Outline

- Community Detection
- Social networks
- Betweenness
 - Girvan-Newman Algorithm
- Modularity
- Graph Partitioning
 - Spectral Graph Partitioning
- Trawling
Networks & Communities:

Think of networks being organized into:

- Modules
- Cluster
- Communities

→ Goal: Find densely linked clusters
What is a Social Network?

Characteristics of a social network:

• **Collection of entities** participating in the network (entities might be individuals, phone numbers, email addresses, ...)

• At least one **relationship between entities** of the network. (Facebook: ‘friend’). Relationship can be all-or-nothing or specified by a degree (e.g. fraction of the average day that two people communicate to each other)

• Assumption of **non-randomness** or **locality**, i.e. relationships tend to cluster. (e.g. A is related to B and C → higher probability that B is related to C)
How to find communities?

- Here we will work with undirected (unweighted networks)
- We need to resolve 2 questions:
 - How to compute betweenness?
 - How to select the number of clusters?
Definition: The betweenness of an edge \((a,b)\) is the number of pairs of nodes \(x\) and \(y\) such that \((a,b)\) lies on the shortest-path between \(x\) and \(y\).

Example:
Edge \((B,D)\) has the highest betweenness (shortest path of \(A,B,C\) to any of \(D,E,F,G\))

\[\rightarrow \text{Betweenness of } (B,D) \text{ aggregates to: } 3 \times 4 = 12 \]

What is the betweenness of edge \((D,F)\)?
Girvan-Newman Algorithm

Goal: Computation of betweenness of edges

Step 1: Perform a breadth-first search, starting at node X and construct a DAG (directed, acyclic graph)

example:
Start at node E
Girvan-Newman Algorithm

Goal: Computation of betweenness of edges

Step 2: label each node by the number of shortest paths that reach it from the root. Label of root = 1, each node is labeled by the sum of its parents.

example:

![Graph Diagram]

- Level 1
- Level 2
- Level 3
Girvan-Newman Algorithm

Goal: Computation of betweenness of edges

Step 3: calculate for each edge e the sum over all nodes Y the fraction of shortest paths from the root X to Y:

In detail:

1. Each leaf gets a credit of 1.
2. Non-leaf nodes get a credit of 1 plus the sum of the credit of their children.
3. A DAG edge e entering node Z from the level above is given a share of the credit of Z proportional to the fraction of shortest paths from the root to Z.

Formally: Let Y_1, \ldots, Y_k be the parent nodes of Z with $p_i, 1 \leq i \leq k$, be the number of shortest path to Y_i. The credit for edge (Y_i, Z) is given by:

$$Z * p_i / \sum_{j=1}^{k} p_j$$
Find Communities using Betweenness

idea: Clustering is performed by removing edges with the largest betweenness until separated communities remain.

example:
GN-Algorithm has been performed for every node and the credit of each edge has been calculated (by summing the credits up and dividing them by 2. *Why?*)

Remove edges, starting with highest betweenness:
- 1. Remove \((B,D)\)
 \(\rightarrow\) Communities \(\{A,B,C\}\) and \(\{D,E,F,G\}\)
- 2. Remove \((A,B), (B,C), (D,G), (D,E), (D,F)\)
 \(\rightarrow\) Communities \(\{A,C\}\) and \(\{E,F,G\}\)
 Node B and D are encapsulated as 'traitors' of communities
Find Communities using Betweenness

Girvan-Newman Algorithm:
- connected components are communities
- gives a hierarchical decomposition of the network
Analysis of Large Graphs

Network Communities

✓ How to compute betweenness?
→ How to select the number of clusters?

Communities: sets of tightly connected nodes

Modularity Q:
• A measure of how well a network is partitioned into communities.
• Given a partitioning of the network into groups $s \in S$:

$$Q \propto \sum_{s \in S} [(\text{#edges within group } s) - (\text{expected #edges within group } s)]$$

defined by null model
Null Model: Configuration Model

Given a graph G with n nodes and m edges, construct rewired network G':

- same degree distribution but random connections
- consider G' as a multigraph

\rightarrow The expected number of edges between nodes i and j of degrees k_i and k_j is given by: $\frac{1}{2m} * k_i k_j$

Proof that G' contains the expected number of m edges:

$$\frac{1}{2} \sum_{i \in N} \sum_{j \in N} \frac{k_i k_j}{2m} = \frac{1}{2} \frac{1}{2m} \sum_{i \in N} k_i \left(\sum_{j \in N} k_j \right) = \frac{1}{4m} * 2m * 2m = m$$
Modularity

Modularity of partitioning S of graph G:

$$Q \propto \sum_{s \in S} [(\#\text{edges within group } s) - (\text{expected } \#\text{edges within group } s)]$$

$$Q(G, S) = \frac{1}{2m} \sum_{s \in S} \sum_{i \in s} \sum_{j \in s} (a_{ij} - \frac{k_i k_j}{2m})$$

Normalizing: $-1 < Q < 1$

Modularity values take range $[-1, 1]$:
- positive if the number of edges within groups exceeds the expected number
- $0.3 - 0.7 < Q$ means significant community structure
Analysis of Large Graphs

Modularity

→ Q is useful for selecting the number of clusters
Partitioning of Graphs

given an undirected Graph $G(V, E)$:

bi-partitioning task:
• Divide vertices into two disjoint groups A, B

questions:
• How can we define ‘good’ partition of G?
• How can we efficiently identify such a partition?
Partitioning of Graphs

What makes a good partition?
• Maximize the number of within-group connections
• Minimize the number of between-group connections

example:
Partitioning of Graphs

Graph Cuts
Express partitioning objectives as a function of the ‘edge cut’ of the partition.

Cut: Set of edges with only one vertex in a group:

\[
\text{cut}(A, B) = \sum_{i \in A, j \in B} w_{ij}
\]

example:

\[
\text{cut}(A, B) = 2
\]
Partitioning of Graphs

Minimum-cut
minimize weight of connections between groups:
\[\underset{A,B}{\text{arg min}} \text{cut}(A, B) \]

element:
• only considers external cluster connections
• does not consider internal cluster connectivity
Partitioning of Graphs - Graph Cuts

Normalized-cut: Connectivity between groups relative to the density of each group

\[
ncut(A, B) = \frac{\text{cut}(A, B)}{\text{vol}(A)} + \frac{\text{cut}(A, B)}{\text{vol}(B)}
\]

\[
\text{vol}(X) : \text{total weight of edges with at least one endpoint in } X: \text{vol}(X) = \sum_{i \in A} k_i
\]

→ Produces more balanced partitions

How to find a good partition efficiently?

Problem: Computing optimal cuts is **NP-hard!**
Spectral Graph Partitioning

Given

- **Adjacency matrix** of an undirected Graph G

 \[a_{ij} = 1 \text{ if } (i, j) \text{ exist in } G, \text{ else } 0 \]

- Vector \(x \in R^n \) with components \((x_1, \ldots, x_n) \)

 Think of it as a label/value of each node of \(G \)

What is the meaning of \(A \times x \)?

\[
\begin{pmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn}
\end{pmatrix} \times \begin{pmatrix}
x_1 \\
\vdots \\
x_n
\end{pmatrix} = \begin{pmatrix}
y_1 \\
\vdots \\
y_n
\end{pmatrix}
\]

\[y_i = \sum_{j=1}^{n} a_{ij} \times x_j = \sum_{(i,j) \in E} x_j \]

\[\rightarrow \text{ entry } y_i \text{ is a sum of labels / values } x_j \text{ of neighbors of } i \]
Spectral Graph Partitioning

What is the meaning of $A \ast x$?

$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \ast \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$

$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \ast \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

$A \ast x = \lambda \ast x \quad \text{eigenvalue problem}$

Spectral Graph Theory:

- analyze the 'spectrum' of matrix representing G
- **spectrum**: eigenvectors x_i of a graph, ordered by the magnitude (strength) of their corresponding eigenvalues λ_i
- $\Lambda = \{\lambda_1, \ldots, \lambda_n\}$ with $\lambda_1 \leq \cdots \leq \lambda_n$
Spectral Graph Partitioning

Intuition
Suppose all nodes in G have degree d and G is connected.

What are some eigenvalues/vectors of G?
eigenvalue problem: $A \ast x = \lambda \ast x \rightarrow$ find λ and x

• Let’s try $x = (1, ..., 1)$
• Then $A \ast x = (d, ..., d) = \lambda \ast x \rightarrow \lambda = d$

Remember:

$y_i = \sum_{j=1}^{n} a_{ij} \ast x_j = \sum_{(i,j) \in E} x_j$
Spectral Graph Partitioning

Adjacency matrix A:
- $n \times n$ matrix
- $A = [a_{ij}]$, $a_{ij} = 1$ if there is an edge between node i and j
Spectral Graph Partitioning

Degree matrix D:

- $n \times n$ diagonal matrix
- $D = [d_{ii}], d_{ii} =$ degree of node i
Spectral Graph Partitioning

Laplacian Matrix L:
- $n \times n$ symmetric matrix
- $L = D - A$

- Trivial eigenpair?
 - $X = (1, \ldots, 1)$, then $L \ast x = 0$ and so $\lambda_1 = 0$
Spectral Graph Partitioning

Now decompose the Laplacian instead of the adjacency matrix

What are the eigenvalues/vectors of L?
eigenvalue problem: $A \times x = \lambda \times x \Rightarrow$ find λ and x

- Let’s try $x = (1, ..., 1)$
- Then $L \times x = (0, ..., 0) = 0 \times x \Rightarrow \lambda = 0$
 (diagonal entry in row i: $L_{i,i} = -\sum_j X_{i,j}$)

\Rightarrow The Laplacian of a connected graph has an eigenvalue 0 with a corresponding eigenvector $(1,1,1,1,..,1)$
Spectral Graph Partitioning

Intuition

What if G is not connected?

• G has 2 components, each d-regular

What are some eigenvectors?

• \(x = \) put all 1s on \(A \) and 0s on \(B \) or vice versa
 • \(x' = (1, \ldots, 1, 0, \ldots, 0) \), then \(A \times x' = (d, \ldots, d, 0, \ldots, 0) \)
 • \(x'' = (0, \ldots, 0, 1, \ldots, 1) \), then \(A \times x'' = (0, \ldots, 0, d, \ldots, d) \)
 • → in both cases the corresponding \(\lambda = d \)

\[\lambda_n = \lambda_{n-1} \]
Spectral Graph Partitioning

Intuition

If the graph is connected (right example) then we already know that $x_n = (1, ..., 1)$ is an eigenvector of L

Since eigenvectors are orthogonal then the components of x_{n-1} sum to 0

Why? \Rightarrow Because $\sum_i x_n[i] \ast x_{n-1}[i] = 0$

(x_{n-1} must have negative components)

General Idea: we can look at the eigenvector of the 2nd largest eigenvalue and declare nodes with positive label in A and negative label in B

$\lambda_n = \lambda_{n-1}$

$\lambda_n - \lambda_{n-1} \approx 0$

2nd largest eigenvalue λ_{n-1} now has value very close to λ_n
Spectral Clustering Algorithms

Three basic stages:

1. **Pre-processing**
 - Construct a matrix representation of the graph

2. **Decomposition**
 - Compute eigenvalues and eigenvectors of the matrix
 - Map each point to a lower-dimensional representation on one or more eigenvectors

3. **Grouping**
 - Assign points to two or more clusters, based on the new representation
Spectral Clustering Algorithms

1. Pre-processing:
 • Build Laplacian matrix L of the graph

2. Decomposition:
 • Find eigenvalues λ and eigenvectors x of the matrix L
 • Map vertices to lower-dimensional representation

How do we now find the clusters?
3. Grouping:
 • Sort components of reduced 1-dimensional vector
 • Identify clusters by splitting the sorted vector in two (threshold ε)
 • By choosing m vectors, there are max. 2^m clusters

→ How to choose a splitting point, i.e. threshold ε?
 • Naive approaches:
 • Split at $\varepsilon = 0$ or median value
 • More expensive approaches:
 • Attempt to minimize normalized cut in 1-dimension
 • (sweep over ordering of nodes induces by the eigenvector)

\[
\begin{array}{c|c|c|c|c|c|c}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
0.3 & 0.6 & 0.3 & -0.3 & -0.3 & -0.6 \\
\end{array}
\]

Split at $\varepsilon = 0$:
- **Cluster A**: Positive points
- **Cluster B**: Negative points

\[
\begin{array}{c|c|c|c|c|c|c}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
0.3 & 0.6 & 0.3 & -0.3 & -0.3 & -0.6 \\
\end{array}
\]

A B
Spectral Clustering Algorithms

Value of x_2 vs. Rank in x_2
Spectral Clustering Algorithms

Components of \(x_2 \)

Value of \(x_2 \)

Rank in \(x_2 \)
Spectral Clustering Algorithms

Components of x_3
Analysis of Large Graphs - Trawling

Goal: find small communities in huge graphs, e.g. how to describe community/discussion in a Web example:

E.g. people talking about the same things or visited web pages
Problem definition:

Enumerate complete bipartite subgraphs $K_{s,t}$:

- All vertices in $K_{s,t}$ can be partitioned in two sets. Each vertex in the first set of size s is linked to each vertex in second set of size t.
- Where $K_{s,t}$: s nodes on the “left” where each links to the same t other nodes on the “right”.

$|X| = s = 3$

$|Y| = t = 4$
Frequent Itemset Analysis – Market Basket Analysis

- **Market**: Universe U of n items
- **Baskets**: subsets of U: $S_1, S_2, \ldots, S_m \subseteq U$
 - (S_i is a set of items one person bought)
- **Support**: frequency threshold
- **Goal**: Find all subsets T s.t. $T \subseteq S_i$ of at least f sets S_i
 - (items in T were bought together at least f times)

Frequent itemsets = complete bipartite graphs

$S_i = \{a, b, c, d\}$

View each node i as a set S_i of nodes i points to $K_{s,t} = \text{a set } Y \text{ of size } t \text{ that occurs in } s \text{ sets } S_i$
Analysis of Large Graphs - Trawling

E.g. Bipartite subgraph $K_{3,4}$ a frequent itemset $Y = \{a, b, c\}$ of supp s. So, there are s nodes that link to all of $\{a, b, c\}$:

We found $K_{s,t}$!

$K_{s,t}$ = a set Y of size t that occurs in s sets S_i
Analysis of Large Graphs - Trawling

Itemsets:
- \(a = \{b, c, d\}\)
- \(b = \{d\}\)
- \(c = \{b, d, e, f\}\)
- \(d = \{e, f\}\)
- \(e = \{b, d\}\)
- \(f = \{\}\)

Frequent itemsets with support > 1:
- \(\{b, d\}\): support 3
- \(\{e, f\}\): support 2