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Exercise 5: Recurrent Neural Networks

Exercise 5-1 Backpropagation through Time

Consider the following RNN:

yt−1 yt yt+1

ht−1 ht ht+1

xt−1 xt xt+1

U U U

W W W

Each state ht is given by:

ht = σ(Wht−1 + Uxt), σ(z) =
1

1 + e−z

Let L be a loss function defined as the sum over the losses Lt at every time step until time T : L =
∑T

t=0 Lt,
where Lt is a scalar loss depending on ht.

In the following, we want to derive the gradient of this loss function with respect to the parameter W .

(a) Given y = σ(Wx) where y ∈ Rn, x ∈ Rd andW ∈ Rn×d. Derive the Jacobian ∂y
∂x = diag(σ′)W ∈ Rn×d!

(b) Derive the quantity ∂L
∂W =

∑T
t=0

∑t
k=1

∂Lt
∂ht

∂ht
∂hk

∂hk
∂W !

Exercise 5-2 Vanishing/Exploding Gradients in RNNs

In this exercise, we want to understand why RNNs are especially prone to the Vannishing/Exploding Gradients
problem and what role the eigenvalues of the weight matrix play. Consider part b) of exercise 5-1 again.

(a) Write down ∂L
∂W as expanded sum for T = 3. You should see that if we want to backpropagate through n

timesteps, we have to multiply the matrix diag(σ′)W n times with itself.

(b) Remember that any diagonalizable (square) matrix M can be represented by its eigendecomposition
M = QΛQ−1 where Q is a matrix whose i-th column corresponds to the i-th eigenvector of M and Λ is
a diagonal matrix with the corresponding eigenvalues placed on the diagonals.1.

Proof by induction that for such a matrix the product
∏n
i=1M can be written as: Mn = QΛnQ−1!

1Every eigenvector vi satisfies the linear equation Mvi = λivi where λi = Λii
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(c) Consider the weight matrix W =

(
0.58 0.24
0.24 0.72

)
. Its eigendecomposition is:

W = QΛ Q−1 =

(
0.8 −0.6
0.6 0.8

)(
0.4 0
0 0.9

)(
0.8 0.6
−0.6 0.8

)
.

Calculate W 30! What do you observe? What happens in general if the absolute value of all eigenvalues
of W is smaller than 1? What happens if the absolute value of any eigenvalue of W is larger than 1?
What if all eigenvalues are 1?

Exercise 5-3 LSTMs

Recall the elements of a module in an LSTM and the corresponding computations, where� stands for pointwise
multiplication. 2

ft = σ(Wfht−1 + Ufxt)

it = σ(Wiht−1 + Uixt)

ot = σ(Woht−1 + Uoxt)

C̃t = tanh(Wcht−1 + Ucxt)

Ct = ft � Ct−1 + it � C̃t
ht = ot � tanh(Ct)

(a) What do the gates ft, it and ot do?

(b) Which of the quantities next to the figure are always positive?

Let’s now try to understand how this architecture approaches the vanishing gradients problem. To calculate the
gradient ∂L∂θ , where θ stands for the parameters (Wf ,Wo,Wi,Wc), we now have to consider the cell state Ct
instead of ht. Like ht in normal RNNs, Ct will also depend on the previous cell states Ct−1, ...C0, so we get a
formula of the form:

∂L

∂W
=

T∑
t=0

t∑
k=1

∂L

∂Ct

∂Ct
∂Ck

∂Ck
∂W

. 3

(c) We know that ∂Ct
∂Ck

=
∏t
i=k+1

∂Ct
∂Ct−1

. Let ft = 1 and it = 0 such that Ct = Ct−1 for all t.

What is the gradient ∂Ct
∂Ck

in this case?

(d) (Optional) Show that the recursive gradient in general is:

∂Ct
∂Ct−1

= σ′()Wfδ � Ct−1 + ft + σ′()Wiδ � C̃t + it � tanh′()δ,

where δ = ot−1 � tanh′(Ct−1)!

Hint: Remember the product rule xf(x))′ = x′f(x) + xf ′(x) (which also holds for pointwise multipli-
cation)!

2For a good explanation on LSTMs you can refer to http://colah.github.io/posts/2015-08-Understanding-LSTMs/
3The real formula is a bit more complicated since Ct also depends on ft, it and C̃t, which in turn all depend on W , but this can be

neglected.
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Exercise 5-4 CIFAR10 Competition

In this optional exercise you can compete with your classmates. Please read the instructions from the CIFAR10
Competition notebook file which you find on the lecture web page. You can submit your solution for this
exercise via Uniworx until November 22nd 11:59 p.m. as described in the notebook file.
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