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Networks & Communities: 

Think of networks being organized into:
• Modules
• Cluster
• Communities

 Goal: Find densely linked clusters
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What is a Social Network?

Characteristics of a social network:
• Collection of entities participating in the network (entities might be 

individuals, phone numbers, email addresses , …)

• At least one relationship between entities of the  network. (Facebook: 
‘friend’). Relationship can be all-or-nothing or specified by a degree 
(e.g. fraction of the average day that two people communicate to each 
other)

• Assumption of non-randomness or locality, i.e. relationships tend to 
cluster. (e.g. A is related to B and C  higher probability that B is 
related to C)
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How to find communities?

• Here we will work with undirected (unweighted networks)
• We need to resolve 2 questions:

• How to compute betweenness?
• How to select the number of clusters?
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Betweenness

Definition: The betweenness of an edge (a,b) is the number of pairs of 
nodes x and y such that (a,b) lies on the shortest-path between x and y.

example:
Edge (B,D) has the highest betweenness
(shortest path of A,B,C to any of D,E,F,G)

Betweenness of (B,D) aggregates to: 3 x 4 = 12

What is the betweenness of edge (D,F) ? 
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Girvan-Newman Algorithm

Goal: Computation of betweenness of edges
Step 1: Perform a breadth-first search, starting at node X and construct a 
DAG (directed, acyclic graph)  

example:
Start at node E

Level 1

Level 2

Level 3
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Girvan-Newman Algorithm

Goal: Computation of betweenness of edges
Step 2: label each node by the number of shortest paths that reach it from 
the root. Label of root = 1, each node is labeled by the sum of its parents.  

example:
1

1 1

1

1 1

2

Level 1

Level 2

Level 3
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Girvan-Newman Algorithm

Goal: Computation of betweenness of edges
Step 3: calculate for each edge e the sum over all nodes Y the fraction of 
shortest paths from the root X to Y:
in detail:
1. Each leaf gets a credit of 1.
2. Non-leaf nodes get a credit of 1 plus the 

sum of the credit of their children
3. A DAG edge 𝑒𝑒 entering node 𝑍𝑍 from the 

level above is given a share of the credit 
of 𝑍𝑍 proportional to the fraction of 
shortest paths from the root to 𝑍𝑍. 
Formally: let 𝑌𝑌1, … ,𝑌𝑌𝑘𝑘 be the parent 
nodes of 𝑍𝑍 with 𝑝𝑝𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘, be the 
number of shortest path to 𝑌𝑌𝑖𝑖. The credit 
for edge (𝑌𝑌𝑖𝑖 ,𝑍𝑍) is given by: 

𝑍𝑍 ∗ 𝑝𝑝𝑖𝑖 / �
𝑗𝑗=1

𝑘𝑘

𝑝𝑝𝑗𝑗

1

1 1

Level 1

Level 2

Level 3

3

4.5 1.5
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Find Communities using Betweenness

idea: Clustering is performed by removing edges with the largest betweenness 
until separated communities remain.

example:
GN-Algorithm has been performed for every node and the credit of each edge 
has been calculated (by summing the credits up and dividing them by 2. Why?)

Remove edges, starting with highest betweenness:
- 1. Remove (B,D) 

 Communities {A,B,C} and {D,E,F,G}
- 2. Remove (A,B), (B,C), (D,G), (D,E), (D,F) 

 Communities {A,C} and {E,F,G}
Node B and D are encapsulated as 
‚traitors‘ of communities

125 4.5

51 1.5

1.5

4
4.5
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Find Communities using Betweenness

Girvan-Newman Algorithm:
- connected components are communities
- gives a hierarchical decomposition of the network
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Analysis of Large Graphs

Network Communities
 How to compute betweenness? 
 How to select the number of clusters?

Communities: sets of tightly connected nodes

Modularity Q: 
• A measure of how well a network is partitioned into communities.
• Given a partitioning of the network into groups 𝑠𝑠 ∈ 𝑆𝑆:

𝑸𝑸 ∝�
𝒔𝒔∈𝑺𝑺

[ #𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝒔𝒔 − (𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 #𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝒔𝒔)]

defined by null model
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Null Model: Configuration Model

Given a graph 𝐺𝐺 with 𝒏𝒏 nodes and 𝒎𝒎 edges, construct rewired 
network 𝐺𝐺‘:

• same degree distribution but random connections
• consider 𝐺𝐺‘ as a multigraph

 The expected number of edges between nodes 𝒊𝒊 and 𝒋𝒋 of degrees 𝑘𝑘𝑖𝑖
and 𝑘𝑘𝑗𝑗 is given by: 

𝟏𝟏
𝟐𝟐𝟐𝟐

∗ 𝒌𝒌𝒊𝒊𝒌𝒌𝒋𝒋

Proof that 𝐺𝐺’ contains the expected number of 𝑚𝑚 edges: 

𝟏𝟏
𝟐𝟐
�
𝒊𝒊∈𝑵𝑵

�
𝒋𝒋∈𝑵𝑵

𝒌𝒌𝒊𝒊𝒌𝒌𝒋𝒋
𝟐𝟐𝟐𝟐

=
𝟏𝟏
𝟐𝟐
𝟏𝟏
𝟐𝟐𝟐𝟐

�
𝒊𝒊∈𝑵𝑵

𝒌𝒌𝒊𝒊 �
𝒋𝒋∈𝑵𝑵

𝒌𝒌𝒋𝒋 =
𝟏𝟏
𝟒𝟒𝟒𝟒

∗ 𝟐𝟐𝟐𝟐 ∗ 𝟐𝟐𝟐𝟐 = 𝒎𝒎
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Modularity

Modularity of partitioning S of graph G:

𝑸𝑸 ∝�
𝒔𝒔∈𝑺𝑺

[ #𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝒔𝒔 − (𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 #𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝒔𝒔)]

𝑸𝑸 𝑮𝑮,𝑺𝑺 =
𝟏𝟏
𝟐𝟐𝟐𝟐

�
𝒔𝒔∈𝑺𝑺

�
𝒊𝒊∈𝒔𝒔

�
𝒋𝒋∈𝒔𝒔

(𝒂𝒂𝒊𝒊𝒊𝒊 −
𝒌𝒌𝒊𝒊𝒌𝒌𝒋𝒋
𝟐𝟐𝟐𝟐

)

Modularity values take range [−𝟏𝟏,𝟏𝟏]:
- positive if the number of edges within groups exceeds the 

expected number
- 𝟎𝟎.𝟑𝟑 − 𝟎𝟎.𝟕𝟕 < 𝑸𝑸 means significant community structure

Normalizing: −𝟏𝟏 < 𝑸𝑸 < 𝟏𝟏
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Analysis of Large Graphs

Modularity

 Q is useful for selecting the number of clusters
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Partitioning of Graphs

given an undirected Graph 𝐺𝐺(𝑉𝑉,𝐸𝐸): 

bi-partitioning task:
• Divide vertices into two disjoint groups 𝐴𝐴,𝐵𝐵

questions:
• How can we define ‘good’ partition of 𝐺𝐺?
• How can we efficiently identify such a partition?

A B
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Partitioning of Graphs

What makes a good partition?
• Maximize the number of within-group connections
• Minimize the number of between-group connections

example:

A B
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Partitioning of Graphs

Graph Cuts
Express  partitioning objectives as a function of the ‘edge cut’ of the 
partition.

Cut: Set of edges with only one vertex in a group:

𝑐𝑐𝑐𝑐𝑐𝑐 𝐴𝐴,𝐵𝐵 = �
𝑖𝑖∈𝐴𝐴,𝑗𝑗∈𝐵𝐵

𝑤𝑤𝑖𝑖𝑖𝑖

example:
A B

𝒄𝒄𝒄𝒄𝒄𝒄 𝑨𝑨,𝑩𝑩 = 𝟐𝟐
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Partitioning of Graphs

Minimum-cut
minimize weight of connections between groups:

𝒂𝒂𝒂𝒂𝒂𝒂𝐦𝐦𝐦𝐦𝐦𝐦
𝑨𝑨,𝑩𝑩

𝒄𝒄𝒄𝒄𝒄𝒄(𝑨𝑨,𝑩𝑩)

example:

problem:
• only considers external cluster connections
• does not consider internal cluster connectivity 

Minimum Cut

„Optimal Cut“
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Partitioning of Graphs - Graph Cuts

Normalized-cut: Connectivity between groups relative to the 
density of each group

𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝑨𝑨,𝑩𝑩 =
𝒄𝒄𝒄𝒄𝒄𝒄(𝑨𝑨,𝑩𝑩)
𝒗𝒗𝒗𝒗𝒗𝒗(𝑨𝑨)

+
𝒄𝒄𝒄𝒄𝒄𝒄(𝑨𝑨,𝑩𝑩)
𝒗𝒗𝒗𝒗𝒗𝒗(𝑩𝑩)

𝒗𝒗𝒗𝒗𝒗𝒗(𝑿𝑿) :total weight of edges with at least one endpoint 
in X: 𝑣𝑣𝑣𝑣𝑣𝑣 𝑋𝑋 = ∑𝑖𝑖∈𝐴𝐴 𝑘𝑘𝑖𝑖

Produces more balanced partitions

How to find a good partition efficiently? 
Problem: Computing optimal cuts is NP-hard! 
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Spectral Graph Partitioning

Given

- Adjacency matrix of an undirected Graph G
𝑎𝑎𝑖𝑖𝑖𝑖 = 1 if (𝑖𝑖, 𝑗𝑗) exist in 𝐺𝐺, else 0

- Vector 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛 with components 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛
Think of it as a label/value of each node of 𝐺𝐺

What is the meaning of 𝑨𝑨 ∗ 𝒙𝒙 ?
𝑎𝑎11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 ⋯ 𝑎𝑎𝑛𝑛𝑛𝑛

∗
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛

=
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛

𝑦𝑦𝑖𝑖 = �
𝑗𝑗=1

𝑛𝑛

𝑎𝑎𝑖𝑖𝑖𝑖 ∗ 𝑥𝑥𝑗𝑗 = �
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

𝑥𝑥𝑗𝑗

 entry 𝒚𝒚𝒊𝒊 is a sum of labels / values 𝒙𝒙𝒋𝒋 of neighbors of 𝒊𝒊
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Spectral Graph Partitioning

What is the meaning of 𝑨𝑨 ∗ 𝒙𝒙 ?
𝑎𝑎11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 ⋯ 𝑎𝑎𝑛𝑛𝑛𝑛

∗
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛

=
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛

𝑎𝑎11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 ⋯ 𝑎𝑎𝑛𝑛𝑛𝑛

∗
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛

= 𝜆𝜆
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛

𝑨𝑨 ∗ 𝒙𝒙 = 𝝀𝝀 ∗ 𝒙𝒙 𝒆𝒆𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒑𝒑𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓

Spectral Graph Theory:
• analyze the ‚spectrum‘ of matrix representing G
• spectrum: eigenvectors 𝑥𝑥𝑖𝑖 of a graph, ordered by the magnitude 

(strength) of their corresponding eigenvalues 𝜆𝜆𝑖𝑖
• Λ = 𝜆𝜆1, … , 𝜆𝜆𝑛𝑛 with  𝜆𝜆1 ≤ ⋯ ≤ 𝜆𝜆𝑛𝑛
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Spectral Graph Partitioning

Intuition
Suppose all nodes in G have degree d and G is connected.

What are some eigenvalues/vectors of G?
eigenvalue problem: 𝐴𝐴 ∗ 𝑥𝑥 = 𝜆𝜆 ∗ 𝑥𝑥  find 𝜆𝜆 and 𝑥𝑥

• Let‘s try 𝑥𝑥 = (1, … , 1)
• Then 𝐴𝐴 ∗ 𝑥𝑥 = 𝑑𝑑, … ,𝑑𝑑 = 𝜆𝜆 ∗ 𝑥𝑥  𝜆𝜆 = 𝑑𝑑

Remember: 

𝑦𝑦𝑖𝑖 = �
𝑗𝑗=1

𝑛𝑛

𝑎𝑎𝑖𝑖𝑖𝑖 ∗ 𝑥𝑥𝑗𝑗 = �
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

𝑥𝑥𝑗𝑗
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Spectral Graph Partitioning

Adjacency matrix A:
• 𝒏𝒏 𝒙𝒙 𝒏𝒏 matrix
• 𝐴𝐴 = 𝑎𝑎𝑖𝑖𝑖𝑖 ,𝑎𝑎𝑖𝑖𝑖𝑖 = 1 if there is an edge between node 𝑖𝑖 and 𝑗𝑗

1

3

2

5

4
6

1 2 3 4 5 6

1 0 1 1 0 1 0

2 1 0 1 0 0 0

3 1 1 0 1 0 0

4 0 0 1 0 1 1

5 1 0 0 1 0 1

6 0 0 0 1 1 0
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Spectral Graph Partitioning

Degree matrix D:
• 𝒏𝒏 𝒙𝒙 𝒏𝒏 diagonal matrix
• 𝐷𝐷 = 𝑑𝑑𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑖𝑖𝑖𝑖 = degree of node 𝑖𝑖

1

3

2

5

4
6

1 2 3 4 5 6

1 3 0 0 0 0 0

2 0 2 0 0 0 0

3 0 0 3 0 0 0

4 0 0 0 3 0 0

5 0 0 0 0 3 0

6 0 0 0 0 0 2
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Spectral Graph Partitioning

Laplacian Matrix L:
• 𝒏𝒏 𝒙𝒙 𝒏𝒏 symmetric matrix
• 𝐿𝐿 = 𝐷𝐷 − 𝐴𝐴

• Trivial eigenpair?
• 𝑋𝑋 = (1, … , 1) , then 𝐿𝐿 ∗ 𝑥𝑥 = 0 and so 𝜆𝜆1 = 0

1

3

2

5

4
6

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2
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Spectral Graph Partitioning

Now decompose the Laplacian instead of the adjacency matrix

What are the eigenvalues/vectors of L?
eigenvalue problem: 𝐴𝐴 ∗ 𝑥𝑥 = 𝜆𝜆 ∗ 𝑥𝑥  find 𝜆𝜆 and 𝑥𝑥

• Let‘s try 𝑥𝑥 = (1, … , 1)
• Then L ∗ 𝑥𝑥 = 0, … , 0 = 0 ∗ 𝑥𝑥  𝜆𝜆 = 0

(diagonal entry in row i: Li,i = -∑𝑗𝑗 𝑋𝑋𝑖𝑖,𝑗𝑗)
=> The Laplacian of a connected graph has an eigenvalue 0 
with a corresponding eigenvector (1,1,1,1,..,1)
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Spectral Graph Partitioning

Intuition
What if G is not connected?

• G has 2 components, each d-regular
What are some eigenvectors?

• 𝑥𝑥 = put all 1s on 𝐴𝐴 and 0s on 𝐵𝐵 or vice versa
• 𝑥𝑥′ = (1, … , 1, 0, … , 0), then 𝐴𝐴 ∗ 𝑥𝑥′ = (𝑑𝑑, … ,𝑑𝑑, 0, … , 0)
• 𝑥𝑥′′ = (0, … , 0, 1, … , 1), then 𝐴𝐴 ∗ 𝑥𝑥′′ = (0, … , 0,𝑑𝑑, … ,𝑑𝑑)
•  in both cases the corresponding 𝜆𝜆 = 𝑑𝑑

A B

A B

𝝀𝝀𝒏𝒏 = 𝝀𝝀𝒏𝒏−𝟏𝟏
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Spectral Graph Partitioning

Intuition

• If the graph is connected (right example) then we already know that 𝑥𝑥𝑛𝑛
= (1, … , 1) is an eigenvector of L

• Since eigenvectors are orthogonal then the components of 𝑥𝑥𝑛𝑛−1 sum to 0
• Why?  Because ∑𝑖𝑖 𝑥𝑥𝑛𝑛[𝑖𝑖] ∗ 𝑥𝑥𝑛𝑛−1 𝑖𝑖 = 0

(𝑥𝑥𝑛𝑛−1 must have negative components)
• General Idea: we can look at the eigenvector of the 2nd largest 

eigenvalue and declare nodes with positive label in 𝐴𝐴 and negative label 
in 𝐵𝐵

A B

𝝀𝝀𝒏𝒏 = 𝝀𝝀𝒏𝒏−𝟏𝟏

A B

𝝀𝝀𝒏𝒏 − 𝝀𝝀𝒏𝒏−𝟏𝟏 ≈ 𝟎𝟎

2nd largest eigenvalue
𝜆𝜆𝑛𝑛−1 now has
value very close to 𝜆𝜆𝑛𝑛
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Spectral Clustering Algorithms

Three basic stages:

1. Pre-processing
• Construct a matrix representation of the graph

2. Decomposition
• Compute eigenvalues and eigenvectors of the matrix
• Map each point to a lower-dimensional representation on one or 

more eigenvectors
3. Grouping

• Assign points to two or more clusters, based on the new 
representation
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Spectral Clustering Algorithms

1. Pre-processing:
• Build Laplacian matrix L

of the graph

2. Decomposition:
• Find eigenvalues 𝜆𝜆

and eigenvectors 𝑥𝑥 of 
the matrix 𝐿𝐿

• Map vertices to lower-dimensional
representation

0.0-0.4-0.40.4-0.60.4

0.50.4-0.2-0.5-0.30.4

-0.50.40.60.1-0.30.4

0.5-0.40.60.10.30.4

0.00.4-0.40.40.60.4

-0.5-0.4-0.2-0.50.30.4

5.0

4.0

3.0

3.0

1.0

0.0

λ= X =

How do we now 
find the clusters?

-0.66

-0.35

-0.34

0.33

0.62

0.31

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2
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Spectral Clustering Algorithms

3. Grouping:
• Sort components of reduced 1-dimensional vector
• Identify clusters by splitting the sorted vector in two (threshold 𝜀𝜀) 
• By choosing 𝑚𝑚 vectors, there are max. 2𝑚𝑚 clusters

 How to choose a splitting point, i.e threshold 𝜺𝜺?
• Naive approaches:

• Split at 𝜀𝜀 = 0 or median value
• More expensive approaches:

• Attempt to minimize normalized cut in 1-dimension
• (sweep over ordering of nodes induces by the eigenvector)

-0.66
-0.35
-0.34
0.33
0.62
0.31

Split at 𝜀𝜀 = 0:
Cluster A: Positive points

Cluster B: Negative points

0.33
0.62
0.31

-0.66
-0.35
-0.34

A B
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Spectral Clustering Algorithms

Rank in x2

Va
lu

e 
of

 x
2
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Spectral Clustering Algorithms

Rank in x2

Va
lu

e 
of

 x
2

Components of x2
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Spectral Clustering Algorithms

Components of x3
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Analysis of Large Graphs - Trawling

Goal: find small communities in huge graphs,
e.g. how to describe community/discussion in a Web

example:

E.g. people talking about the same things or visited web pages
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Analysis of Large Graphs - Trawling

Problem definition:

Enumerate complete bipartite subgraphs Ks,t :
• All vertices in Ks,t can be partitioned in two sets. Each vertex 

in the first set of size s is linked to each vertex in second set 
of size t

• Where Ks,t : s nodes on the “left” where each links to the 
same t other nodes on the “right”

|X| = s = 3
|Y| = t = 4

X Y
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Analysis of Large Graphs - Trawling

Frequent Itemset Analysis – Market Basket Analysis
• Market: Universe U of n items
• Baskets: subsets of U: S1, S2, …, Sm ⊆ U

• (Si is a set of items one person bought)

• Support: frequency threshold 
• Goal:  Find all subsets T s.t. T ⊆ Si of at least  f sets Si

• (items in T were bought together at least f times)

Frequent itemsets = complete bipartite graphs

i
b

c

d

a
Si={a,b,c,d} j

i

k

b

c

d

a

View each node i as a 
set Si of nodes i points to

Ks,t = a set Y of size t
that occurs in s sets Si
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Analysis of Large Graphs - Trawling

E.g. Bipartite subgraph K3,4 a frequent itemset Y={a,b,c} of 
supp s. So, there are s nodes that link to all of {a,b,c}:

x

y

z

b

c

a

x
b

c

a

z
a

b

c

y
b

c

a

We found Ks,t! 
Ks,t = a set Y of size t
that occurs in s sets Si
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Analysis of Large Graphs - Trawling

c

a b

d

f
e

Itemsets:
a = {b,c,d}
b = {d}
c = {b,d,e,f}
d = {e,f}
e = {b,d}
f  = {}

Frequent itemsets
support > 1

{b,d}: support 3
{e,f}: support 2

c

a b

d

e

c
d

f
e
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