Big Data Management and Analytics Assignment 12

Assignment 12-1.1

A good partitioning fullfills two conditions:

- Maximizes the number of edges within a group
- Minimizes the number of edges between groups

- Partitions shall be balanced as far as possible \rightarrow the graph shall be split either in
- $\{A, B, C\}$ and $\{D, E\}$ or
- in $\{A, B\}$ and $\{C, D, E\}$

- The second choice has more edges within the groups, and only one edge instead of two have to be removed \rightarrow Best partitioning is $\{\boldsymbol{A}, \boldsymbol{B}\}$ and $\{\boldsymbol{C}, \boldsymbol{D}, \boldsymbol{E}\}$

Assignment 12-1.2

RECAP:
The modularity \mathbf{Q} of a partitioning \mathbf{S} of a graph \mathbf{G} is defined as follows:
$Q \propto \sum_{s \in S}[(\# e d g e s$ within group $s)-($ expected \#edges within group $s)]$

$$
\begin{aligned}
& Q(G, S)=\frac{1}{2 m} \sum_{s \in S} \sum_{i \in S} \sum_{j \in S}\left(a_{i, j}-\frac{k_{i}, k_{j}}{2 m}\right) \\
& \text { Normalizing: }-1<Q<1
\end{aligned}
$$

Assignment 12-1.2

What we already have:

- Number of edges $|n|=5$
- Number of edges $|m|=5$
- Degree of nodes:

Node	Degree
k_{A}	1
k_{B}	2
k_{C}	3
k_{D}	2
k_{E}	2

Assignment 12-1.2

Steps for computing Q:

1. Compute the adjacency matrix
2. Compute the modularity matrix: $\left(B_{i j}=A_{i j}-\frac{k_{i} \cdot k_{j}}{2 m}\right)$
3. Sum up the entries of the single clusters
4. Sum up the sums of all clusters
5. Normalize the result

Assignment 12-1.2

Steps for computing Q:

1. Compute the adjacency matrix

$$
A=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Assignment 12-1.2

Steps for computing Q:
2. Compute the modularity matrix: $\left(B_{i j}=A_{i j}-\frac{k_{i} \cdot k_{j}}{2 m}\right)$

$$
B_{i j}=\frac{1}{10}\left(\begin{array}{ccccc}
-1 & 8 & -3 & - & - \\
8 & -4 & 4 & - & - \\
-3 & 4 & -9 & - & - \\
- & - & - & -4 & 6 \\
- & - & - & 6 & -4
\end{array}\right)
$$

Assignment 12-1.2

Steps for computing Q:
3. Sum up the entries of the single clusters

$$
\begin{aligned}
& s_{1}=\{A, B, C\} \rightarrow \frac{1}{10}((-1)+8-3+8-4+4-3+4-9)=\frac{4}{10} \\
& s_{2}=\{D, E\} \rightarrow \frac{1}{10}((-4)+6+6-4)=\frac{4}{10} \\
& \sum_{s_{\in S}}=\frac{4}{10}+\frac{4}{10}=\frac{8}{10}=0.8 \\
& Q(G, S)=\frac{1}{10} \cdot(0.8)=0.08
\end{aligned}
$$

Assignment 12-1.3

Steps for computing Q:

1. Compute the adjacency matrix

$$
A=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

Assignment 12-1.3

Steps for computing Q:
2. Compute the modularity matrix: $\left(B_{i j}=A_{i j}-\frac{k_{i} \cdot k_{j}}{2 m}\right)$

$$
B_{i j}=\frac{1}{10}\left(\begin{array}{ccccc}
-1 & 8 & - & - & - \\
8 & -4 & - & - & - \\
- & - & -9 & 4 & 4 \\
- & - & 4 & -4 & 6 \\
- & - & 4 & 6 & -4
\end{array}\right)
$$

Assignment 12-1.3

Steps for computing Q:
3. Sum up the entries of the single clusters

$$
\begin{aligned}
& s_{1}=\{A, B\} \rightarrow \frac{1}{10}((-1)+8+8-4)=\frac{11}{10} \\
& s_{2}=\{C, D, E\} \rightarrow \frac{1}{10}((-9)+4+4+4-4+6+4+6-4)=\frac{11}{10} \\
& \sum_{S_{\in S}}=\frac{11}{10}+\frac{11}{10}=\frac{22}{10} \\
& Q(G, S)=\frac{1}{10} \cdot \frac{22}{10}=0.22
\end{aligned}
$$

Assignment 12-1.4

- The higher the modularity Q , the better the partitioning
- Removing the edge $\{B, C\}$ yields a higher Q value than the removal of the edges $\{C, E\}$ and $\{C, D\}$
- \rightarrow The hypothesis from 1 which relies on maximizing the number of edges within the groups and minimizing the number of edges between the groups was correct

Assignment 12-2

RECAP:
Girven-Newman algorithm:

1. Begin with node A and perform a BFS and construct a DAG (directed acyclic graph)
2. Count the number of shortest paths from A to all other nodes
3. Compute the betweenness, by traversing the tree in a bottom-up fashion. If there exist multiple paths, these are counted partially:
4. node flow $=1+\sum$ childEdges
5. Split the flow based on the values of the parents (shortest path)

Assignment 12-2

Step 1:

Assignment 12-2

Step 1:

Assignment 12-2

Step 1:

Assignment 12-2

LMU

Step 1:

Assignment 12-2

LMU

Step 1:

Assignment 12-2

LMU

Step 1:

Assignment 12-2

Step 2:

Assignment 12-2
LMU

Step 2:

Assignment 12-2
LMU

Step 2:

Assignment 12-2
LMU

Step 2:

Assignment 12-2

Step 2:

Assignment 12-2

Step 3:

Assignment 12-2

Step 3:

Assignment 12-2

Step 3:

Credit c of I: 1+0.5=1.5
\# shortest paths from A to F: 2
sum \#shortest paths F and $G: 2+1=3$

betweenness $B(I, F)=(1.5 * 2) / 3=1$

Assignment 12-2

Step 3:

Credit c of I: 1+0.5=1.5 \# shortest paths from A to G: 1
sum \#shortest paths F and G: $2+1=3$

betweenness $B(I, G)=(1.5 * 1) / 3=1 / 2$

Assignment 12-2

Step 3:

Credit c of J: $1+0.5=1.5$
\# shortest paths from A to G: 1
sum \#shortest paths G and $\mathrm{H}: 1+2=3$
betweenness $B(J, G)=(1.5 * 1) / 3=1 / 2$

Assignment 12-2

Step 3:

Credit c of J: 1+0.5=1.5
\# shortest paths from A to H: 2
sum \#shortest paths G and $\mathrm{H}: 1+2=3$
betweenness $B(J, H)=(1.5 * 2) / 3=1$

Assignment 12-2

Step 3:

Credit c of $\mathrm{F}: 1+1=2$
\# shortest paths from A to $B: 1$
sum \#shortest paths B and $C: 1+1=2$
betweenness $B(F, B)={ }^{(2 * 1)} / 2=1$

Assignment 12-2

Step 3:

Credit c of $\mathrm{F}: 1+1=2$
\# shortest paths from A to C: 1
sum \#shortest paths B and $C: 1+1=2$
betweenness $B(F, C)={ }^{(2 * 1)} / 2=1$

Assignment 12-2

LMU

Step 3:

Credit c of G: $1+0.5+0.5=2$
\# shortest paths from A to D: 1
betweenness $B(G, D)={ }^{(2 * 1)} / 1=2$

Assignment 12-2

Step 3:

Credit c of $\mathrm{H}: 1+1=2$
\# shortest paths from A to D: 1
sum \#shortest paths D and $\mathrm{E}: 1+1=2$
betweenness $B(H, D)={ }^{(2 * 1)} / 2=1$

Assignment 12-2

LMU

Step 3:

Credit c of $\mathrm{H}: 1+1=2$
\# shortest paths from A to E: 1
sum \#shortest paths D and $\mathrm{E}: 1+1=2$
betweenness $B(H, E)={ }^{(2 * 1)} / 2=1$

Assignment 12-2

Step 3:

Credit c of B: 1+1=2
\# shortest paths from A to A: 1
betweenness $B(B, A)={ }^{(2 * 1)} / 1=2$

Assignment 12-2

Step 3:

Credit c of C: 1+1=2
\# shortest paths from A to A: 1
betweenness $B(C, A)={ }^{(2 * 1)} / 1=2$

Assignment 12-2

Step 3:

Credit c of D: $1+2+1=4$
\# shortest paths from A to A: 1
betweenness $B(D, A)={ }^{(4 * 1)} / 1=4$

Assignment 12-2

Step 3:

Credit c of E: 1+1=2
\# shortest paths from A to A: 1
betweenness $B(E, A)={ }^{(2 * 1)} / 1=2$

