
Ludwig-Maximilians-Universität München Munich, 05.11.2018
Institut für Informatik
Prof. Dr. Matthias Schubert
Sebastian Schmoll, Sabrina Friedl

Deep Learning and Artificial Intelligence
WS 2018/19

Exercise 3: Computational Graphs and Vanishing Gradients

Exercise 3-1 Computational Graphs

Computational graphs are directed graphs that represent the dependencies between the variables and opera-
tions within a model or, more generally, a mathematical expression. As an example, consider the expression:
g = (a+ b) · d− f . To build the computational graph for this example we represent each of the operations as
well as all of the input variables as nodes and draw an arrow from one node to another if the first is the input
to the latter (see figure below). Such a node is called gate or layer in common. Note that we introduced 2
intermediate variables c and e so that every node has a name.

a

b

c =

a+ b

d

e =

c · d

f

g =

e− f

Computational graphs are used by popular deep learning frameworks like Theano and Tensorflow in order to
optimize execution, for example, through parallelizing or fusing calculations.

Task: Given an input x ∈ R2, a weight vector w ∈ R2 and a bias p0 ∈ R. Draw the computation graph for the
mean squared error L =MSE(ŷ, y) of a prediction ŷ = σ(wTx+ p0)

1 with respect to the true value y.

1The sigmoid function σ(z) = 1
1+e−z is often used in logistic regression and binary classification tasks.

1



Exercise 3-2 Derivatives on Computational Graphs

Most deep learning frameworks provide an automatic differentiation procedure to compute the gradients based
on the backpropagation algorithm introduced in the lecture. Those gradients can be written as a computational
graph as well. Consider the example from exercise 1 again. The computational graph for the gradients (with
respect to g) would look as follows:

∂g
∂a

∂g
∂b

∂g
∂c

∂g
∂d

∂g
∂e

∂g
∂f

∂g
∂g

∂g
∂e

∂g
∂f

∂e
∂c

∂e
∂d

∂c
∂a

∂c
∂b

Task:

(a) Given x =

(
1
1

)
, w =

(
4
5
−7

5

)
, p0 = 3

5 , y = 1 and the loss function L = (ŷ − y)2. Calculate the missing

values in the computation graph of exercise 1.

(b) Draw the corresponding computational gradient graph for the example in exercise 1.

(c) Calculate the gradient values for each edge and node in the computational gradient graph.

Exercise 3-3 Computational Graphs in Python

In this exercise you will implement a computational graph in python. For this purpose please use the corre-
sponding jupyter notebook from the lecture website. There you will find a template for the implementation
of an abstract gate. Every gate has a set of inputs (input nodes) and consumers. Additionally a gate has to
implement the methods forward and backward. The forward method computes the result with respect to the
given input nodes (use the out field) of the input gates and stores the value in the field out. The backward
function computes and propagates the gradient for the given gate. On call of the backward function, the gate
uses the incoming gradient dz and adds to all input nodes the corresponding gradient. In the template you will
find two input gates (InputGate and AddGate) as simple example.

In addition, the template provides a ComputationalGraph class. This class implements the backward and
forward function as well, but for the whole graph. Both methods return a graphviz object visualizing the
respective steps. To draw the computational graphs in jupyter notebook you can for instance use the imported
display function.

(a) Implement a gate that represents a weight (WeightGate). The constructor shall take the parameter α that
represents the learning rate of this weight.

(b) Implement a gate that multiplies the outputs of a set of input gates (MultiplyGate).

(c) Implement a sigmoid gate that computes the sigmoid σ of one input (SigmoidGate). Hint: The derivative
can be written as σ′ = σ(1− σ).

(d) Implement a gate (SquaredLossGate) with the following loss function L(y, ŷ) = (ŷ − y)2.

(e) Build the computational graph from exercise 3-1 in python and compute display the computational graph
after forward and backward. Hint: You can validate your calculation with this implementation.

(f) Construct and train a computational graph / network that can classify the XOR dataset with stochastic
gradient descent and the already implemented squared loss function.

2



Exercise 3-4 Vanishing Gradients Problem

Consider a network with input x ∈ R, 3 hidden layers each having only one node, and one output y ∈ R:

x a1 a2 a3 y
w1 w2 w3 w4

In the network each node corresponds to the sigmoid of the preceding node multiplied with some weight:
ai = σ(wi · ai−1), i = 1, . . . 4, where a0 corresponds to the input x and a4 corresponds to the output y.

Task:

(a) By using the chain rule, calculate the gradient ∂y
∂x !

(b) Calculate the maximum of the derivative σ′ = ∂
∂z

1
1+e−z of the sigmoid function! Hint: The derivative

can be written as σ′ = σ(1− σ).

(c) How does this result relate to the vanishing gradients problem?

3


