Big Data Management and Analytics
Assignment 12

A good partitioning fullfills two conditions:

- Maximizes the number of edges within a group
- Minimizes the number of edges between groups

w

DATABASE ASSignment 12_1 .1

SYSTEMS
GROUP

€
(— 0‘0

 Partitions shall be balanced as far as

possible = the graph shall be split either
In
« {A,B,C}and {D,E} or

 in{A,B}and {C,D,E}

« The second choice has more edges
within the groups, and only one edge
instead of two have to be removed
—> Best partitioning is {4, B} and {C, D, E}

RECAP:
The modularity Q of a partitioning S of a graph G is defined as follows:

Q « Z[(#edges within group s) — (expected #edges within group s)]

SES

kik;
Q(G,S) = 5= Sees Sies L jes(@i o)

LYJ

Normalizing: —1<Q <1

What we already have:
Number of edges |n| =5
Number of edges |m| =5
Degree of nodes:

Node | Degree

1

2
3
2
2

Steps for computing Q:

1.
2.
3.
4.
5.

Compute the adjacency matrix

Compute the modularity matrix: (B;; = A;j —
Sum up the entries of the single clusters
Sum up the sums of all clusters

Normalize the result

kj-k

J

2m

)

w

DATABASE ASSignment 1 2_1 .2

SYSTEMS
GROUP

Steps for computing Q:

1. Compute the adjacency matrix

0 1 0 0 O
1 01 0 O
A=(0 1 0 0 O
0 0 0 0 1
0 0 01 O

Steps for computing Q:

2. Compute the modularity matrix: (B;; = A;; — kikj

2m

Steps for computing Q:

3. Sum up the entries of the single clusters

Sl={A;B;C}_>—(D+8-3+8-4+4-3+4-9)==

s, ={D,E} - 1 ((H+6+6—4)==1

Steps for computing Q:

1.

Compute the adjacency matrix

SN

Il
oo or O
cCo o or
R R OOO
RO R OO

O R Rk OO

€

€

Steps for computing Q:

2. Compute the modularity matrix: (B;; = 4;; —

Bij =

ol

ik

2m

Steps for computing Q:

3. Sum up the entries of the single clusters

s ={4B}> A(-1)+8+8—4) =1

52={C,D,E}» (-9 +4+4+4—-4+6+4+6—4)=11
— 11 11 __ 22

z =10 710~ 10

_scS

Q(G,S) = 1552 = 0.22

o

The higher the modularity Q, the better the partitioning

Removing the edge {B, C} yields a higher Q value than the removal
of the edges {C,E} and {C,D}

= The hypothesis from 1 which relies on maximizing the number
of edges within the groups and minimizing the number of edges
between the groups was correct

RECAP:
Girven-Newman algorithm:

1. Begin with node A and perform a BFS and construct a DAG
(directed acyclic graph)

2. Count the number of shortest paths from A to all other nodes

3. Compute the betweenness, by traversing the tree in a bottom-up
fashion. If there exist multiple paths, these are counted partially:

1. node flow =1+) childEdges
2. Split the flow based on the values of the parents (shortest path)

Step 1:

Step 1:

1 - leaf gets a credit of 1.

w

DATABASE ASSignment 1 2_2

SYSTEMS
GROUP

Step 3:

|, J have both equally 3 shortest
paths = 3/(3+3) = 1/2

1 = leaf gets a credit of 1.

Step 3:

Credit c of I: 140.5=1.5
shortest paths from A to F: 2
sum #shortest paths F and G: 2+1 =3

betweenness B(I,F) = M52/, =1

Step 3:

Credit c of I: 140.5=1.5
shortest paths from A to G: 1
sum #shortest paths F and G: 2+1 =3

betweenness B(I,G) = ***V/, =1/,

Step 3:

Credit c of J: 1+0.5=1.5
shortest paths from A to G: 1
sum #shortest paths G and H: 1+2 =3

betweenness B(J,G) = 3>/, =1/,

Step 3:

Credit c of J: 1+0.5=1.5
shortest paths from A to H: 2
sum #shortest paths G and H: 1+2 =3

betweenness B(J,H) = 152/, =1

Creditc of F: 1+1=2
shortest paths from A to B: 1
sum #shortest paths B and C: 1+1 =2

betweenness B(F,B) = #*Y/, =1

Creditc of F: 1+1=2
shortest paths from A to C: 1
sum #shortest paths B and C: 1+1 =2

betweenness B(F,C) = ®*V/, =1

Step 3:

Credit c of G: 1+0.5+0.5=2
shortest paths from A to D: 1

betweenness B(G,D) = #*V/, =2

Step 3:

Credit c of H: 1+1=2
shortest paths from A to D: 1
sum #shortest paths D and E: 1+1 =2

betweenness B(H,D) = #Y/, =1

Step 3:

Credit c of H: 1+1=2
shortest paths from A to E: 1
sum #shortest paths D and E: 1+1 =2

betweenness B(H,E) = #*V/, =1

Credit c of B: 1+1=2
shortest paths from A to A: 1

betweenness B(B,4) = #*V/, =2

Credit c of C: 1+1=2
shortest paths from A to A: 1

betweenness B(C,4) = #V/, =2

Credit c of D: 1+2+1=4
shortest paths from A to A: 1

betweenness B(D,A) = *V/, = 4

Credit c of E: 1+1=2
shortest paths from A to A: 1

betweenness B(E, 4) = #*V/, =2

