
Ludwig-Maximilians-Universität München Munich, 28.01.2019
Institut für Informatik
Prof. Dr. Matthias Schubert
Sebastian Schmoll, Sabrina Friedl

Deep Learning and Artificial Intelligence
WS 2018/19

Exercise 13: Policy Gradient Methods

Exercise 13-1 Softmax Policy

(a) Name an example of a situation in which a stochastic policy is better than a deterministic one.

(b) Given a feature vector x(s, a) for state s and action a, and a weight vector θ with x, θ ∈ Rd.
The Softmax policy πθ parameterized by θ is defined as:

πθ(a | s) =
ex(s,a)

T θ∑
a′∈A e

x(s,a′)T θ

where A is the set of all possible actions.

Calculate the corresponding score function ∇θ log πθ(a | s)!

Exercise 13-2 REINFORCE

In this exercise, you will implement the REINFORCE algorithm, a policy gradient method that uses
the return of complete episodes for the updates of the policy parameter.

On the website, you can find a zip file containing the files “rooms.py”, “montecarlo main.py” and
“REINFORCE.py”. The first file contains a class “RoomsEnv” which simulates the rooms domain
depicted in the figure below.

The goal of the agent (red square, upper left) is to find a path to the green goal state (bottom
right). The blue squares are walls that cannot be walked through. The reward is 0 at all steps
and 1 when reaching the goal state. It is an episodic task and we use a discounting factor γ.
The main file already implements the simulation of complete episodes (function “train”) and stores
the sampled states, actions and rewards received in separate arrays. After each episode, it calls
agent.update montecarlo().

Task:

In the file “REINFORCE.py”, implement the missing functionality for the class ReinforceAgent:

1



(a) The method softmax policy() should return the probability π(a | s) of choosing an action a
in state s as given in exercise 13-1.

(b) The function score function() should calculate the gradient ∇θ log πθ(a | s)

(c) The method choose action should sample an action for state s according to the probabilities
given by the softmax policy.

(d) Finally, the method update montecarlo() should take the sampled states, actions and rewards
arrays and perform the update of the policy parameter self.theta for each time step t:

θ ← θ + α γt Gt ∇θ log πθ(a | s),

where Gt is the discounted return at time step t (for the last time step, it is just the last reward
in the rewards array).

Train the agent and look at the results. You can also play around with different feature vectors. By
calling env.save video() you can generate a visualization of the agent acting according to the trained
policy.

Exercise 13-3 Policy Gradient with Baseline

In this exercise we will take a look at the effect of the baseline in Policy Gradient algorithms. Assume
we have an MDP and a stochastic policy πθ(a|s) given. Recall, the goal of policy gradient is to update
the parameters θ such that the expected return will be maximized. Let us consider the updates for
the given state s. The feature vector x(s, a) is defined as follows:

x(s, a) =


(1, 0, 0)T ifa = a1
(0, 1, 0)T ifa = a2
(0, 0, 1)T ifa = a3

The average return G for action a1, a2, a3 is 101, 110, 104 respectively. Assume that we have values
for θ such that the softmax-policy πθ(a|s) is defined as follows:

πθ(a|s) =


0.3 ifa = a1
0.6 ifa = a2
0.1 ifa = a3

(a) Compute the mean and the variance for the latter part of the update rule of policy gradient,
that is

Gt ∇θ log πθ(a | s).

(b) What happens if we subtract a baseline b(s) = 100 from the return Gt? Compute the mean and
variance for the formula

(Gt − b(s)) ∇θ log πθ(a | s).

(c) Compare the results of (a) and (b). What do you observe? How does the baseline effect the
learning of the optimal policy?

2


