Lecture Notes to
Big Data Management and Analytics
Winter Term 2017/2018
Node Importance and Neighborhoods

© Matthias Schubert, Matthias Renz, Felix Borutta, Evgeniy Faerman, Christian Frey, Klaus Arthur Schmid, Daniyal Kazempour, Julian Busch
© 2016-2018
Graph Data: Social Networks

[Source: 4-degrees of separation, Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
Graph Data: Media Networks

Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
Graph Data: Information Networks

Citation Networks and Map of Science
[Börner et al., 2012]
Graph Data: Technological Networks

Road Network of Toulouse
[Mathieu Leplatre]
Graph Data: Communication Networks

The Internet
Web as a Graph

Web as a directed graph:
- Nodes: Webpages
- Edges: Hyperlinks

LMU München -> Department of Computer Science -> Database Systems Group -> Big Data Management & Analytics
General Question

How to organise the web?

First try:
Human Curated Web Directories Yahoo, DMOZ, LookSmart
General Question

How to organise the web?

First try: Human Curated Web Directories

Second try: Web Search

But: Web is huge, full of untrusted documents, random things, web spam, etc.
Web Search: Challenges

1) Web contains many sources of information. → Who to trust?

Idea: Trustworthy pages may point to each other

2) What is the “best” answer to a certain query? → How to rank results?

No single right answer.
Web Search

Early Search Engines: Crawl the web, list terms, create inverted index

http://www.example.org

Headline

This text contains words. Words are important. Many words appear in this text.

Problem: Term Spam

appear example.org (1)
are example.org (1)
contains example.org (1)
headline example.org (1)
important example.org (1)
in example.org (1)
many example.org (1)
text example.org (1)
this example.org (2)
words example.org (3)
Web Search: Ranking Results

Not all web pages are equally “important”

Web Search: Ranking Results

Not all web pages are equally “important”

(The New York Times) (The Times of Northwest Indiana, Munster, IN)

in-links: ~13.600.000 in-links: 5.960

→ There is a large diversity in the web-graph node connectivity.
IDEA: rank pages by their link structure!
Page Rank: “Flow” Formulation

Idea: links as votes
   Page is more important if it has more links

In-links? Out-links?
Page Rank: “Flow” Formulation

Idea: links as votes
Page is more important if it has more in-links

Think of in-links as votes.

Are all in-links equal?
Links from important pages count more

=> Recursive Definition!
Page Rank: “Flow” Formulation

Example
Simple Recursive Formulation

• Each link's vote is proportional to the importance of its source page

• If page $j$ with importance $r_j$ has $n$ out-links, each link gets $r_j / n$ votes

• Page $j$'s own importance is the sum of the votes on its in-links

$$r_j = r_j / 3 + r_i / 4 + r_k / 4$$
Page Rank: The “Flow” Model

• A “vote” from an important page is worth more

• A page is more important if it is pointed to by other important pages

Define a “rank” $r_j$ for page $j$
(with $d_i = \text{out-degree of node } i$)

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

“Flow” equations:

$$r_y = \frac{r_y}{2} + \frac{r_a}{2}$$
$$r_a = \frac{r_y}{2} + r_m$$
$$r_m = \frac{r_a}{2}$$
Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
  - No unique solution
  - All solutions equivalent modulo the scale factor

- Additional constraint forces uniqueness:
  \[ r_y + r_a + r_m = 1 \]

Solution via Gaussian elimination
  \[ r_y = 2/5, \ r_a = 2/5, \ r_m = 1/5 \]

- Gaussian elimination method works for small examples, but we need a better method for large web-sized graphs

- We need a new formulation!
PageRank: Matrix Formulation

• **Stochastic adjacency matrix** $M$
  • Let page $i$ has $d_i$ out-links
  • If $i \rightarrow j$, then $M_{ji} = 1/d_i$, else $M_{ji} = 0$
  • $M$ is a column stochastic matrix: columns sum to 1

• **Rank vector** $r$: vector with an entry per page
  • $r_i$ is the importance score of page $i$
  • $\Sigma_i r_i = 1$

• The flow equations can be written
  $$r = M \cdot r$$
Example

- Remember the flow equation: 
  \[ r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i} \]

- Flow equation in matrix form: 
  \[ M \cdot r = r \]

- Suppose page i links to 3 pages, including j:
Eigenvector Formulation

- The flow equations can be written as \( r = M \cdot r \)

- So the rank vector \( r \) is an eigenvector of the stochastic web matrix \( M \)
  - In fact, its first or principal eigenvector with corresponding eigenvalue 1
  - Largest eigenvalue of \( M \) is 1 since \( M \) is column stochastic (with non-negative entries)
  - We know \( r \) is unit length and each column of \( M \) sums to 1, so \( M \cdot r \leq 1 \)

  We can now efficiently solve for \( r \)!

Power Iteration

Note: 
\( x \) is an eigenvector with corresponding eigenvalue \( \lambda \) if:

\[ Ax = \lambda x \]
Power Iteration

- Power Iteration is an eigenvalue algorithm (c.f. ch. 8)
  - Also known as Von Mises iteration
  - Given a matrix A, P.I. returns a value $\lambda$ and a nonzero vector $v$, such that $Av = \lambda v$

- Will find only the dominant eigenvector (the vector corresponding to the largest eigenvalue)

$$r^{(1)} = M \cdot r^{(0)}$$
$$r^{(2)} = M \cdot r^{(1)} = M ( M \cdot r^{(0)} ) = M^2 \cdot r^{(0)}$$
$$r^{(3)} = M \cdot r^{(2)} = M ( M^2 \cdot r^{(0)} ) = M^3 \cdot r^{(0)}$$
Power Iteration Method

- Given a web graph with \( n \) nodes, where the nodes are pages and the edges are hyperlinks

- Power iteration: a simple iterative scheme
  - Suppose there are \( N \) web pages
  - Initialize: \( r^{(0)} = [1/N, \ldots, 1/N]^T \)
  - Iterate: \( r^{(t+1)} = M \cdot r^{(t)} \)
  - Stop when: \( | r^{(t+1)} - r^{(t)} |_1 < \varepsilon \)
PageRank with Power Iteration

Power Iteration:
- Set $r_j = 1/N$
- 1: $r'_j = \sum_{i \rightarrow j} r_i / d_i$
- 2: $r = r'$
- Goto 1

$\begin{bmatrix}
y \\
am \\
m \\
\end{bmatrix} \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 1 \\
0 & \frac{1}{2} & 0 \\
\end{bmatrix} \begin{bmatrix}
y \\
am \\
m \\
\end{bmatrix}$

$r_y = r_y/2 + r_a/2$
$r_a = r_y/2 + r_m$
$r_m = r_a/2$
PageRank with Power Iteration

**Power Iteration:**

- Set $r_j = 1/N$
- 1: $r'_j = \sum_{i \rightarrow j} r_i / d_i$
- 2: $r = r'$
- Goto 1

**Example:**

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
</tbody>
</table>

$r_y = r_y/2 + r_a/2$

$r_a = r_y/2 + r_m$

$r_m = r_a/2$

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_y</td>
<td>1/3</td>
<td>1/3</td>
<td>5/12</td>
</tr>
<tr>
<td>r_a</td>
<td>= 1/3</td>
<td>3/6</td>
<td>1/3</td>
</tr>
<tr>
<td>r_m</td>
<td>1/3</td>
<td>1/6</td>
<td>3/12</td>
</tr>
</tbody>
</table>
Random Walk Interpretation

• Imagine a random web surfer:
  • At any time $t$, surfer is on some page $i$
  • At time $t + 1$, the surfer follows an out-link from $i$ uniformly at random
  • Ends up on page $j$ linked from $i$
  • Process repeats indefinitely

• Let:
  • $p(t)$ ... vector whose $i^{th}$ coordinate is the probability that surfer is at page $i$ at time $t$
  • So, $p(t)$ is a probability distribution over pages

$$r_j = \sum_{i \rightarrow j} \frac{r_i}{d_{out}(i)}$$
Random Walk Interpretation

• Where is surfer at time $t + 1$?
  • Follows a link uniformly at random
    $p(t + 1) = M \cdot p(t)$

• Suppose the random walk reaches a state
  $p(t + 1) = M \cdot p(t) = p(t)$
  then $p(t)$ is stationary distribution of a
  random walk

• Our original rank vector $r$ satisfies
  $r = M \cdot r$
  So, $r$ is a stationary distribution for a
  random walk
Existence and Uniqueness

A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time \( t = 0 \).
PageRank in real life

\[ r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i} \]

\[ r = Mr \]

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?
Does this converge?

Example:

\[ r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i} \]

\[
\begin{array}{c|cccccccc}
   & r_a & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & \ldots \\
   & r_b & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & \\
\end{array}
\]
Does it converge to what we want?

Example:

\[ r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i} \]

\[ \begin{align*}
    r_a & \quad 1 \quad 0 \quad \ldots \\
    r_b & \quad 0 \quad 1 \quad 0 \quad 0
\end{align*} \]
PageRank: Problems

2 Problems:

• Some pages are dead ends (have no out-links)
  • Random walk has “nowhere to go” to
  • Such pages cause “leak” of importance

• Spider traps (all out-links are within a group)
  • Random walk gets “stuck” in a trap
  • Eventually spider trap absorbs all importance
The Google Solution

The Google solution for spider traps: *Teleports*

At each time step, the random surfer has two options:
- With probability $\beta$, follow a link at random
- With probability $1 - \beta$, jump to some random page
- Common values for $\beta$ range between 0.8 and 0.9

Surfer will teleport out of spider trap within a few time steps
Dead ends cause the page importance to leak out, because the adjacency matrix is non-stochastic.
Dead Ends: Solution

Dead ends cause the page importance to leak out, because the adjacency matrix is non-stochastic.

Solution: Always teleport!
Adjust matrix accordingly:

\[
\begin{array}{ccc}
  y & a & m \\
  \frac{1}{2} & \frac{1}{2} & 0 \\
  \frac{1}{2} & 0 & 0 \\
  0 & \frac{1}{2} & 0 \\
\end{array}
\]

\[
\begin{align*}
  r_y &= r_y/2 + r_a/2 \\
  r_a &= r_y/2 \\
  r_m &= r_a/2
\end{align*}
\]
The Google Solution

The final version of the Google PageRank: [Brin-Page 98]

\[ r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N} \]

(This formulation assumes M has no dead ends. M can either be preprocessed to remove all dead ends or with explicit teleports to random links from dead ends.)
The Google Matrix

Google matrix $A$ combines the adjacency matrix $M$ with the random teleports by a factor $\beta$.

$M$

\[
\begin{pmatrix}
  1/2 & 1/3 & 1/3 & 1/3 \\
  1/2 & 0 & 0 & \beta \\
  0 & 1/2 & 1 & 0 \\
  2 & y & 7/15 & 7/15 & 1/15 \\
\end{pmatrix}
\]

$[1/N]_{N \times N}$

\[
\begin{pmatrix}
  1/3 & 1/3 & 1/3 \\
  1/3 & 1/3 & 1/3 \\
  1/3 & 1/3 & 1/3 \\
  7/15 & 7/15 & 1/15 \\
\end{pmatrix}
\]

\[
A = M + (1 - \beta) [1/N]_{N \times N}
\]

(With $\beta = 0.8$ for this example)
The Google Matrix

\[
\begin{bmatrix}
0.8 & 0.1 & 0.1 \\
0 & 0.8 & 0.1 \\
0 & 0 & 0.8 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.2 & 0.2 & 0.1 \\
0.3 & 0.3 & 0.1 \\
0.3 & 0.3 & 0.1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.8 & 0.2 \\
0 & 1 \\
0 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.1 & 0.1 & 0.1 \\
0.1 & 0.1 & 0.1 \\
0.1 & 0.1 & 0.1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
7/15 & 7/15 & 1/15 \\
7/15 & 1/15 & 1/15 \\
1/15 & 7/15 & 13/15 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1/3 & 0.33 & 0.24 & 0.26 & 7/33 \\
1/3 & 0.20 & 0.20 & 0.18 & … & 5/33 \\
1/3 & 0.46 & 0.52 & 0.56 & 21/33 \\
\end{bmatrix}
\]

Big Data Management and Analytics 39
Some Problems with PageRank

- **Measures generic popularity of a page**
  - Biased against topic-specific authorities Solution: Topic-specific PageRank

- **Uses only one measure of importance**
  - Other models exist
  - Solution: e.g., Hubs and Authorities

- **Susceptible to Link Spam**
  - Evolved from term spam (see: older search engines)
  - Artificial link topographies created to boost page rank
  - Solution: TrustRank
Topic-specific PageRank

• Instead of generic popularity, can we measure popularity within a certain topic?

• **Goal:** evaluate web pages not only according to their popularity, but by how close they are to a particular topic, e.g., “sports” or “history”

• Allows search queries to be answered based on user interest
  • Example: Query “Trojan” may yield different results depending on whether user is interested in sports, history, computer security, ...
Topic-specific PageRank

- Modification in random walk behaviour (teleports)
- Teleport has probability to go to:
  - Standard PageRank: Any page with equal probability to avoid dead ends and spider-traps
  - Topic-specific PageRank: A topic specific set of “relevant” pages (teleport set)
- Idea: Bias the random walk
  - When walker teleport, they pick a page from set S
  - S contains only pages that are relevant to the topic, e.g., from Open Directory (DMOZ) pages for given topic
  - For each teleport set S, we get a different vector r
Example: Topic-specific PageRank

Suppose $S = \{1\}, \ \beta = 0.8$

$$S = \{1\}, \ \beta = 0.90: \ \ \ \ \ \ \ \ r = [0.17, 0.07, 0.40, 0.36]$$

$$S = \{1\}, \ \beta = 0.8: \ \ \ \ \ \ \ \ r = [0.29, 0.11, 0.32, 0.26]$$

$$S = \{1\}, \ \beta = 0.70: \ \ \ \ \ \ \ \ r = [0.39, 0.14, 0.27, 0.19]$$

$$S = \{1, 2, 3, 4\}, \ \beta = 0.8: \ \ \ \ \ \ \ \ r = [0.13, 0.10, 0.39, 0.36]$$

$$S = \{1, 2, 3\}, \ \beta = 0.8: \ \ \ \ \ \ \ \ r = [0.17, 0.13, 0.38, 0.30]$$

$$S = \{1, 2\}, \ \beta = 0.8: \ \ \ \ \ \ \ \ r = [0.26, 0.20, 0.29, 0.23]$$

$$S = \{1\}, \ \beta = 0.8: \ \ \ \ \ \ \ \ r = [0.29, 0.11, 0.32, 0.26]$$
Topic vector $S$

- **Create different PageRanks for different topics**
  - The 16 DMOZ top-level categories art, business, sports, ...

- **Which topic ranking to use?**
  - User can pick from a menu Classify query into a topic
  - Use context of query: e.g., query is launched from website about certain topic, or history of queries
  - User context, e.g., bookmarks, ...
PageRank Summary

• “Normal” PageRank
  • Teleports uniformly at random to any node
    All nodes have the same landing probability
    \[ S = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] \]

• Topic-specific PageRank, also known as Personalized PageRank
  • Teleports to a topic specific set of pages
  • Nodes can have different landing probabilities
    \[ S = [0.1, 0.0, 0.2, 0.0, 0.0, 0.0, 0.5, 0.0, 0.2, 0.0] \]

• Random walk with restarts
  • Topic-specific with teleports to always the same node
    \[ S = [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] \]
Link Spam

• Spamming:
  Any deliberate action with the intent to boost a web page's position in search engine results incommensurate with page's actual relevance

• Spam:
  Query results that are the result of spamming

→ very broad definition

• Approximately 10% – 15% of web pages are spam
Link Spam

• Early spamming techniques flooded web pages with unfitting words to exploit search engines
  • Example: Web page for T-Shirts includes the word “movie” over and over again “Term spam”

• As Google became more dominant, spam farms tried to target PageRank to a single page by placing many contextual links on other pages
  • “Link Spam” or “Google Bomb”
2003 George W. Bush Google Bomb

Biography of President George W. Bush
Biography of the president from the official White House web site.
www.whitehouse.gov/president/gwbbio.html - 29k - Cached - Similar pages
Past Presidents - Kids Only - Current News - President
More results from www.whitehouse.gov »

Welcome to MichaelMoore.com!
Official site of the gadfly of corporations, creator of the film Roger and Me
and the television show The Awful Truth. Includes mailing list, message board, ...
www.michaelmoore.com/ - 35k - Sep 1, 2005 - Cached - Similar pages

BBC NEWS | Americas | 'Miserable failure' links to Bush
Web users manipulate a popular search engine so an unflattering description leads
to the president's page.
news.bbc.co.uk/2/hi/americas/3298443.stm - 31k - Cached - Similar pages

Google's (and Inktomi's) Miserable Failure
A search for miserable failure on Google brings up the official George W.
Bush biography from the US White House web site. Dismissed by Google as not a ...
searchenginewatch.com/sereport/article.php/3296101 - 45k - Sep 1, 2005 - Cached - Similar pages
For a target page \( t \), a spammer creates many in-links from publicly accessible web pages like forums, blogs, etc., as well as many farm pages on own infrastructure to create a closely connected clique.
Combating Spam

• **Combating Term Spam:**
  • Analyse text using statistical methods
  • Similar to email spam filtering
  • Detecting duplicate pages

• **Combating Link Spam:**
  • Detection and blacklisting of structures that look like spam farms
  • Leads to another war: hiding and detecting

\[\text{TrustRank} = \text{topic-specific PageRank with teleport to a set of trusted pages, e.g., .edu domains or similar}\]
TrustRank

- Alternative model for TrustRank: Trust Propagation
- Initial seed set of trusted pages (evaluated by hand)
- Set trust $t_p$ of each trusted page $p$ to 1
  - For each out-link from $p$, a portion of the trust is passed on to target page $q$
- Trust is additive
  - Trust of $q$ is sum of all trust conferred by its in-links
- If trust is below a threshold, page is flagged as spam