

Skript zur Vorlesung

Datenbanksysteme I

Wintersemester 2010/2011

Kapitel 4: Relationen-Kalkül

Vorlesung: PD Dr. Matthias Schubert Übungen: Thomas Bernecker, Andreas Züfle Skript © 2005 Christian Böhm

http://www.dbs.ifi.lmu.de/cms/Datenbanksysteme_I

Begriff

Kal|kül das, auch der; -s, -e <unter Einfluss von gleichbed, fr. calcul aus lat, calculus «Steinchen, Rechen-, Spielstein; Berechnung», Verkleinerungsform von lat. calx «(Spiel)stein; Kalk»>: etwas im Voraus abschätzende, einschätzende Berechnung, Überlegung.

Quelle: DUDEN - Das große Fremdwörterbuch

...das Kalkül

Kapitel 4: Relationen-Kalkül Datenbanksysteme I

Kaljkül der; -s, -e <zu ¹Kalkül>: durch ein System von Regeln festgelegte Methode, mit deren Hilfe bestimmte mathematische der Kalkül ... Probleme systematisch behandelt u. automatisch gelöst werden können (Math.).

Quelle: DUDEN - Das große Fremdwörterbuch

Begriff

Datenbanksysteme I Kapitel 4: Relationen-Kalkül • Mathematik: Prädikatenkalkül

- Formeln wie $\{x \mid x \in IN \land x^3 > 0 \land x^3 < 1000\}$

Anwendung solcher Formeln für DB-Anfragen

- Bezugnahme auf DB-Relationen im Bedingungsteil: $(x_1, y_1, z_1) \in \text{Mitarbeiter}, t_1 \in \text{Abteilungen}$

- Terme werden gebildet aus Variablen, Konstanten usw.

Atomare Formeln aus Prädikaten der Datentypen:=, <, >, ≤, usw.

- Atomare Formeln können mit logischen Operatoren zu komplexen Formeln zusammengefasst werden: $F_1 \wedge F_2$, $F_1 \vee F_2$, $\neg F_1$, $\exists x: F_1$, $\forall x: F_1$

• Bsp: Finde alle Großstädte in Bayern: $\{t \mid \text{Städte}(t) \land t[\text{Land}] = \text{Bayern} \land t[\text{SEinw}] \ge 500.000\}$

Hinweis: Städte(t) gleichbedeutend mit $t \in St$ ädte

3

Unterschied zur Rel. Algebra

- Relationale Algebra ist prozedurale Sprache:
 - Ausdruck gibt an, unter Benutzung welcher
 Operationen das Ergebnis berechnet werden soll
 - WIE
- Relationen-Kalkül ist deklarative Sprache:
 - Ausdruck beschreibt, welche Eigenschaften die Tupel der Ergebnisrelation haben müssen ohne eine Berechnungsprozedur dafür anzugeben
 - WAS
- Es gibt zwei verschiedene Ansätze:
 - Tupelkalkül: Variablen sind vom Typ Tupel
 - Bereichskalkül: Variablen haben einfachen Typ

Der Tupelkalkül

Datenbanksysteme I Kapitel 4: Relationen-Kalkül • Man arbeitet mit

– Tupelvariablen: t

– Formeln: $\psi(t)$

– Ausdrücken: $\{t \mid \psi(t)\}$

• Idee: Ein Ausdruck beschreibt die Menge aller Tupel, die die Formel werfüllen (wahr machen)

• Ein Kalkül besteht immer aus

– Syntax: Wie sind Ausdrücke aufgebaut?

– Semantik: Was bedeuten die Ausdrücke?

5

Tupelvariablen

• Tupelvariablen haben ein definiertes Schema:

- Schema(t) = (A_1 : D_1 , A_2 : D_2 , ...)

- Schema(t) = R_1 (t hat dasselbe Schema wie Relation)

• Für Zugriff auf die Komponenten

-t[A] oder t.A für einen Attributnamen $A \in Schema(t)$

- oder auch t[1], t[2] usw.

• Tupelvariable kann in einer Formel ψ frei oder gebunden auftreten (s. unten)

Kapitel 4: Relationen-Kalkül

Datenbanksysteme I

Atome

Datenbanksysteme I Kapitel 4: Relationen-Kalkül • Es gibt drei Arten von Atomen:

-R(t) R ist Relationenname, t Tupelvariable

lies: t ist ein Tupel von R

 $-tA\Theta$ s.B t bzw. s sind zwei Tupelvariablen mit

passenden Attributen

lies: t.A steht in Beziehung Θ zu ...

- t. $A \Theta c$ t ist Tupelvariable und c eine passende

Konstante

 Θ Vergleichsoperator: $\Theta \in \{=, <, \le, >, \ge, \ne\}$

7

Formeln

Der Aufbau von Formeln ψ ist rekursiv definiert:

• **Atome**: Jedes Atom ist eine Formel

Alle vorkommenden Variablen sind frei

• **Verknüpfungen**: Sind ψ_1 und ψ_2 Formeln, dann auch:

 $\begin{array}{lll} - & \neg \psi_1 & \textit{nicht} \\ - & (\psi_1 \wedge \psi_2) & \textit{und} \\ - & (\psi_1 \vee \psi_2) & \textit{oder} \end{array}$

Alle Variablen behalten ihren Status.

• Quantoren: Ist ψ eine Formel, in der t als freie

Variable auftritt, sind auch Formeln...

- $(\exists t)(\psi)$ es gibt ein t, für das ψ

- $(\forall t)(\psi)$ für alle t gilt ψ die Variable t wird gebunden.

Formeln

Datenbanksysteme I Kapitel 4: Relationen-Kalkül • Gebräuchliche vereinfachende Schreibweisen:

$$- \psi_1 \Rightarrow \psi_2$$
 für $(\neg \psi_1) \lor \psi_2$ (Implikation)

-
$$\exists t_1,...,t_k$$
: $\psi(t_1,...t_k)$ für $(\exists t_1) (...((\exists t_k) (\psi(t_1,...t_k)))...)$

$$- (\exists t \in R) (\psi(t)) \qquad \text{für } (\exists t) (R(t) \land \psi(t))$$

$$- (\forall t \in R) (\psi(t)) \qquad \text{für } (\forall t) (R(t) \Rightarrow \psi(t))$$

- Bei Eindeutigkeit können Klammern weggelassen werden
- Beispiel:

$$- (\forall s) (s.A \le u.B \lor (\exists u)(R(u) \land u.C > t.D))$$

- t ist frei
- s ist gebunden
- u ist frei beim ersten Auftreten und dann gebunden

9

Ausdruck (Anfrage)

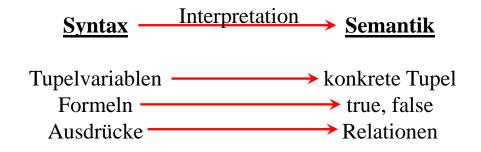
• Ein Ausdruck des Tupelkalküls hat die Form $\{t \mid \psi(t)\}$

• In Formel ψ ist t die einzige freie Variable

Semantik

Bedeutung, die einem korrekt gebildeten Ausdruck durch eine Interpretation zugeordnet wird:

Datenbanksysteme I Kapitel 4: Relationen-Kalkül



11

Belegung von Variablen

• Gegeben:

- eine Tupelvariable t mit Schema $(t) = (D_1, D_2, ...)$
- eine Formel $\psi(t)$, in der t frei vorkommt
- ein beliebiges konkretes Tupel r (d.h. mit Werten).
 Es muß nicht zu einer Relation der Datenbank gehören
- Bei der Belegung wird jedes freie Vorkommen von *t* durch *r* ersetzt. Insbesondere wird *t*.A durch den Attributwert von *r*.A ersetzt.
- Man schreibt: $\psi(r \mid t)$

Beispiel

Datenbanksysteme I Kapitel 4: Relationen-Kalkül Gegeben sei folgendes Relationenschema:

Städte (SName: String, SEinw: Integer, Land: String)

Länder (LName: String, LEinw: Integer, Partei*: String)

* bei Koalitionsregierungen: jeweils eigenes Tupel pro Partei

• $\psi(t) = (t.\text{Land=Bayern} \land t.\text{SEinw} \ge 500.000)$ mit Schema(t) = Schema(Städte)

■ r_1 = (Passau, 49800, Bayern): $ψ(r_1 | t)$ = (Bayern = Bayern ∧ 49800 ≥ 500.000)

■ r_2 = (Bremen, 535.058, Bremen): $ψ(r_2 | t)$ = (Bremen = Bayern ∧ 535.058 ≥ 500.000)

13

Interpretation von Formeln

Interpretation $I(\psi)$ analog zu syntaktischem Aufbau

- Anm: Alle Variablen sind durch konkrete Tupel belegt
- Atome:
 - -R(r): $I(R(r)) = \mathbf{true} \Leftrightarrow r \text{ ist in } R \text{ enthalten}$
 - $-c_i \Theta c_i$: $I(c_i \Theta c_i) = \mathbf{true} \Leftrightarrow \text{der Vergleich ist erfüllt}$
- Logische Operatoren:
 - $\neg \psi$: $I(\neg \psi) = \mathbf{true} \Leftrightarrow I(\psi) = \mathbf{false}$
 - $\psi_1 \wedge \psi_2$: $I(\psi_1 \wedge \psi_2) = \mathbf{true} \Leftrightarrow I(\psi_1) = \mathbf{true} \text{ und } I(\psi_2) = \mathbf{true}$
 - $\psi_1 \lor \psi_2$: $I(\psi_1 \lor \psi_2) = \mathbf{true} \Leftrightarrow I(\psi_1) = \mathbf{true} \text{ oder } I(\psi_2) = \mathbf{true}$

Beispiele

Datenbanksysteme I Kapitel 4: Relationen-Kalkül • Atome:

- I(Städte (Passau, 49.800, Bayern)) = true
- $-I(49.800 \ge 500.000)$ = false

• Logische Operatoren:

- $-I(\neg 49.800 \ge 500.000)$ = true
- I(Städte (Passau, 49.800, Bayern) ∨
 ∨ 49.800 ≥ 500.000) = true
- I(Städte (Passau, 49.800, Bayern) \land \land 49.800 ≥ 500.000) = **false**

15

Interpretation von Quantoren

• Interpretation $I((\exists s)(\psi))$ bzw. $I((\forall s)(\psi))$:

- In ψ darf nur s als freie Variable auftreten.
- I((∃s)(ψ)) = **true** ⇔ ein Tupel $r ∈ D_1 × D_2 × ...$ existiert, daß bei Belegung der Variablen s die Formel ψ gilt:

$$I(\psi(r \mid s)) = \mathbf{true}$$

- -I((∀s)(ψ)) =**true** ⇔ für alle Tupel $r ∈ D_1 × D_2 × ...$ gilt die Formel ψ.
- Beispiele:
 - $-I((\exists s)(Städte(s) \land s.Land = Bayern)) = true$
 - $-I((\forall s)(s.\text{Name} = \text{Passau})) = \text{false}$

Interpretation von Ausdrücken

Datenbanksysteme I Kapitel 4: Relationen-Kalkül

- Interpretation von Ausdruck $I(\{t|\psi(t)\})$ stützt sich
 - auf Belegung von Variablen
 - und Interpretation von Formeln
- Gegeben:
 - $-E = \{t \mid \psi(t)\}$
 - -t die einzige freie Variable in $\psi(t)$
 - Schema(t) = $D_1 \times D_2 \times ...$
- Dann ist der Wert von E die Menge aller* (denkbaren) Tupel $r \in D_1 \times D_2 \times ...$ für die gilt:

$$I(\psi(r \mid t)) = \mathbf{true}$$

*Grundmenge sind hier nicht nur die gespeicherten Tupel aus der DB

17

Beispiel-Anfragen

Gegeben sei folgendes Relationenschema:

Städte (SName: String, SEinw: Integer, Land: String)
Länder (LName: String, LEinw: Integer, Partei*: String)

* bei Koalitionsregierungen: jeweils eigenes Tupel pro Partei

Datenbanksysteme I Kapitel 4: Relationen-Kalkül

• Finde alle Großstädte (SName, SEinw, Land) in Bayern:

Schema(t) = Schema(Städte)

 $\{t \mid \text{Städte}(t) \land t.\text{Land} = \text{Bayern} \land t.\text{SEinw} \ge 500.000\}$

• In welchem Land liegt Passau?

Schema(t) = (Land:String)

 $\{t \mid (\exists u \in St\ddot{a}dte)(u.Sname = Passau \land u.Land = t.Land\}$

• Finde alle Städte in CDU-regierten Ländern:

Schema(t) = Schema(Städte)

 $\{t | \text{Städte}(t) \land (\exists u \in \text{Länder})(u.\text{Lname} = t.\text{Land} \land u.\text{Partei} = \text{CDU})\}$

18

Beispiel-Anfragen

Gegeben sei folgendes Relationenschema:

Städte (SName: String, SEinw: Integer, Land: String)
Länder (LName: String, LEinw: Integer, Partei*: String)

* bei Koalitionsregierungen: jeweils eigenes Tupel pro Partei

• Welche Länder werden von der SPD allein regiert?

Schema(t) = Schema(Länder) $\{t | \text{Länder}(t) \land (\forall u \in \text{Länder})(u.\text{LName} = t.\text{LName} \Rightarrow u.\text{Partei} = \text{SPD}\}$

• Gleichbedeutend mit:

```
Schema(t) = Schema(Länder)  \{t | L \ddot{a} n der(t) \land (\forall u \in L \ddot{a} n der) \neg (u.LN ame = t.LN ame \land u.Partei \neq SPD) \}
```

19

Kapitel 4: Relationen-Kalkül

Datenbanksysteme I

Sichere Ausdrücke

- Mit den bisherigen Definitionen ist es möglich, unendliche Relationen zu beschreiben:
 - Schema(t) = {String, String}
 - $\{t \mid t.1 = t.2 \}$
 - Ergebnis: $\{(A,A),(B,B),...,(AA,AA),(AB,AB),...\}$
- Probleme:
 - Ergebnis kann nicht gespeichert werden
 - Ergebnis kann nicht in endlicher Zeit berechnet werden
- Definition:

Ein Ausdruck heißt *sicher*, wenn jede Tupelvariable nur Werte einer gespeicherten Relation annehmen kann, also positiv in einem Atom R(t) vorkommt.

Der Bereichskalkül

Datenbanksysteme I Kapitel 4: Relationen-Kalkül • Tupelkalkül: Tupelvariablen *t* (ganze Tupel)

• Bereichskalkül: Bereichsvariablen $x_1:D_1, x_2:D_2, ...$

für einzelne Attribute

(Bereich=Wertebereich=Domäne)

Ein Ausdruck hat die Form:

$${x_1, x_2, ... | \psi(x_1, x_2, ...)}$$

Atome haben die Form:

 $-R_1(x_1, x_2, ...)$: Tupel $(x_1, x_2, ...)$ tritt in Relation R_1 auf

 $- x \Theta y$: x,y Bereichsvariablen bzw. Konstanten

 $\Theta \in \{\,=\,,<\,,\leq\,,>\,,\geq\,,\neq\,\}$

Formeln analog zum Tupelkalkül

21

Beispiel-Anfragen

Städte (SName: String, SEinw: Integer, Land: String)

Länder (LName: String, LEinw: Integer, Partei*: String)

*bei Koalitionsregierungen: jeweils eigenes Tupel pro Partei

Datenbanksysteme I Kapitel 4: Relationen-Kalkül

• In welchem Land liegt Passau?

 $\{x_3 \mid \exists x_1, x_2 : (Städte(x_1, x_2, x_3) \land x_1 = Passau) \}$ oder auch

 $\{x_3 \mid \exists x_2: (Städte(Passau, x_2, x_3))\}$

• Finde alle Städte in CDU-regierten Ländern:

 $\{x_1 \mid \exists x_2, x_3, y_2 : (Städte(x_1, x_2, x_3) \land Länder(x_3, y_2, CDU))\}$

• Welche Länder werden von der SPD allein regiert?

 $\{x_1 | \exists x_2 : (\text{Länder}(x_1, x_2, \text{SPD}) \land \neg \exists y_3 : (\text{Länder}(x_1, x_2, y_3) \land y_3 \neq \text{SPD}))\}$

Query By Example (QBE)

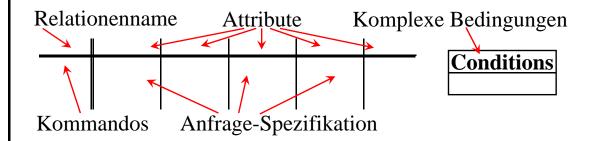
Datenbanksysteme I Kapitel 4: Relationen-Kalkül

- Beruht auf dem Bereichskalkül
- Ausdrücke nicht wie in SQL als Text
- Dem Benutzer wird am Bildschirm ein Tabellen-Gerüst angeboten, das mit Spezial-Editor bearbeitet werden kann
- Nach Eintrag von Werten in das Tabellengerüst (Anfrage) füllt das System die Tabelle
- Zielgruppe: Gelegentliche Benutzer

23

Query By Example (QBE)

Datenbanksysteme I Kapitel 4: Relationen-Kalkül



Sprachelemente:

- Kommandos, z.B. **P.** (print), **I.** (insert), **D.** (delete) ...
- Bereichsvariablen (beginnen mit '_'): _x, _y
- Konstanten (Huber, Milch)
- Vergleichsoperatoren und arithmetische Operatoren
- Condition-Box: Zusätzlicher Kasten zum Eintragen einer Liste von Bedingungen (AND, OR, kein NOT)

Beispiel-Dialog

Kapitel 4: Relationen-Kalkül Datenbanksysteme I

Beginn: leeres Tabellengerüst

Benutzer gibt interessierende Relation und P. ein Kunde P.

evtl. weitere Tabelle (Join)

System trägt Attributsnamen der Relation ein

Kunde **KName** KAdr Kto Benutzer stellt Anfrage

KName Kunde

KAdr Kto

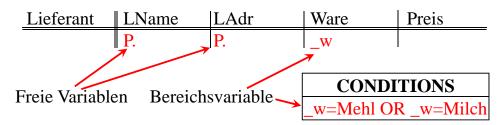
System füllt Tabelle mit Ergebnis-Werten

Kunde	KName	KAdr
	Huber	Innsbruck
	Maier	München

25

Anfragen mit Bedingungen

Welche Lieferanten liefern Mehl oder Milch?



Kapitel 4: Relationen-Kalkül Datenbanksysteme I

• Bedeutung:

 $\{x_1, x_2 | \exists w, x_4: \text{Lieferant}(x_1, x_2, w, x_4) \land (w = \text{Mehl} \lor w = \text{Milch})\}$

• Kommando P. für print bzw. auch für die Projektion

Anfragen mit Bedingungen

• Welche Lieferanten liefern Brie und Perrier, wobei Gesamtpreis 7,00 € nicht übersteigt?

Datenbanksysteme I Kapitel 4: Relationen-Kalkül

Lieferant	LName	LAdr	Ware	Preis
	PL		Brie	_y
	_L		Perrier	_z

CONDITIONS_y + _z <= 7.00

• Bedeutung:

```
{l \mid \exists x_1, x_2, y, z: Lieferant (l, x_1, Brie, y) \land Lieferant (l, x_2, Perrier, z) \land y + z \le 7.00}
```

27

Join-Anfragen

• Welcher Lieferant liefert etwas das Huber bestellt hat?

Lieferant LName P.

LAdr	Ware	Preis
	_w	

Auftrag 1

• Bedeutung:

$$\{x_1 \mid \exists x_2, w, x_4, y_3:$$
 Lieferant $(x_1, x_2, w, x_4) \land$ Auftrag (Huber, w, y_3)}

• Beachte:

Automatische Duplikat-Elimination in QBE

Join-Anfragen

Meist ist für Ergebnis neues Tabellengerüst nötig:

- Beispiel: Bestellungen mit Kontostand des Kunden
- Falsch (leider nicht möglich):

Kunde KName KAdr Kto
R n P.

Auftrag KName Ware Menge
_n P.

• Richtig:

k	Kunde	KName	KAdr	Kto
		_n		_k
A	Auftrag	KName	Ware	Menge
. •		_n	_w	_m
т	Dogtollyna	Nome	W _{0.0}	Wierrich

Abkürzung!

29

Kapitel 4: Relationen-Kalkül

Datenbanksysteme I

Anfragen mit Ungleichung

- Wer liefert Milch zu Preis zw. 0,50 €und 0,60 €?
- Variante mit zwei Zeilen:

Lieferant	LName	LAdr	Ware	Preis
P.	_L		Milch	>= 0.5
	_L		Milch	<= 0.6

• Variante mit Condition-Box

Lieferant	LName	LAdr	Ware	Preis
P.			Milch	_p

CONDITIONS		
$_p >= 0.5 \text{ AND }_p <= 0.6$		

Anfragen mit Negation

• Finde für jede Ware den billigsten Lieferanten

Lieferant	LName	LAdr	Ware	Preis
P.			_w	_p
$\overline{}$			_w	<_p

• Das Symbol – in der ersten Spalte bedeutet: Es gibt kein solches Tupel

• Bedeutung:

$$\{x_1, x_2, w, p \mid \neg \exists y_1, y_2, y_3:$$
 Lieferant $(x_1, x_2, w, p) \land$ Lieferant $(y_1, y_2, w, y_3) \land y_3 < p\}$

31

Datenbanksysteme I Kapitel 4: Relationen-Kalkül

Einfügen

- Einfügen von einzelnen Tupeln
 - Kommando I. für INSERT

Kunde	KName	KAdr	Kto
I.	Schulz	Wien	0

- Einfügen von Tupeln aus einem Anfrageergebnis
 - Beispiel: Alle Lieferanten in Kundentabelle übernehmen

Kunde	KName	KAdr	Kto	<u>-</u>
I.	_n	_a	0	
Lieferant	LName	LAdr	Ware	Preis
	n	a		

Löschen und Ändern

Kapitel 4: Relationen-Kalkül

Datenbanksysteme I

• Löschen aller Kunden mit negativem Kontostand

KundeKNameKAdrKtoD.< 0</td>

• Ändern eines Tupels (U. für UPDATE)

Kunde	KName	KAdr	Kto
	Schulz	Wien	U. 100

• oder auch:

Kunde	KName	KAdr	Kto
	Meier	_a	_k
U.	Meier	_a	$_{k} - 110$

• oder auch mit Condition-Box

33

Vergleich

Datenbanksysteme I Kapitel 4: Relationen-Kalkül

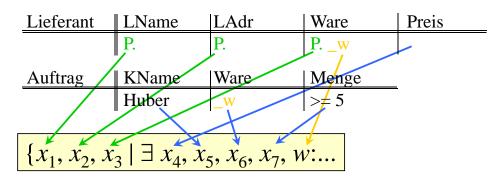
QBE	Bereichskalkül		
Konstanten	Konstanten		
Bereichsvariablen	Bereichsvariablen		
leere Spalten	paarweise verschiedene		
	Bereichsvariablen,		
	∃-quantifiziert		
Spalten mit P.	freie Variablen		
Spalten ohne P.	∃-quantifizierte Variablen		

Anmerkung: QBE ist relational vollständig, jedoch ist für manche Anfragen der relationalen Algebra eine Folge von QBE-Anfragen nötig

Umsetzung einer QBE-Anfrage

Datenbanksysteme I Kapitel 4: Relationen-Kalkül (ohne Negation)

- Erzeuge für alle Attribute A_i aller vorkommenden Tabellen-Zeilen der Anfrage eine Bereichsvariable x_i
- Steht bei Attribut A_i das Kommando **P.** dann schreibe x_i zu den freien Variablen $(\{... x_i, ... | ... \})$, sonst binde x_i mit einem \exists -Quantor $(\{... | \exists ..., x_i, ... \})$
- Binde alle Variablen der Anfrage mit einem ∃-Quantor



35

Umsetzung einer QBE-Anfrage

Lieferant	LName	LAdr	Ware	Preis
	P.	P.	Pw	
Auftrag	KName	Ware	Menge	
	Huber	_w	>= 5	

Datenbanksysteme I Kapitel 4: Relationen-Kalkül

• Füge für jede vorkommende Relation R ein Atom der Form $R(x_i, x_{i+1}, ...)$ mit \wedge an die Formel Ψ an

$$\{x_1, x_2, x_3 \mid \exists x_4, x_5, x_6, x_7, w: \text{Lieferant}(x_1, x_2, x_3, x_4) \land \text{Auftrag}(x_5, x_6, x_7) \dots \}$$

• Steht bei A_i ein Zusatz der Form Const bzw. \leq Const etc., dann hänge x_i = Const bzw. $x_i \leq$ Const mit \wedge an Formel.

$$\{x_1, x_2, x_3 \mid \exists x_4, x_5, x_6, x_7, w: \text{Lieferant}(x_1, x_2, x_3, x_4) \land \text{Auftrag}(x_5, x_6, x_7) \land x_5 = \text{Huber} \land x_7 \ge 5$$

Umsetzung einer QBE-Anfrage

Datenbanksysteme I Kapitel 4: Relationen-Kalkül

Lieferant	LName	LAdr	Ware	Preis
	P.	P.	Pw	
Auftrag	KName	Ware	Menge	
	Huber	_w	>= 5	•

Gleiches Vorgehen bei Zusätzen der Form _Variable bzw.
 ≤ _Variable usw:

$$\{x_1, x_2, x_3 \mid \exists x_4, x_5, x_6, x_7, w: \text{Lieferant}(x_1, x_2, x_3, x_4) \land \text{Auftrag}(x_5, x_6, x_7) \land x_5 = \text{Huber} \land x_7 \ge 5 \land w = x_3 \land w = x_6\}$$

- Ggf. wird der Inhalt der Condition-Box mit ∧ angehängt.
- Meist lässt sich der Term noch vereinfachen:

```
\{x_1,x_2,w\mid \exists x_4,x_5,x_7: \text{Lieferant}(x_1,x_2,w,x_4) \land \text{Auftrag}(\text{Huber},w,x_7) \land x_7 \ge 5\}
```