Exercise 9-1 Variational Autoencoder

Remember the Kullback-Leibler divergence between two probability distributions \(q \) and \(p \) is given by

\[
KL(q \parallel p) = - \int q(x) \log \frac{p(x)}{q(x)} \, dx
= - \int q(x) \log p(x) \, dx + \int q(x) \log q(x) \, dx
\]

(a) Show that the KL-divergence between two normal distributions \(q = \mathcal{N}(\mu_1, \sigma_1^2) \) and \(p = \mathcal{N}(\mu_2, \sigma_2^2) \) is:

\[
KL(q \parallel p) = \log \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2}.
\]

Hint: Use that \(\mathbb{E}_p[f(x)] = \int p(x)f(x) \, dx \) and \(\sigma^2[x] = \mathbb{E}[(x - \mathbb{E}[x])^2] = \mathbb{E}[x^2] - (\mathbb{E}[x])^2 \).

(b) Let \(p \) be the standard normal distribution. How does the above term simplify?

(c) As you have learned in tutorial 06, the ELBO lower bound in variational inference is defined as

\[
L = \int q(z) \log \frac{p(z, x)}{q(z)} \, dz.
\]

Rearrange the above formula such that one can see that it is the expectation of \(\log p(x|z) \) with respect to \(q(z) \) minus the KL-divergence of \(q(z) \) w.r.t. \(p(z) \).

(d) Explain intuitively why \(\mathbb{E}_{q(z)} [\log P(x|z)] \) is called reconstruction loss.

(e) Download the Jupyter notebook for this exercise from the lecture web-page. It contains an implementation of a variational autoencoder which is applied to the MNIST dataset. Read and understand the content of this notebook.

Exercise 9-2 Generative Adversarial Networks (GANs)

(a) Explain the role of the generator \(G \) and the discriminator \(D \) in GANs.

(b) The loss for \(D \) is given as:

\[
J^{(D)} = -\frac{1}{2} \mathbb{E}_{x \sim p_{data}(x)} [\log D(x)] + \frac{1}{2} \mathbb{E}_{z \sim p_{z}(z)} [\log (1 - D(G(z))].
\]

Explain the terms in this loss!
(c) The generator tries to fool the discriminator, so its loss can be defined as:

\[J^{(G)} = -J^{(D)} \]

Write down this optimization problem as a minimax game!

(d) Why might the usage of \(J^{(G)} = -J^{(D)} \) as loss for the generator lead to slow learning?

Hint: What happens to the gradient of the losses if \(D(G(z)) \) is small? (No calculation required)