Big Data Management and Analytics
WS 2018/19

Tutorial 5: Stream Processing

Assignment 5-1
Streaming
Given the following terms:
Aggregation, Compression, Data Reduction, Histograms, Load Shedding, Microclusters, Sampling, Wavelets

(a) Explain each of the terms by providing a short definition.

(b) Illustrate how the terms are related to each other.

Assignment 5-2
Discrete Wavelet Transformation (DWT)
Given the following input sequence \(S = (4,1,2,3,6,1,7,6) \)

(a) Perform a Haar Wavelet Transformation on \(S \) and determine the Wavelet coefficients.

(b) Reconstruct the original sequence \(S \) using the Wavelet coefficients.

(c) For a loss afflicted reconstruction we assume that -0.5 and 0.5 are close to 0. Sum up the resulting errors per residue to a total (linear) approximation error.

Assignment 5-3
Piecewise Aggregate Approximation (PAA)
Given the following input sequence \(S = (4,1,2,3,6,1,7,6) \)

(a) Compute the reduced representation of \(S \) using PAA (box size \(M = 4 \)).

\[\bar{x}_i = \frac{M}{N} \sum_{j=\frac{N}{M}(i-1)+1}^{\frac{N}{M}i} x_j \]

(b) Convince yourself that PAA and DWT (using Haar Wavelets as basis functions!) are equivalent.
Assignment 5-4 Reservoir Sampling

Given a data stream of size N. Randomly select $k \leq N$ elements from the stream. Here k represents the size of the reservoir.

(a) Setting $k = 1, N = 2$. The first element is in the reservoir, the second is not. What is the probability of both elements to be in the reservoir?

(b) Setting $k = 1, N = 3$. What is now the probability for each of the elements to be in the reservoir?

(c) Setting $k = 1$. What is the probability for any given N?

(d) What is the probability for an arbitrary reservoir size k and an arbitrary stream size N?