Introduction to Apache Flink

- Apache Flink is an open source Stream Processing Framework
- Low latency
- High throughput
- Stateful Operators
- Distributed Execution
- Developed at the Apache Software Foundation
- 1.0.0 released in March 2016, used in production
Flink Software Stack

- CEP: Event Processing
- Table: Relational

- DataStream API: Stream Processing
- DataSet API: Batch Processing

- Runtime: Distributed Streaming Dataflow

- Deploy
 - Local: Single JVM
 - Cluster: Standalone, YARN
 - Cloud: GCE, EC2

- Core
 - FlinkML: Machine Learning
 - Gelly: Graph Processing
System Legacy

Map Reduce

OSDI’04

Dryad, Nephele
EusoSys’07

PACTs
SOCC’10
VLDB’12

RDDS
HotCloud
10, NSDO’12

Apache Hadoop 1

Apache Tez

Apache Flink

Apache Spark
Architecture

Flink Client

Code using API

Graph Builder & Optimizer

Dataflow Graph

Actor System

Job Manager

dataflow graph

Scheduler

Checkpoint Coordinator

Actor System

Task

task slot

data streams

Memory/IO Manager

Network Manager

Actor System

Task

task slot

Memory/IO Manager

Network Manager

- task status
- heartbeats
- statistics
- trigger checkpoints

Big Data Management and Analytics - Apache Flink
Dataflow Graphs

- all APIs (e.g. DataSet, DataStream,) compile to Dataflow Graphs

- (stateful) operators (filter, joins,..) = nodes

- data streams = links

- in parallel processing split into:
 - operators are executed in subtasks
 - stream partitions

- streams may p2p, broadcast, merge, fan-out, repartitions
Intermediate Data Streams

- core abstraction for data exchange
- may or may not be materialized on disk
- **pipelined execution**: data is continuously produced, buffered and consumed

- **blocking data exchange**: output is generated, stored and then exchanged with the consumer. (->complete intermediate results of a stream must be stored)
Latency and Throughput

Data exchange based on buffers:
• data record ready => one/many buffers
• buffer is sent to consumer when it is full / time out

⇒ the large buffers increase throughput (less overhead)
⇒ low time out enable low latencies

(real time processing = data is processed within a guaranteed time limit)
Control Events and Fault Tolerance

- Exemplary types of control events:
 - **check point barrier**: coordinate checkpoints by dividing stream into pre-checkpoint and post-checkpoint
 - **watermarks**: signaling the progress of event-time within the stream partition
 - **iteration barriers**: signals end of a superstep for iterative processing

- Control events are injected into the stream and provide operator nodes the position in the data set.
- reliable execution with **exactly once**
- **consistency is guaranteed** (no availability on all nodes)
- check-pointing and partial re-execution
- based on the assumption that data source is persistent and replayable (e.g. files, Apache Kafka)
- regular snapshots to prevent unbounded recomputation
Asynchronous Barrier Snapshotting

- barrier corresponds to a logical time => separate the stream to mark the snapshotted part
- barriers are injected into the stream
- wait until all barriers from input are received
- write out state to durable storage (=disk)
- checkpoint barriers are sent from upstream to downstream after checkpoint
- recovery: restart computation from the last successful snapshot
Iterative Data Flows

- Iterative algorithms are often employed for Data Mining, Machine Learning or Graph processing
- in other cloud-based computation frameworks (e.g. Hadoop, Spark):
 - run a loop in the client program
 - in each iteration a parallel execution is started (compare to k-Means on Hadoop)
- Flink provides an integrated iteration processing
- iteration step = special operators contain execution graphs
- iteration head and iteration tail are connected via feedback stream (handles what to keep between iterations)
• **Flink manages time**: out-of-order events, windows, user-defined states

• **two notions of time**:
 • event time: time when the event is originated (e.g. timestamp)
 • processing time: wall-clock time of processing the event at worker X

• **Skew between both is possible** in distributed environments: *objects may arrive out of order with respect to event time*

• **low watermarks**: mark global progress measure (e.g. all events lower than timestamp t have entered an operator)

• Watermarks **originate at the sources of the graph**

• **operators decide** how to react

• operators with multiple inputs forward **minimal watermarks**
Stateful Streams Processing

- **stateless operators**: operator works independent for all inputs
 - for example simple map function in word count: `lambda x: (x,1)`
 - no memory, not depending on the input order

- **stateful operators**: operator has an internal state
 - for example: regression function: \(a \cdot x + t \).
 \(a \) and \(t \) are trained over the stream of input data
 - the state stores models parameters

- **states are incorporated into the API by**:
 - operator interfaces registering local variables
 - operator-state abstractions for declaring portioned key-value states as their associated operations

- **states can be checkpointed**
Stream Windows

- Stateful operator configured via:
 - **assigner**: assigns each record to one/many logical windows
 - **trigger**(optional): states the time an operation on the windows is performed
 - **evictor**(optional): defines which records to retain in each window
- Predefined operators available e.g. sliding time window
- User-defined functions allow flexible customizing

Examples:

```java
stream
  .window(SlidingTimeWindows.of(Time.of(6, SECONDS), Time.of(2, SECONDS)))
  .trigger(EventTimeTrigger.create())

stream
  .window(GlobalWindow.create())
  .trigger(Count.of(1000))
  .evict(Count.of(100))
```
Batch Processing

- batch processing can be considered as special case of streams (bounded streams)
- Syntax for batch processing can be defined in a simpler way
- additional options for optimizing the processing might be possible

⇒ Flink offers additional functionality for batch processing
⇒ Blocked execution: break up large computations to isolated stages
⇒ No periodic snapshotting when overhead is large instead use last materialized intermediate stream
⇒ blocking is implemented as an operator explicitly waiting until the complete input is consumed ⇒ runtime environment does not distinguish
⇒ disk spill-off might become necessary
⇒ Flink provides a dedicated DataSet API with familiar functions e.g. map
⇒ Query optimization is used to transform API programs into efficient graphs
Query Optimization

- query optimizer is built on techniques from parallel databases:
 - plan equivalence
 - cost modeling
 - interesting-property propagation
- problem the operators have no predefined semantics (user defined functions!)
- cardinality and cost-estimation are hard to perform for the same reasons
- support execution strategies such as:
 - repartition and broadcast
 - sort-based grouping
 - sort- and hash-based joins
- Optimizer evaluated physical plans by interesting property propagation
- costs include disk I/O and CPU cost
- to handle user defined functions, hints are allowed
Memory Management

- Flink serializes data into memory segments instead of using the JVM heap.
- Operations work as much as possible on the binary data.
 => reduces the overhead for serialization/deserialization.
- For arbitrary objects, Flink uses type inference and custom serialization.
- Binary representation and storing data off-heap reduces garbage collection overhead.
- Spilling data to disk is still a fallback in case.

```java
public class WC {
    public String word;
    public int count;
}
```
Batch Iterations

- iterative methods are common in data analytics:
 - parallel gradient descent
 - expectation maximization
- Parallelization methods for iterative methods
 - Bulk Synchronous Parallel (BSP)
 - Stale Synchronous Parallel (SSP)
- Flink allows various iteration methods by providing iteration control events
- For example: in BSP mark begin and end of supersteps
- includes novel optimization concepts:
 - delta iterations: exploit sparse computational dependencies
Word Count in Java

```java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<String> text = readTextFile (input);
DataSet<Tuple2<String, Integer>> counts= text
    .map (l -> l.split("\W+"))
    .flatMap ((String[] tokens, Collector<Tuple2<String, Integer>> out) -> {
        Arrays.stream(tokens)
            .filter(t -> t.length() > 0)
            .forEach(t -> out.collect(new Tuple2<>(t, 1)));
    })
    .groupBy(0)
    .sum(1);
env.execute("Word Count Example");
```
API Examples

k-Means in Java

```java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

DataSet<Point> points = getPointDataSet(params, env);
DataSet<Centroid> centroids = getCentroidDataSet(params, env);

IterativeDataSet<Centroid> loop = centroids.iterate(params.getInt("iterations", 10));

DataSet<Centroid> newCentroids = points.map(new SelectNearestCenter()).withBroadcastSet(loop, "centroids").map(new CountAppender()).groupBy(0).reduce(new CentroidAccumulator()).map(new CentroidAverager());

DataSet<Centroid> finalCentroids = loop.closeWith(newCentroids);

DataSet<Tuple2<Integer, Point>> clusteredPoints = points.map(new SelectNearestCenter()).withBroadcastSet(finalCentroids, "centroids");
```
• https://flink.apache.org/
