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Exercise 6: Model Uncertainty and LSTMs

Exercise 6-1 Variational Method: Evidence Lower Bound (ELBO)

Assume thatD is a set of observations (data) and θ is a hidden variable (e.g. a parameter). According to Bayes’
theorem, the posterior distribution of the hidden variable (after having observed D) can be written as:

P (θ|D) =
P (D, θ)

P (D)
=
P (D|θ) · P (θ)∫
P (D, θ) dθ

,

where P (D|θ) is the likelihood of the data and P (θ) is the prior (the probability distribution of θ before
seeing any evidence). In many cases, the computation of the denominator P (D) and thus of the the whole
posterior is intractable. The idea behind the variational method is thus to find some easier distribution Q(θ)
that approximates the true posterior distribution P (θ|D). A common metric to measure the closeness between
two distributions is the Kullback-Leibler (KL) divergence:

KL(Q(θ) || P (θ|D)) =

∫
Q(θ) log

Q(θ)

P (θ|D)
dθ = −

∫
Q(θ) log

P (θ|D)

Q(θ)
dθ 1

.

(a) By dissecting the above term, show that

logP (D) = KL(Q(θ) || P (θ|D)) + L,

where L =
∫
Q(θ) log P (θ,D)

Q(θ) dθ.

(b) The term L is called evidence lower bound or variational lower bound. Why is it a lower bound? When
is L the same as logP (D)?

1log( 1
x
) = log(x−1) = − log(x)
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Exercise 6-2 Metropolis-Hastings Algorithm

Given a set D of iid (identical and independently distributed) samples d1, . . . dn that are distributed according
to a normal distribution with mean µ and variance σ2, i.e. , ∀di ∈ D : di ∼ N (µ, σ2). The probability density
function (pdf) of the normal distribution is given as N (x|µ, σ2) = 1√

2πσ2
exp

(
− (x−µ)2

2σ2

)
. Suppose that we

know σ2 but want to infer the mean µ = θ given a set of observations D.

(a) Calculate the likelihood P (D|θ)!

(b) Let the prior P (θ) of the parameter θ be a standard normal distribution, i.e. θ ∼ N (µp, σp) with µp = 0
and σp = 1 and let σ2 = 1 as well.

Calculate the posterior P (θ|D)! Hint: Note that we chose P (θ) to be a conjugate prior 2, for which the
posterior is also a normal distribution given by:

P (θ|D) = N (θ|µm, σ2m)

with

µm =
σ2

nσ2p + σ2
µp +

nσ2p
nσ2p + σ2

(
1

n

n∑
i=1

di

)
1

σ2m
=

1

σ2p
+

n

σ2
.

(c) Let’s assume we used a different prior distribution. What would change?

(d) Use the corresponding Jupyter notebook file from the lecture web-site to implement the analytic solution
and the Metropolis-Hastings algorithm in Python. For more information, please consult the notebook.

Exercise 6-3 LSTM

In this exercise we will use Tensorflow to look inside a LSTM cell. We will train it to predict the next element
of a simple time series (every nth element is 1) and then consult the gates of the LSTM in all possible states
of the sequence to see how the LSTM learns (what it forgets/remembers). Please download and open the
corresponding Jupyter notebook from the lecture web-site and follow the instructions.

2For more details refer to the following link: Bishop - Pattern Recognition And Machine Learning, page 98.
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http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf

