
utput layer

Output layer

 Multi-class classification:
« y=-softmax(z) z=W'h+b

* Correponds to multi-class logistic regression on h

0(z); = ZK - forj=1,....K Outpui[layer
—1 E°F
k=1 (\

Hidden layers

* Neurons take weighted linear

combination of the previous
layer

* So can think of outputting one

value for the next layer

DvOw

"7
iy
/M

Y gl
K9

Activations

« y=r(w'h+0)
* Typical activation functions r
— Threshold
* t(z)=I[z=0]
— Sigmoid
* 0(z)=1/(1+exp(-2))
— Tanh

Saturation

Small 0.5 }-
gradient!

-5 0 5

Figure borrowed from Pattern Recognition and Machine Learning, Bishop

RelLU

. ReLU(Z) — max{Z, 0} Gradient 1

Gradient O

The Rectified Linear Activation Funetiof

] /
Figure from Deep learning, by

, | Goodfellow, Bengio, Courville.

max{0, z }

glz) =

Fitting the NN

* Define a loss function that quantifies our unhappiness
with the scores across the training data.

 Come up with a way of efficiently finding the parameters
that minimize the loss function. (optimization)

Loss functions

* Aloss function tells how good our current classifier is
given a dataset of examples

{(zi,yi) Nl

 Where x is the input and y is the (scalar) label
* Loss over the dataset is a sum of loss over examples:

NZL (25, W), y3)

Regression model - MISE

Mean squared error

L

&= 2“’" — f(zi, W))?

Optimised regression line minimizes the sum of distance
of each point to the regression line

Mean Squared Logarithmic Error

— Used when large differences between actual and predicted
value don‘t matter (for large values)

Slow convergence for activation function used for
classification

Softmax classifier — cross-entropy
loss

* Let scores be unnormalised probabilities

P(Y = kX = z:) = <2

e Minimise NLL for correct class

L; = —log P(Y = yi| X = z;)

N
1
=-% Z y; log(f(x;W)) + (1 — y;) log(1 — f(-’l?i.l"";))}

Other loss functions

KL Divergence

— measure of how one probability distribution diverges from a
second expected probability distribution

I Tl ’ ’
= ; Drcr (il f (W)

_] ke I I]J
n 2.: ¥ l“n(f(.l','”'])]

n

I T |] | -
= 2 (vi - log(yi)) - Z (yi - log(f(x:;W)))

t=]
o N
- N

entropy

>y

cross—entropy

* Hinge loss

— max-margin objective (used e.g. in SVMs)

Summary and outlook

 We now have all the ingredients to fit (deep) neural
networks
— Linear algebra+matrix calculus
— Building blocks (input/hidden layers/outputs)
— Activation functions

— Loss

* In the next lecture you will learn how to bring this all
together so that we can optimise the parameters of the
neural network

