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Text Processing – Motivation

Given: Set of documents
Searching for patterns in large sets of document objects
 Analyzing the similarity of objects
In many applications the documents are not identical, yet they share large 
portions of their text:

- Plagiarism
- Mirror Pages
- Articles from the same source

Problems in the field of Text Mining: 
- Stop words (e.g. for, the, is, which ,…)
- Identify word stem
- High dimensional features (d > 10‘000)
- Terms are not equally relevant within a document
- The frequency of terms are often ℎ𝑖𝑖 = 0  very sparse feature space

We will focus on character-level similarity, not ‚similar meaning‘
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Text Processing – Motivation

How to handle relevancy of a term?
TF-IDF (Term Frequency * Inverse Document Frequency)

- Empirical probability of term t in document d: 𝑻𝑻𝑻𝑻 𝒕𝒕,𝒅𝒅 = 𝑛𝑛(𝑡𝑡,𝑑𝑑)
𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤∈𝑑𝑑𝑛𝑛(𝑤𝑤,𝑑𝑑)

frequency n(t,d) := number of occurrences of term (word) t in document d

- Inverse probability of t regarding all documents: 𝐈𝐈𝐈𝐈𝐈𝐈 𝐭𝐭 = 𝐷𝐷𝐷𝐷
𝑑𝑑|𝑑𝑑∈𝐷𝐷𝐷𝐷∧𝑡𝑡∈𝑑𝑑

- Feature vector is given by: 𝑟𝑟 𝑑𝑑 = (𝑇𝑇𝑇𝑇 𝑡𝑡1,𝑑𝑑 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡1 , … ,𝑇𝑇𝑇𝑇 𝑡𝑡𝑛𝑛, 𝑑𝑑 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑛𝑛

How to handle sparsity? 
Term frequency often 0 => diversity of mutual Euclidean distances quite low 
 other distance measures required:

- Jaccard Coefficient: 𝑑𝑑𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝐷𝐷1,𝐷𝐷2 = 𝐷𝐷1∩𝐷𝐷2
𝐷𝐷1∪𝐷𝐷2

(Documents  set of terms)

- Cosinus Coefficient: 𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐷𝐷1,𝐷𝐷2 = 𝐷𝐷1,𝐷𝐷2
𝐷𝐷1 ∗ 𝐷𝐷2

(useful for high-dim. data)
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Shingling of Documents

General Idea: construct a set of short strings that appear within a document

K- shingles
Definition: A k-shingle is any substring of length k found within the 

document. (aka k-grams)
 Associate with each document the set of k-shingles that appear n times 
within that document

Hashing Shingles:
Idea: pick hash function that maps strings of length k to some number of 

buckets and treat the resulting bucket number as the shingle 
 set representing document is then set of integers
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Similarity-Preserving Summaries of Sets

Problem: Sets of shingles are large 
 replace large sets by much smaller representations called ‚signatures‘

Matrix representation of Sets
Characteristic matrix:

- columns correspond to the sets (documents)
- rows correspond to elements of the universal set from which elements 

(shingles) of the columns are drawn

Example: 
- universal set: {A,B,C,D,E}, 
- S1 = {A,D}, S2 = {C}, S3={B,D,E}, S4={A,C,D}

Element S1 S2 S3 S4

A 1 0 0 1

B 0 0 1 0

C 0 1 0 1

D 1 0 1 1

E 0 0 1 0

documents

shingles
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Similarity-Preserving Summaries of Sets

Minhashing

Idea: To minhash a set represented by a column 𝑐𝑐𝑖𝑖 of the characteristic matrix, pick a 
permutation of the rows. The value of the minhash is the number of the first row, in 
the permutated order, with ℎ(𝑐𝑐𝑖𝑖) = 1

Example:
Suppose the order of rows ‚BEADC‘ 

- h(S1) = A
- h(S2) = C
- h(S3) = B
- h(S4) = A

Element S1 S2 S3 S4

B 0 0 1 0

E 0 0 1 0

A 1 0 0 1

D 1 0 1 1

C 0 1 0 1
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Similarity-Preserving Summaries of Sets

Minhashing and Jaccard Similarity
The probability that the minhash function for a random permutation of rows 
produces the same value for two sets equals the Jaccard similarity of those sets.

Three different classes of similarity between sets (documents)
- Type X rows have 1 in both cols
- Type Y rows have 1 in one of the columns
- Type Z rows have 0 in both rows

Example
Considering the cols of S1 and S3:
The probability that h(S1) = h(S3) is given by:

𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆1, 𝑆𝑆3 = 𝑥𝑥
(𝑥𝑥+𝑦𝑦)

= 1
4

(Note that x is the size of 𝑆𝑆1 ∩ 𝑆𝑆2 and (x+y) is the size of 𝑆𝑆1 ∪ 𝑆𝑆2)

Element S1 S2 S3 S4

B 0 0 1 0

E 0 0 1 0

A 1 0 0 1

D 1 0 1 1

C 0 1 0 1
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Similarity-Preserving Summaries of Sets

Minhash Signatures
- Pick a random number 𝑛𝑛 of permutations of the rows
- Vector [ℎ1(𝑆𝑆), ℎ2(𝑆𝑆), … , ℎ𝑛𝑛(𝑆𝑆)] represents the minhash signature for 𝑆𝑆
- Put the specific vectors together in a matrix, forms the signature matrix
- Note that the signature matrix has the same number of columns as input matrix 𝑀𝑀

but only 𝑛𝑛 rows

How to compute minhash signatures:
1. Compute ℎ1(𝑆𝑆), ℎ2(𝑆𝑆), … , ℎ𝑛𝑛(𝑆𝑆)
2. For each row r: For each column c do the following:

(a) if 𝑐𝑐 has 0 in row 𝑟𝑟, do nothing
(b) if 𝑐𝑐 has 1 in row 𝑟𝑟 then for each 𝑖𝑖 = 1, 2, … ,𝑛𝑛 set 

𝑆𝑆𝐼𝐼𝐼𝐼(𝑖𝑖, 𝑐𝑐) = min(𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑐𝑐) , ℎ𝑖𝑖(𝑟𝑟))

 Signature matrix allows to estimate the Jaccard similarities of the underlying sets!
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Minhash Signatures - Example
- Suppose two hash functions : ℎ1 𝑥𝑥 = 𝑥𝑥 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 5 and ℎ2(𝑥𝑥) = (3𝑥𝑥 + 1) mod 5

Element S1 S2 S3 S4 h1(x) h2(x)

0 1 0 0 1 1 1

1 0 0 1 0 2 4

2 0 1 0 1 3 2

3 1 0 1 1 4 0

4 0 0 1 0 0 3

1. s1 s2 s3 s4

h1 ∞ ∞ ∞ ∞

h2 ∞ ∞ ∞ ∞

2. s1 s2 s3 s4

h1 1 ∞ ∞ 1

h2 1 ∞ ∞ 1

initialization

1st row
Check Sig for S1 and S4:
𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑐𝑐) = min(𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑐𝑐) ,ℎ𝑖𝑖(𝑟𝑟))

S1: 𝐦𝐦𝐦𝐦𝐦𝐦 ∞,𝟏𝟏 = 𝟏𝟏
𝐦𝐦𝐦𝐦𝐦𝐦 ∞,𝟏𝟏 = 𝟏𝟏

S4: 𝒎𝒎𝒎𝒎𝒎𝒎 ∞,𝟏𝟏 = 𝟏𝟏
𝒎𝒎𝒎𝒎𝒎𝒎 ∞,𝟏𝟏 = 𝟏𝟏

Similarity-Preserving Summaries of Sets
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Minhash Signatures - Example
- Suppose two hash functions : ℎ1 𝑥𝑥 = 𝑥𝑥 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 5 and ℎ2(𝑥𝑥) = (3𝑥𝑥 + 1) mod 5

Element S1 S2 S3 S4 h1(x) h2(x)

0 1 0 0 1 1 1

1 0 0 1 0 2 4

2 0 1 0 1 3 2

3 1 0 1 1 4 0

4 0 0 1 0 0 3

1. s1 s2 s3 s4

h1 ∞ ∞ ∞ ∞

h2 ∞ ∞ ∞ ∞

2. s1 s2 s3 s4

h1 1 ∞ ∞ 1

h2 1 ∞ ∞ 1

3. s1 s2 s3 s4

h1 1 ∞ 2 1

h2 1 ∞ 4 1

initialization

2nd row
Check Sig for S3:
𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑐𝑐) = min(𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑐𝑐) ,ℎ𝑖𝑖(𝑟𝑟))

S3: 𝐦𝐦𝐦𝐦𝐦𝐦 ∞,𝟐𝟐 = 𝟐𝟐
𝐦𝐦𝐦𝐦𝐦𝐦 ∞,𝟒𝟒 = 𝟒𝟒

Similarity-Preserving Summaries of Sets
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Minhash Signatures - Example
- Suppose two hash functions : ℎ1 𝑥𝑥 = 𝑥𝑥 + 1𝑚𝑚𝑚𝑚𝑚𝑚 5 and ℎ2 𝑥𝑥 = 3𝑥𝑥 + 1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚

Element S1 S2 S3 S4 h1(x) h2(x)

0 1 0 0 1 1 1

1 0 0 1 0 2 4

2 0 1 0 1 3 2

3 1 0 1 1 4 0

4 0 0 1 0 0 3

1. s1 s2 s3 s4

h1 ∞ ∞ ∞ ∞

h2 ∞ ∞ ∞ ∞

2. s1 s2 s3 s4

h1 1 ∞ ∞ 1

h2 1 ∞ ∞ 1

3. s1 s2 s3 s4

h1 1 ∞ 2 1

h2 1 ∞ 4 1

4. s1 s2 s3 s4

h1 1 3 2 1

h2 1 2 4 1

initialization

3rd row
Check Sig for S2 and S4:
𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑐𝑐) = min(𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑐𝑐) ,ℎ𝑖𝑖(𝑟𝑟))

S2: 𝐦𝐦𝐦𝐦𝐦𝐦 ∞,𝟑𝟑 = 𝟑𝟑
𝐦𝐦𝐦𝐦𝐦𝐦 ∞,𝟐𝟐 = 𝟐𝟐

S4: min 1,3 = 1
min 1,2 = 1

Similarity-Preserving Summaries of Sets

12Big Data Management and Analytics



Minhash Signatures - Example
- Suppose two hash functions : ℎ1 𝑥𝑥 = 𝑥𝑥 + 1𝑚𝑚𝑚𝑚𝑚𝑚 5 and ℎ2 𝑥𝑥 = 3𝑥𝑥 + 1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚

Element S1 S2 S3 S4 h1(x) h2(x)

0 1 0 0 1 1 1

1 0 0 1 0 2 4

2 0 1 0 1 3 2

3 1 0 1 1 4 0

4 0 0 1 0 0 3

1. s1 s2 s3 s4

h1 ∞ ∞ ∞ ∞

h2 ∞ ∞ ∞ ∞

2. s1 s2 s3 s4

h1 1 ∞ ∞ 1

h2 1 ∞ ∞ 1

3. s1 s2 s3 s4

h1 1 ∞ 2 1

h2 1 ∞ 4 1

4. s1 s2 s3 s4

h1 1 3 2 1

h2 1 2 4 1

5. s1 s2 s3 s4

h1 1 3 2 1

h2 0 2 0 0

initialization

4th row
Check Sig for S1,S3,S4:
𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑐𝑐) = min(𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑐𝑐) ,ℎ𝑖𝑖(𝑟𝑟))

S1: min 1,4 = 1
𝒎𝒎𝒎𝒎𝒎𝒎 𝟏𝟏,𝟎𝟎 = 𝟎𝟎

S3: min 2,4 = 2
𝒎𝒎𝒎𝒎𝒎𝒎 𝟒𝟒,𝟎𝟎 = 𝟎𝟎

S4: min 1,4 = 1
𝒎𝒎𝒎𝒎𝒎𝒎 𝟏𝟏,𝟎𝟎 = 𝟎𝟎

Similarity-Preserving Summaries of Sets
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Minhash Signatures - Example
- Suppose two hash functions : ℎ1 𝑥𝑥 = 𝑥𝑥 + 1𝑚𝑚𝑚𝑚𝑚𝑚 5 and ℎ2 𝑥𝑥 = 3𝑥𝑥 + 1 𝑚𝑚𝑚𝑚𝑚𝑚5

Element S1 S2 S3 S4 h1(x) h2(x)

0 1 0 0 1 1 1

1 0 0 1 0 2 4

2 0 1 0 1 3 2

3 1 0 1 1 4 0

4 0 0 1 0 0 3

1. s1 s2 s3 s4

h1 ∞ ∞ ∞ ∞

h2 ∞ ∞ ∞ ∞

2. s1 s2 s3 s4

h1 1 ∞ ∞ 1

h2 1 ∞ ∞ 1

3. s1 s2 s3 s4

h1 1 ∞ 2 1

h2 1 ∞ 4 1

4. s1 s2 s3 s4

h1 1 3 2 1

h2 1 2 4 1

5. s1 s2 s3 s4

h1 1 3 2 1

h2 0 2 0 1

6. s1 s2 s3 s4

h1 1 3 0 1

h2 0 2 0 0

initialization

5th row
Check Sig for S3:
𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑐𝑐) = min(𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑐𝑐) ,ℎ𝑖𝑖(𝑟𝑟))

S3: 𝐦𝐦𝐦𝐦𝐦𝐦 𝟐𝟐,𝟎𝟎 = 𝟎𝟎
min 0,3 = 0

Similarity-Preserving Summaries of Sets
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Matrices often arise with data:
- 𝒏𝒏 objects (documents, images, web pages, time series…)

- each with 𝒎𝒎 features

 Can be represented by an 𝒏𝒏 𝒙𝒙𝒎𝒎matrix 

𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁 ≔

𝑥𝑥1
(1) 𝑥𝑥1

(2) … 𝑥𝑥1
(𝑀𝑀)

𝑥𝑥2
(1) 𝑥𝑥2

(2) … 𝑥𝑥2
(𝑀𝑀)

⋮ ⋮ ⋱ ⋮
𝑥𝑥𝑁𝑁

(1) 𝑥𝑥𝑁𝑁
(2) … 𝑥𝑥𝑁𝑁

(𝑀𝑀)

values at time t, 𝑥𝑥𝑡𝑡

i-th series, 𝑥𝑥(𝑖𝑖)

doc1 Two for wine and wine for two

doc2 Wine for me and wine for you

doc3 You for me and me for you

𝑇𝑇𝑇𝑇𝑇𝑇 ≔
2 2 0 0
0 2 1 1
0 0 2 2

Tw
o

w
ine

M
e

you

Doc1

Doc2

Doc3

(filter ‚for‘, ‚and‘ as stopwords )

Modeling data as matrices
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• discover hidden correlations 
• remove redundant and noisy features
• interpretation and visualization
• easier storage and processing of the data
• transform a high-dimensional sparse matrix into a low-

dimensional dense matrix

d=3 d=2

Axes of k-dimensional 
subspace are effective 
representation of the
data

Why reducing the dimesionality makes sense?
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• Consider the grades of students in Physics and Statistics.
• If we want to compare among the students, which grade should be 

more discriminative? Statistics or Physics?

Physics since the variation along 
that axis is larger.

Based on:
http://astrostatistics.psu.edu/su09/lecturenotes/pca.html

Principal Component Analysis (PCA):  A simple example 1/3
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• Suppose now the plot looks as below. 
• What is the best way to compare students now?

We should take linear 
combination of the two grades to 
get the best results. 

Here the direction of maximum 
variance is clear.

In general  PCA

Based on: 
http://astrostatistics.psu.edu/su09/lecturenotes/pca.html

Principal Component Analysis (PCA):  A simple example 2/3
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• PCA returns two principal components
– The first gives the direction of the maximum spread of the data. 

– The second gives the direction of maximum spread perpendicular to 
the first direction

Based on: 
http://astrostatistics.psu.edu/su09/lecturenotes/pca.html

Principal Component Analysis (PCA):  A simple example 3/3
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Intuition

• to represent information, data objects has to be distinguishable
• if all objects have the same attribute value (+ noise), objects are 

not different from each other 
• maximize the diversity between the objects
• the variance in a direction describes this diversity

Initial data Direction 1 Direction 2

Idea: Always choose the direction that maximizes the variance of the projected data
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Principal Component Analysis (PCA)

• PCA computes the most meaningful basis to re-express noisy data
• Think of PCA as choosing a new coordinate system for the data, the 

principal components being the unit vectors along the axes
• PCA asks: Is there another basis, which is a linear combination of the 

original basis, that best expresses our dataset?
• General form: PX=Y

where P is a linear transformation, X is the original dataset
and Y the re-representation of this dataset.

– P is a matrix that transforms X into Y
– Geometrically, P is a rotation and a stretch which again transforms X into Y
– The eigenvectors are the rotations to the new axes
– The eigenvalues are the amount of stretching that needs to be done

• The p’s are the principal components
– Directions with the largest variance … those are the most important, most 

principal.
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Principal Component Analysis (PCA)

Idea: Rotate the data space in a way that the principal components are 
placed along the main axis of the data space
=> Variance analysis based on principal components

• Rotate the data space in a way that the direction with the largest variance is 
placed on an axis of the data space

• Rotation is equivalent to a basis transformation by an orthonormal basis
– Mapping is equal of angle and preserves distances:

• B is built from the largest variant direction which is orthogonal to all previously 
selected vectors in B.

( ) ( ) 10,,,,,,,
1*,1*,*,1*, =∀∧=∀==⋅

≤≤≠ idijijidd bbbmitbxbxbbxBx 

22Big Data Management and Analytics



PCA steps

Feature reduction using PCA

1. Compute the covariance matrix Σ

2. Compute the eigenvalues and the corresponding eigenvectors of Σ

3. Select the k biggest eigenvalues and  their eigenvectors (V‘)

4. The k selected eigenvectors represent an orthogonal basis

5. Transform the original n × d data matrix D with the d × k basis V‘:

( )

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






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


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′′

=′′















=′⋅

k

k

k

vv

vv
vvD

,x,x

,x,x
,,

x

x
V

n1n

111

1

n

1








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Example of transformation

• Original

• Transformed data

Eigenvectors

In the rotated coordinate system

Source: http://infolab.stanford.edu/~ullman/mmds/ch11.pdf
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Percentage of variance explained by PCA

• Let k be the number of top eigenvalues out of d (d is the 
number of dimensions in our dataset)

• The percentage of variance in the dataset explained by 
the k selected eigenvalues is:

• Similarly, you can find the variance explained by each 
principal component

• Rule of thumb: keep enough to explain 85% of the 
variation

∑𝑖𝑖=1𝑘𝑘 𝜆𝜆𝑖𝑖
∑𝑖𝑖=1𝑑𝑑 𝜆𝜆𝑖𝑖
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PCA results interpretation

• Example: iris dataset  (d=4), results from R

• 4 principal components 
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Computing PCA via Power Iteration

Problem:

• Computing the eigenvalues with standard algorithms is 
often  expensive (many algorithm are well-known) 

• Standard methods often involve matrix inversions ( O(n3))
• For large matrixes more efficient methods are required:

• Most prominent is the power iterations method ( O(n2))
Intuition: Multiplying a matrix with itself increases the 
strongest direction relative to the other direction.
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Power Iterations general idea

• given: data n×d matrix X and the corresponding covariance 
matrix Σ=(X-µ(X)T(X-µ(X)) where µ(X) is the mean vector of X.

• consider the eigenvalue decomposition of Σ = VT Λ V where
𝑉𝑉 = 𝑣𝑣1, . . , 𝑣𝑣𝑑𝑑 : is the column wise orthonormal eigenvector basis

Λ =
𝜆𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝑑𝑑

: is the diagonal eigenvalue matrix 

Note: Σ𝑡𝑡 = 𝑉𝑉𝑇𝑇Λ𝑉𝑉 𝑡𝑡 = 𝑉𝑉𝑇𝑇Λ𝑉𝑉 ⋅ 𝑉𝑉𝑇𝑇Λ𝑉𝑉 � … � 𝑉𝑉𝑇𝑇 Λ𝑉𝑉= 𝑉𝑉𝑇𝑇Λ𝑡𝑡𝑉𝑉

=𝑉𝑉𝑇𝑇
λ1𝑡𝑡 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ λ𝑑𝑑𝑡𝑡

V
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What is the ith power of a diagonal matrix ?

• if PCA is well-defined all λ>= 0

• taking the ith power: All values λ >1 increase with the power
and all λ values < 0 decrease exponentially fast.

• When normalizing the λ by ∑𝑖𝑖=1𝑑𝑑 𝜆𝜆𝑖𝑖 , we observe the following:

for λi≠λj and 𝑡𝑡 → ∞ : ∃𝜆𝜆𝑖𝑖∗: 𝜆𝜆𝑖𝑖∗
𝑡𝑡

∑𝑖𝑖=1
𝑑𝑑 𝜆𝜆𝑖𝑖

𝑡𝑡→1 𝑎𝑎𝑎𝑎𝑎𝑎 ∀j≠ 𝑖𝑖 ∗:
𝜆𝜆𝑗𝑗
𝑡𝑡

∑𝑖𝑖=1
𝑑𝑑 𝜆𝜆𝑖𝑖

𝑡𝑡→0

• under normalization over all diagonal entries, only one 
component remains.

• Thus: the rank of Σ𝑡𝑡 converges to 1 and the only component 
remaining is the strongest eigenvector.
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Determining the Strongest Eigenvalue
The following algorithm computes the strongest eigenvalue of matrix M:

Input: d×d data matrix M
x0 = random unit vector

M0 = M

while || xi/||xi||- xi-1/||xi-1|| ||> ε do
Mi+1 = MTiMi
xi = Mi+1 x0

i=i+1

return xi/||xi||

Why does this work?

𝑀𝑀𝑡𝑡𝑥𝑥 = 𝑣𝑣1 , . . , 𝑣𝑣𝑑𝑑
0 . . 0
. . 𝜆𝜆𝑗𝑗𝑡𝑡 . .
0 . . 0

𝑣𝑣1
:
𝑣𝑣𝑑𝑑

𝑥𝑥 = 𝑣𝑣1 , . . , 𝑣𝑣𝑑𝑑
0 . . 0
. . 𝜆𝜆𝑗𝑗𝑡𝑡 . .
0 . . 0

𝑣𝑣1, 𝑥𝑥
:

𝑣𝑣𝑑𝑑 , 𝑥𝑥

=[𝑣𝑣1, . . ,𝑣𝑣𝑑𝑑]
0
𝜆𝜆𝑗𝑗𝑡𝑡

0
𝑣𝑣𝑗𝑗 , 𝑥𝑥 =

𝑣𝑣1,1 � 0+. . +𝑣𝑣1,𝑗𝑗 � 𝜆𝜆𝑗𝑗𝑡𝑡 𝑣𝑣𝑗𝑗 ,𝑥𝑥 + 𝑣𝑣1,𝑑𝑑 � 0
:

𝑣𝑣𝑑𝑑,1 � 0+. . +𝑣𝑣𝑑𝑑,𝑗𝑗 � 𝜆𝜆𝑗𝑗𝑡𝑡 𝑣𝑣𝑗𝑗 , 𝑥𝑥 + 𝑣𝑣𝑑𝑑,𝑑𝑑 � 0
= 𝑣𝑣𝑗𝑗� 𝜆𝜆𝑗𝑗𝑡𝑡 𝑣𝑣𝑗𝑗 , 𝑥𝑥

in other words the MTx has the same direction as the strongest eigenvector vj.
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Power Iterations: the complete method
• we now have a method to determine the strongest 

eigenvector
• to compute the k-strongest eigenvectors we proceed as 

follows:
For i=1 to k:
determine the strongest eigenvector v_i
reproject data X to the space being orthogonal to v_i:
x’ = x-v_i<v_i,x>

output the v_i

• explanation for the reprojection:

• if there are two equally strong eigenvalues λi =λj then the 
algorithm returns an arbitrary vector from span(vi,vj)

• for λi ≈ λj : the algorithm converges slower

Xvj

<vj,x> 

x-vj<vj,x> 

33Big Data Management and Analytics



Conclusion

• PCA is an important method for feature reduction

• general and complete for eigenvalue decomposition are 
often inefficient(compute the characteristic polynomial, 
using matrix inversion etc.)

• Power iterations are linear in the size of the matrix, i.e. 
quadratic in the dimension d.

• Power iterations compute only the k strongest 
eigenvalues but not all (stop when k strongest v are 
found)

• rely only on matrix multiplications
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Let 𝑋𝑋𝑛𝑛×𝑑𝑑 be a data matrix and let k be its rank. We can 
decompose 𝑋𝑋 into matrices 𝑈𝑈, Σ,𝑉𝑉 as follows:

𝑿𝑿 𝑼𝑼 𝚺𝚺 𝑽𝑽𝑻𝑻
𝑥𝑥1,1 … 𝑥𝑥1,𝑑𝑑
⋮ ⋱ ⋮

𝑥𝑥𝑛𝑛,1 … 𝑥𝑥𝑛𝑛,𝑑𝑑
=

𝑢𝑢1,1 … 𝑢𝑢1,𝑛𝑛
⋮ ⋱ ⋮

𝑢𝑢𝑛𝑛,1 … 𝑢𝑢𝑛𝑛,𝑛𝑛
∗

𝜆𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝑑𝑑

∗
𝑣𝑣1,1 ⋯ 𝑣𝑣1,𝑑𝑑
⋮ ⋱ ⋮

𝑣𝑣𝑑𝑑,1 ⋯ 𝑣𝑣𝑑𝑑,𝑑𝑑

• X (Input data matrix) is a 𝑛𝑛×𝑑𝑑 matrix (e.g. n customers, d products)
• U (Left singular vectors) is a 𝑛𝑛×𝑛𝑛 column-orthonormal matrix
• 𝜮𝜮 (Singular values) is a diagonal 𝑛𝑛×𝑑𝑑 with the elements being the singular values of X
• V (Right singular vecors) is a 𝑑𝑑×𝑑𝑑 column-orthonormal matrix

Singular Value Decomposition (SVD) –
Generalization of the eigenvalue decomposition
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Computing SVD of a Matrix

Connected to eingenvalues of matrices 𝑋𝑋𝑇𝑇𝑋𝑋 and 𝑋𝑋𝑋𝑋𝑇𝑇

𝑋𝑋𝑇𝑇𝑋𝑋 = 𝑈𝑈 𝛴𝛴 𝑉𝑉𝑇𝑇 𝑇𝑇𝑈𝑈 𝛴𝛴 𝑉𝑉𝑇𝑇 = (𝑉𝑉𝑇𝑇)𝑇𝑇𝛴𝛴𝑇𝑇𝑈𝑈𝑇𝑇 𝑈𝑈 𝛴𝛴 𝑉𝑉𝑇𝑇 = 𝑉𝑉 𝛴𝛴2 𝑉𝑉𝑇𝑇

 Multiplying each side with V:
𝑋𝑋𝑇𝑇𝑋𝑋 𝑉𝑉 = 𝑉𝑉 𝛴𝛴2

 Same algorithm that computes the eigenpairs for 𝑋𝑋𝑇𝑇𝑋𝑋 gives us matrix 𝑉𝑉
for SVD

 Square root of the eigenvalues of 𝑋𝑋𝑇𝑇𝑋𝑋 gives us the singular values of 𝑋𝑋
 𝑈𝑈 can be found by the same procedure as 𝑉𝑉, just with X𝑋𝑋𝑇𝑇

remember the 
eigenvalue problem: 
𝐴𝐴𝐴𝐴 = 𝜆𝜆𝜆𝜆

Singular Value Decomposition (SVD) 
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Singular Value Decomposition (SVD) 
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How to reduce the dimensions?

Let X= 𝑈𝑈 Σ 𝑉𝑉𝑇𝑇 (with rank(A) = r) and Y = 𝑈𝑈 𝑆𝑆 𝑉𝑉𝑇𝑇, with 𝑆𝑆 ∈ ℝ𝑟𝑟 𝑥𝑥 𝑟𝑟 where
𝑠𝑠𝑖𝑖 = 𝜆𝜆𝑖𝑖 𝑖𝑖 = 1 , … , 𝑘𝑘 else 𝑠𝑠𝑖𝑖 = 0

𝑥𝑥1,1 ⋯ 𝑥𝑥1,𝑑𝑑
⋮ ⋱ ⋮

𝑥𝑥𝑛𝑛,1 ⋯ 𝑥𝑥𝑛𝑛,𝑑𝑑

=
𝑢𝑢1,1 ⋯ 𝑢𝑢1,𝑟𝑟 𝑢𝑢1,𝑛𝑛
⋮ ⋱ ⋮ ⋮

𝑢𝑢𝑛𝑛,1 ⋯ 𝑢𝑢𝑛𝑛,𝑟𝑟 𝑢𝑢𝑛𝑛,𝑛𝑛

𝜆𝜆1 0 ⋯ ⋯
0 ⋱ ⋮ ⋮
⋮ ⋯ 𝜆𝜆𝑟𝑟 ⋮
⋮ … … 𝜆𝜆𝑑𝑑

𝑣𝑣1,1 ⋯ 𝑣𝑣1,𝑑𝑑
⋮ ⋱ ⋮
𝑣𝑣𝑟𝑟,1 ⋯ 𝑣𝑣𝑟𝑟,𝑑𝑑
𝑣𝑣𝑑𝑑,1 … 𝑣𝑣𝑑𝑑,𝑑𝑑

 New matrix Y is a best rank-k approximation to X



Ratings of movies by users

M
atrix

A
lien

S
tar W

ars

C
assablanca

T
itanic

Joe 1 1 1 0 0

Jim 3 3 3 0 0

John 4 4 4 0 0

Jack 5 5 5 0 0

Jill 0 0 0 4 4

Jenny 0 0 0 5 5

Jane 0 0 0 2 2

Let A be a m× n matrix, and let r be the rank of A

Here: 
• a rank-2 matrix representing ratings of movies by users
• 2 underlying concepts: science-fiction + romance

Source: http://infolab.stanford.edu/~ullman/mmds/ch11.pdf

Singular Value Decomposition (SVD) – Example
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Ratings of movies by users - SVD

1 1 1 0 0
3 3 3 0 0
4 4 4 0 0
5 5 5 0 0
0 0 0 4 4
0 0 0 5 5
0 0 0 2 2

=

.14

.42

.56

.70
0
0
0

0
0
0
0
.6

.75

.30

∗ 12.4 0
0 9.5 ∗ .58 .58 .58 0 0

0 0 0 .71 .71

𝑋𝑋 = 𝑈𝑈 ∗ Σ ∗ 𝑉𝑉𝑇𝑇

Connects people
to ‚concepts‘

Relates movies 
to concepts

‚strength‘ of 
each concept

Raw data of user
-movie-ratings

Singular Value Decomposition (SVD) – Example
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Ratings of movies by users - SVD Interpretation

1 1 1 0 0
3 3 3 0 0
4 4 4 0 0
5 5 5 0 0
0 0 0 4 4
0 0 0 5 5
0 0 0 2 2

=

.14

.42

.56

.70
0
0
0

0
0
0
0
.6

.75

.30

∗ 12.4 0
0 9.5 ∗ .58 .58 .58 0 0

0 0 0 .71 .71

Sci-Fi
concept

romance
concept

Data provides more
Information about 
the sci-fi genre and 
the people who like 
it

First three movies (Matrix, Alien, Star 
Wars) are assigned exclusively to sci-fi 
genre, whereas the other two belong to 
the romance ‚concept‘

People‘s preferences 
to specific concepts
(e.g. Joe exclusively 
likes sci-fi movies but 
rates them low)

Joe

Singular Value Decomposition (SVD) – Example
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SVD and low-rank approximations

Summary

Basic SVD Theorem: Let A be an m x n matrix with rank p 
- Matrix A can be expressed as 𝐴𝐴 = 𝑈𝑈 𝛴𝛴 𝑉𝑉𝑇𝑇
- Truncate SVD of 𝐴𝐴 yields ‘best’ rank-k approximation  given by 

𝐴𝐴𝑘𝑘 = 𝑈𝑈𝑘𝑘 𝛴𝛴𝑘𝑘𝑉𝑉𝑘𝑘𝑇𝑇 ,with 𝑘𝑘 < 𝑑𝑑

Properties of truncated SVD:
- Often used in data analysis via PCA
- Problematic w.r.t sparsity, interpretability, etc.
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Problems with SVD / Eigen-analysis

Problems: arise since structure in the data is not respected by 
mathematical operations on the data

Question: Is there a ‘better’ low-rank matrix approximations in 
the sense of … 

- … structural properties for certain application
- … respecting relevant structure
- … interpretability and informing intuition

 Alternative: CX and CUR matrix decompositions
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Definition CX : A CX decomposition is a low-rank approximation 
explicitly expressed in terms of a small number of columns of A.

Definition CUR : A CUR matrix decomposition is a low-rank 
approximation explicitly expressed in terms of a small number of columns 
and rows of A.

U RCA ≈ ∗ ∗

CX and CUR matrix decompositions
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CUR Decomposition

• In large-data aplications the raw data matrix M tend to be very sparse 
(e.g. matrix of customers/products , movie recommendation systems…)

• Problem with SVD : 
• Even if M is sparse, the SVD yields two dense matrices U and V 

• Idea of CUR Decomposition:
• By sampling a sparse Matrix M, we create two sparse matrices C 

(‘columns’) and R (‘rows’)
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CUR Definition

Input: let 𝑴𝑴 be a 𝒎𝒎𝒙𝒙 𝒏𝒏matrix

1.Step:
- Choose a number 𝒓𝒓 of ‘concepts’ (c.f. rank of matrix)

- Perform biased Sampling of 𝒓𝒓 cols from 𝑴𝑴 and create a 𝒎𝒎×𝒓𝒓matrix 𝑪𝑪
- Perform biased Sampling of 𝒓𝒓 rows from 𝑴𝑴 and create a 𝒓𝒓×𝒏𝒏matrix 𝑹𝑹

2.Step:
- Construct 𝑼𝑼 from 𝑪𝑪 and 𝑹𝑹:

- Create a 𝒓𝒓 𝒙𝒙 𝒓𝒓 matrix 𝑾𝑾 by the intersection of the chosen cols from 𝐶𝐶 and 
rows from 𝑅𝑅

- Apply SVD on 𝑾𝑾 = 𝑿𝑿 𝜮𝜮 𝒀𝒀𝒕𝒕
- Compute 𝜮𝜮+, the moore-penrose pseudoinverse of Σ
- Compute 𝑼𝑼 = 𝒀𝒀(𝜮𝜮+)𝟐𝟐 𝑿𝑿𝒕𝒕
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CUR – how to sample rows and cols from M?

Sample columns for C:

Input: matrix 𝑀𝑀 ∈ ℝ𝑚𝑚𝑥𝑥 𝑛𝑛 , sample size 𝑟𝑟
Output: 𝐶𝐶 ∈ ℝ𝑚𝑚 𝑥𝑥 𝑟𝑟

1.  For x = 1 : n do
2. P(x) = ∑𝑖𝑖(𝑚𝑚𝑖𝑖,𝑥𝑥)2 / 𝑀𝑀 𝐹𝐹

2

3. For y = 1 : r do
4. Pick 𝑧𝑧 ∈ 1:𝑛𝑛 based on Prob(x)

5. C( : , y) = M( : , z) / 𝑟𝑟 ∗ 𝑃𝑃(𝑧𝑧)

(sampling of R for rows analogous)

Frobenius-Norm:

𝑀𝑀 𝐹𝐹 = �
𝑖𝑖

�
𝑗𝑗

(𝑚𝑚𝑖𝑖,𝑗𝑗)2
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CUR Definition

Example - Sampling

Sample columns: 

�
𝑖𝑖

𝑚𝑚𝑖𝑖,1 = �
𝑖𝑖

𝑚𝑚𝑖𝑖,2 = �
𝑖𝑖

𝑚𝑚𝑖𝑖,3 = 12 + 32 + 42 + 52 = 51

�
𝑖𝑖

𝑚𝑚𝑖𝑖,4 = �
𝑖𝑖

𝑚𝑚𝑖𝑖,5 = 42 + 52 + 22 = 45

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∶ 𝑀𝑀 𝐹𝐹
2 = 243

 𝑃𝑃 𝑥𝑥1 = 𝑃𝑃 𝑥𝑥2 = 𝑃𝑃(𝑥𝑥3) = 51
243

= 0.210

 𝑃𝑃 𝑥𝑥4 = 𝑃𝑃 𝑥𝑥5 = 45
243

= 0.185

M
atrix

A
lien

S
tar W

ars

C
assablanca

T
itanic

Joe 1 1 1 0 0

Jim 3 3 3 0 0

John 4 4 4 0 0

Jack 5 5 5 0 0

Jill 0 0 0 4 4

Jenny 0 0 0 5 5

Jane 0 0 0 2 2
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CUR Definition

Example - Sampling
Sample columns: 
• Let r = 2
• Randomly choosen columns, e.g. Star Wars + Cassablanca

1,3,4,5,0,0,0 𝑇𝑇 1
𝑟𝑟 ∗ 𝑃𝑃(𝑥𝑥3)

= 1,3,4,5,0,0,0 𝑇𝑇 1
2 ∗ 0.210

= 1.54, 4.63, 6.17, 7.72, 0, 0,0 𝑇𝑇

0,0,0,0,4,5,2 𝑇𝑇 1
𝑟𝑟 ∗ 𝑃𝑃(𝑥𝑥4)

= 0,0,0,0,4,5,2 𝑇𝑇 1
2 ∗ 0.185

= 0, 0, 0, 0, 6.58, 8.22, 3.29 𝑇𝑇

=> 𝐶𝐶 =

1.54 0
4.63 0
6.17 0
7.72 0

0 6.58
0 8.22
0 3.29

R is constructed analogous

M
atrix

A
lien

S
tar W

ars

C
assablanca

T
itanic

Joe 1 1 1 0 0

Jim 3 3 3 0 0

John 4 4 4 0 0

Jack 5 5 5 0 0

Jill 0 0 0 4 4

Jenny 0 0 0 5 5

Jane 0 0 0 2 2
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CUR Definition

Input: let 𝑴𝑴 be a 𝒎𝒎𝒙𝒙 𝒏𝒏matrix

1.Step:
- Choose a number 𝒓𝒓 of ‘concepts’ (c.f. rank of matrix)

- Perform biased Sampling of 𝒓𝒓 cols from 𝑴𝑴 and create a 𝒎𝒎 𝒙𝒙 𝒓𝒓matrix 𝑪𝑪
- Perform biased Sampling of 𝒓𝒓 rows from 𝑴𝑴 and create a 𝒓𝒓 𝒙𝒙 𝒏𝒏matrix 𝑹𝑹

2.Step:
- Construct 𝑼𝑼 from 𝑪𝑪 and 𝑹𝑹:

- Create a 𝒓𝒓 𝒙𝒙 𝒓𝒓 matrix 𝑾𝑾 by the intersection of the chosen cols from 𝐶𝐶 and 
rows from 𝑅𝑅

- Apply SVD on 𝑾𝑾 = 𝑿𝑿 𝜮𝜮 𝒀𝒀𝑻𝑻
- Compute 𝜮𝜮+, the moore-penrose pseudoinverse of Σ
- Compute 𝑼𝑼 = 𝒀𝒀(𝜮𝜮+)𝟐𝟐 𝑿𝑿𝑻𝑻
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CUR Definition

Example – Calculating 𝑈𝑈
Suppose 𝐶𝐶 (Star Wars, Cassablance) and 𝑅𝑅 (Jenny, Jack)

𝑊𝑊 as intersection of cols from 𝐶𝐶 and rows from 𝑅𝑅:

𝑊𝑊 = 0 5
5 0

 SVD applied on 𝑊𝑊:

𝑊𝑊 = 0 5
5 0 = 𝑋𝑋 Σ 𝑌𝑌𝑇𝑇 = 0 −1

−1 0
5 0
0 5

−1 0
0 −1

 Pseudo-Inverse of Σ
(replace diagonal entries with their numerical inverse)

Σ+ = 1/5 0
0 1/5

 Compute 𝑈𝑈

𝑈𝑈 = 𝑌𝑌 (Σ+)2𝑋𝑋𝑇𝑇 = −1 0
0 −1

1/5 0
0 1/5

2 0 −1
−1 0

= 0 1/25
1/25 0

Ensure the
correct order!

M
atrix

A
lien

S
tar W

ars

C
assablanca

T
itanic

Joe 1 1 1 0 0

Jim 3 3 3 0 0

John 4 4 4 0 0

Jack 5 5 5 0 0

Jill 0 0 0 4 4

Jenny 0 0 0 5 5

Jane 0 0 0 2 2
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High Dimensionality Data

[1] Less is More: Compact Matrix Decomposition for Large Sparse Graphs,  Jimeng
Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos, Proceedings of the 2007 
SIAM International Conference on Data Mining. 2007, 366-377 

[2] Rajaraman, A.; Leskovec, J. & Ullman, J. D. (2014), Mining Massive Datasets . 
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