Ludwig-Maximilians-Universität München Institut für Informatik Prof. Dr. Matthias Schubert Evgeniy Faerman Daniyal Kazempour

Big Data Management and Analytics WS 2018/19

Tutorial 8: Stream Clustering and Text Processing

Assignment 8-1 CluStream

Given the following series of data points.

Time t	1	2	3	4	5	6	7	8	9	10	11	12
Data point p	$\begin{pmatrix} 1\\1 \end{pmatrix}$	$\begin{pmatrix} 2\\1 \end{pmatrix}$	$\begin{pmatrix} 4\\ 9 \end{pmatrix}$	$\begin{pmatrix} 4\\ 8 \end{pmatrix}$	$\begin{pmatrix} 10\\ 4 \end{pmatrix}$	$\begin{pmatrix} 9\\ 3 \end{pmatrix}$	$\begin{pmatrix} 2\\ 3 \end{pmatrix}$	$\binom{11}{3}$	$\begin{pmatrix} 12\\12 \end{pmatrix}$	$\begin{pmatrix} 12\\11 \end{pmatrix}$	$\begin{pmatrix} 11\\12 \end{pmatrix}$	$\begin{pmatrix} 4\\2 \end{pmatrix}$

Perform the online steps of the CluStream algorithm on the data point series with the following settings:

- initPoints = 6
- *q* = 3
- factor of clu radius t = 5

Assignment 8-2 Finding similar items

Suppose that the universal set is given by $\{1, \ldots, 10\}$. Construct minhash signatures for the following sets:

- (a) $S_1 = \{3, 6, 9\}$
- (b) $S_2 = \{2, 4, 6, 8\}$
- (c) $S_3 = \{2, 3, 4\}$
- 1. Construct the signatures for the sets using the following list of permutations:
 - (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
 - (10, 8, 6, 4, 2, 9, 7, 5, 3, 1)
 - (4, 7, 2, 9, 1, 5, 3, 10, 6, 8)
- 2. Suppose that instead of using particular permutations to construct signatures for the threse sets, we use hash functions. The three hash functions we use are:
 - $h_1(x) = x \mod 10$
 - $h_2(x) = (2x+1) \mod 10$
 - $h_3(x) = (3x+2) \mod 10$
- 3. How does the estimated Jaccard similarity, derived from (1.) and (2.) compare with the true Jaccard similarity of the original data? How to reduce deviations in the approximated Jaccard similarities?