Big Data Management and Analytics
Assignment 10
Assignment 10-2

• Find the CUR-decomposition of the matrix, when we pick two “random” rows and columns. The columns we pick are Alien and StarWars and the rows are the ones of Jack and Jill.

• From the lecture (Ch.7, Sl. 46) we know that the scaled column for Alien is: $[1.54, 4.63, 6.17, 7.72, 0, 0, 0]^T$. The second column for Star Wars is the same. We thus define C as follows:

$$
C = \begin{pmatrix}
1.54 & 1.54 \\
4.63 & 4.63 \\
6.17 & 6.17 \\
7.72 & 7.72 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}
$$
The unscaled rows for \(R \) are:

\[
R_{\text{unscaled}} = \begin{pmatrix} 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 4 & 4 & 4 \end{pmatrix}
\]

The probability \(p_i \) with which we select row \(i \) is given by:

\[
p_i = \frac{\sum_j m_{i,j}^2}{\|M\|_F^2}
\]

The square of the Frobenius norm for \(M \) is \(\|M\|_F^2 = 243 \)
The square of the Frobenius norm for Jack is: \(\text{row}_{\text{jack}} = \sum_j m_{3,j}^2 = 5^2 + 5^2 + 5^2 = 75 \)
The square of the Frobenius norm for Jill is: \(\text{row}_{\text{jill}} = \sum_j m_{4,j}^2 = 4^2 + 4^2 = 32 \)
The probability for selecting Jack is: \(p_{\text{jack}} = \frac{75}{243} = 0.309 \)
The probability for selecting Jill is: \(p_{\text{jill}} = \frac{32}{243} = 0.132 \)
• The unscaled rows for R are:

\[R_{\text{unscaled}} = \begin{pmatrix} 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 4 & 4 \end{pmatrix} \]

• Scaling the row for Jack, we divide all its row entries by:

\[\sqrt{r \times p_{\text{jack}}} = \sqrt{2 \times 0.309} = 0.786 \]

• Scaling the row for Jill, we divide all its row entries by:

\[\sqrt{r \times p_{\text{jill}}} = \sqrt{2 \times 0.132} = 0.514 \]

• This yields the scaled matrix R:

\[R = \begin{pmatrix} 6.36 & 6.36 & 6.36 & 0 & 0 \\ 0 & 0 & 0 & 7.78 & 7.78 \end{pmatrix} \]
Assignment 10-2

• Now that we have C and R, we construct the middle matrix U:

• First construct a matrix \(W \) from the intersection of the selected rows from R and the columns from C:

\[
W = \begin{pmatrix}
5 & 5 \\
0 & 0
\end{pmatrix}
\]
Assignment 10-2

- $W = \begin{pmatrix} 5 & 5 \\ 0 & 0 \end{pmatrix}$
- Take the SVD from W:
 $$W = X\Sigma Y^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{50} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}$$
- Taking the Moore-Penrose pseudoinverse of Σ leads to:
 $$\Sigma^+ = \begin{pmatrix} 1/\sqrt{50} & 0 \\ 0 & 0 \end{pmatrix}$$
Assignment 10-2

Now we can compute $U = Y (\Sigma^+)^2 X^T$

$$U = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{50}} & 0 \\ 0 & 0 \end{pmatrix}^2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{50} & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{50\sqrt{2}} \\ \frac{1}{50\sqrt{2}} \end{pmatrix}$$